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ABSTRACT

Traditional social learning frameworks consider environments with
a homogeneous state where each agent receives observations condi-
tioned on the same hypothesis. In this work, we study the distributed
hypothesis testing problem for graphs with a community structure,
assuming that each cluster receives data conditioned on some differ-
ent true state. This situation arises in many scenarios, such as when
sensors are spatially distributed, or when individuals in a social net-
work have differing views or opinions. We show that the adaptive
social learning strategy is not only superior in nonstationary envi-
ronments, but also allows each cluster to discover its own truth.

Index Terms— Social learning, hypothesis testing, diffusion
strategies, adaptive learning, multitask learning, personalized learn-
ing, decision-making.

1. INTRODUCTION AND RELATED WORK

The social learning framework [1–16] is a popular non-Bayesian
approach for solving distributed hypothesis testing (or decision-
making) problems over graphs. In these problems, the objective is
to learn and track an unknown true state of nature (or hypothesis)
from streaming data. Such formulations can be used, for exam-
ple, to model opinion formation over social networks where agents
exchange beliefs on a topic of interest to arrive at a collaborative
conclusion. For instance, the work [17] considers a special applica-
tion of social learning to identify influential users over Twitter.

In traditional social learning algorithms, at each iteration, agents
update their confidence level about each possible hypothesis. They
do so by updating a probability mass function called the belief vec-
tor. One of the remarkable variations of social learning is the adap-
tive social learning strategy (ASL) [7]. ASL infuses these method-
ologies with adaptation and tracking abilities and allows agents to
track drifts in the underlying hypothesis. This method resolves the
stubbornness issue that plagues traditional solutions where agents
resist changing their opinions.

The non-Bayesian social learning approach is an effective alter-
native to finding the fully Bayesian estimate of the unknown hypoth-
esis. This is because the Bayesian solution over graphs is generally
NP-hard and requires full knowledge of the graph topology and of
the likelihood models [10, 11, 18]. The non-Bayesian approach con-
sidered herein, and in the aforementioned works, relies on a fully
decentralized implementation, allowing each agent to keep their ob-
servations private and to exchange beliefs solely with their immedi-
ate neighbors.

All these previous works assume that the agents receive observa-
tions arising from the same state of nature (or the same hypothesis).
In this work, we relax this assumption and allow agents to receive
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observations from different models (or hypotheses). We therefore
focus on studying the limiting behavior of the decision-making pro-
cess and examine how the presence of agents with different states
affects collaborative learning.

The main challenge is the following. If we assume a multiple
hypotheses scenario and apply any of the traditional social learning
strategies [1, 2, 4, 9], then it is known that these methods will force
all agents to converge to the same common state that best describes
the observations. This state will not be necessarily optimal or the
true one for the individual agents. In other words, the traditional
techniques force consensus while the multiple hypotheses scenario
requires the use of a strategy that would allow diversity of mod-
els across the agents. In this regard, we show in this work that the
adaptation parameter δ, which is used by the adaptive social learning
strategy (ASL) to enable tracking, actually plays an additional role.
It allows the final belief vector for each agent to become dependent
on the local subnetwork. As a result, different parts of the graph
can now arrive at different conclusions. This means that adaptation
helps infuse diversity into the convergence behavior of the network
and allows agents to approach different limiting states.

For graphs involving a multiplicity of models, one useful topol-
ogy is that of a community-structured graph such as the Stochastic
Block Model (SBM) [19–24]. It defines each community as a col-
lection of agents that have a large probability of connection with
each other, while the probability of connection between communi-
ties is small. The SBM has been used in the literature for the analysis
of exchanges over social networks such as Twitter [23–26], and for
studying opinion polarization [27,28]. This motivates us to study so-
cial learning under polar true hypotheses. Assuming that each cluster
receives data conditioned on a different true state, we are interested
in determining conditions that enable each of the communities to
discover their own truth. We will show in this work that, for such
block models and under reasonable constraints on the adaptation pa-
rameter δ, it is possible for each cluster in the network to discover its
true hypothesis (or model) by relying on the adaptive social learning
strategy [7].

2. SOCIAL LEARNING MODEL

Consider a collection of agents denoted by N , interacting to form
belief vectors that reflect their confidence in each possible hypoth-
esis θ ∈ Θ based on their private streaming observations and on
interactions with their immediate neighbors. These interactions are
governed by a combination graph A ∈ [0, 1]|N|×|N|, where nonzero
elements indicate an edge between two nodes. For any two con-
nected agents, the value aℓk = [A]ℓ,k > 0 determines the level of
trust that agent k ∈ N assigns to information arriving from agent
ℓ ∈ N . The combination matrix is assumed to be left-stochastic,
i.e., the weights on every column add up to one:∑

ℓ∈N

aℓk = 1, ∀k ∈ N . (1)



Additionally, the combination graph is assumed to be strongly con-
nected, which means that there exists at least one self-loop with a
positive weight, i.e., akk > 0 for some k and, moreover, there exists
a path with positive weights between any two nodes [29]. It follows
from these conditions and the Perron-Frobenius theorem [30, Chap-
ter 8], [29] that the power matrix As converges to u1T as s → ∞ at
an exponential rate, where u refers to the Perron eigenvector of A,
namely,

Au = u, uℓ > 0,
∑
ℓ∈N

uℓ = 1. (2)

At each moment i, agent k receives some random observation
ζk,i from the environment. In traditional social learning algorithms
it is assumed that there exists a single global true state of nature,
denoted by θ⋆ ∈ Θ. The aim of the social learning algorithm then
becomes to enable all agents to discover the value of θ⋆ from the
streaming observations. In this work, however, we allow the truth to
be agent-dependent. That is, the observations of agent k are condi-
tioned on the local model θ⋆k and we write Lk(ζk,i|θ⋆k).

The traditional social learning strategy is described as follows.
Each agent k ∈ N assigns an initial belief µk,0(θ) ∈ [0, 1] for
each state θ ∈ Θ such that the total confidence sums up to one, i.e.,∑

θ µk,0(θ) = 1. In order not to exclude any hypothesis before-
hand, we assume that each component of the belief vector µk,0 is
strictly positive. Then, at each iteration i, each agent k receives an
observation ζk,i and performs a local Bayesian update [2, 4, 9]:

ψk,i(θ) =
Lk(ζk,i|θ)µk,i−1(θ)∑

θ′∈Θ Lk(ζk,i|θ′)µk,i−1(θ
′)
, ∀k ∈ N . (3)

The vector ψk,i is a probability mass function and we refer to it as
the intermediate (public) belief. The qualification “public” refers to
the fact that this vector is shared among neighbors. For the adap-
tive social learning (ASL) strategy from [7], the update step (3) is
replaced by:

ψk,i(θ) =
Lδ

k(ζk,i|θ)µ
1−δ
k,i−1(θ)∑

θ′∈Θ Lδ
k(ζk,i|θ′)µ

1−δ
k,i−1(θ

′)
, ∀k ∈ N . (4)

The step-size δ ∈ (0, 1) infuses into the algorithm the ability to track
drifts in the underlying models (hypotheses).

Following (3) or (4), the agents perform geometric averaging of
public beliefs of their neighbors [4, 7, 9]:

µk,i(θ) =

∏
ℓ∈Nk

ψ
aℓk
ℓ,i (θ)∑

θ′∈Θ

∏
ℓ∈Nk

ψ
aℓk
ℓ,i (θ′)

, ∀k ∈ N . (5)

The resulting vector µk,i is referred to as the private belief.
At every iteration, each agent estimates the true state based on

their private belief µk,i (it can also use ψk,i):

θ̂k,i ≜ argmax
θ∈Θ

µk,i(θ). (6)

3. TRUTH LEARNING

It is known that under traditional social learning (3) and (5), even if
the agents have different local truths, the network will reach consen-
sus on some subset Θ⋆ that minimizes [4]:

min
θ

∑
k∈N

ukDKL
(
Lk(θ

⋆
k)||Lk(θ)

)
(7)

Here, the notation DKL denotes the Kullback-Leibler divergence be-
tween two distributions:

DKL
(
Lk(θ)||Lk(θ

′)
)
≜ Eζ∼Lk(ζ|θ) log

Lk(ζ|θ)
Lk(ζ|θ′)

(8)

The algorithm behaves conservatively and forces the agents to agree
on one optimal subset Θ⋆ independently of the graph structure.
There is no guarantee that for each individual agent k, its true
hypothesis θ⋆k is present in the subset Θ⋆.

The main advantage of the adaptive strategy (4)–(5) is its capac-
ity to adapt to changes in the models over time. The hyperparameter
δ ∈ (0, 1) plays an important role: the higher δ is, the more impor-
tance is attached to newly received samples. According to [7, Theo-
rem 1], the log-belief ratio of private beliefs converges in distribution
to the following random variable:

log
µk,i(θ)

µk,i(θ
′)

d−−−→
i→∞

ρk(θ, θ
′) (9)

defined as

ρk(θ, θ
′) ≜ δ

∑
ℓ∈N

∞∑
i=0

(1− δ)t[At+1]ℓk log
Lℓ(ζℓ,i|θ)
Lℓ(ζℓ,i|θ′)

(10)

Its expected value is given by:

Eρk(θ, θ
′) = δ

∑
ℓ∈N

∞∑
t=0

(1− δ)t[At+1]ℓk

×
(
DKL

(
Lℓ(θ

⋆
ℓ )||Lℓ(θ

′)
)
−DKL

(
Lℓ(θ

⋆
ℓ )||Lℓ(θ)

))
(11)

Assuming finiteness of second-order moments for the log-likelihoods,
the variance of ρk is on the order of δ:

Var(ρk(θ, θ
′)) = O(δ). (12)

The result implies that the expectation Eρk(θ, θ
′) determines

which hypothesis agent k will prioritize in the steady-state on aver-
age. As opposed to the case when δ → 0 studied in [7], there is
no almost sure convergence guarantee toward a final solution, and
the log beliefs will fluctuate around their mean Eρk(θ, θ

′) with the
variance on the order of O(δ).

These results reveal that each agent k can arrive at its own lo-
cally optimal solution because the expression on the right-hand side
of (10) depends on k. This is in contrast to traditional social learning
where the beliefs of all agents converge to the same zero value with a
rate determined by the network divergence. In the ASL, the final in-
ference for each agent depends on the local network, and thus on the
observations and the true states of these agents: observe from (11)
that each agent gives higher importance to its close neighbors. In
particular, the weight (1 − δ) scales the immediate one-hop neigh-
bors (namely, those agents ℓ for which aℓk is non-zero), while the
weight (1− δ)2 scales the agents from the 2-hop neighborhood, and
so on. This way, as the value of δ increases, the influence of further
connected nodes diminishes.

This observation suggests that under certain network conditions,
such as community structured graphs, and for large enough δ, each
agent k should be able to arrive on average to their own truth θ⋆k. This
is because over these graphs there is a higher probability for each
agent to be connected to the nodes that share the same underlying
truth. We will verify that this is indeed the case.



(a) True states, colors stand for hypotheses (b) Predicted states, δ = 0.01 (c) Predicted states, δ = 0.1.

Fig. 1: The algorithm’s performance in identifying the true state of each node, using the adaptive social learning strategy. The probabilities
of error (shown inside the boxes) P(θ̂k,i ̸= θ⋆k) are approximated based on 500 iterations.

4. STOCHASTIC BLOCK MODEL

4.1. Combination Matrix

The Stochastic Block Model (SBM) is a generative model to produce
graphs with community structure, where each community is a collec-
tion of agents that have a large probability of connection with each
other, and the probabilities of connection between communities are
smaller [19–21]. It is a popular framework for modeling social net-
works and graphs with polar opinions [31]. Polar opinions reflect the
fact that there might be no single truth. For example, over a network
of spatially distributed sensors, different sensors might experience
different weather conditions (different temperature or precipitation).
This motivates us to study social learning under polar true hypothe-
ses. We remark that the majority of works on community-structured
graphs focus their analysis on the case of graphs with two communi-
ties [19, 20]. While extending the experimental part to more general
cases with multiple communities is feasible, theoretical bounds of-
ten become intractable. In this work, we will similarly focus on the
common scenario with two communities.

We describe next the SBM model. We denote by E the ad-
jacency matrix of the network. The entries of the adjacency
matrix are assumed to be drawn from a Bernoulli distribution,
E ∼ Bernoulli(P ), conditioned on the probability matrix P ∈
[0, 1]|N|×|N| (i.e., each entryEℓ,k ∼ Bernoulli(Pℓ,k) is generated
independently). We introduce the main idea by considering a model
with two communities of sizes n0 and n1 such that n0 + n1 = |N |.
Under this model, the probability matrix P takes the following block
form:

P ≜


p01n01

T
n0

q01n01
T
n1

q11n11
T
n0

p11n11
T
n1

 (13)

where 1n is a column vector of ones of size n and we let q0, q1 <
min{p0, p1}. This form of P allows us to generate graphs with
clearly defined communities, as illustrated in Fig. 2a.

Agents in the network will communicate with each other ac-
cording to a combination protocol that is defined by some matrix
A. We assume the combination weights are set using the averag-
ing rule [29]. This way, each column is normalized and agents
give equal confidence to their neighbors with each entry equal to

(a) An SBM graph model with two
communities.

(b) Combination matrix for the
SBM graph in part (a).

Fig. 2: Network illustration with n0 = 20, n1 = 15, p0 = 0.8,
p1 = 0.9, q0 = q1 = 0.1.

[A]ℓ,k = Eℓ,k/
∑

ℓEℓ,k. We can show that for any integer power
t < |N |, the moments ofA can be approximated1 by:

EAt = A
t
+O

(
min{n0, n1}−4/3

)
(14)

where A is the left-stochastic matrix given by:

A ≜


p0

p0n0+q1n1
1n01

T
n0

q0
q0n0+p1n1

1n01
T
n1

q1
p0n0+q1n1

1n11
T
n0

p1
q0n0+p1n1

1n11
T
n1

 (15)

We show one example of such a combination matrix in Fig. 2b, based
on the adjacency network from Fig. 2a.

We additionally assume that all agents within the same commu-
nity receive data arising from the same underlying model (or hy-
pothesis). In our particular two-communities case, we assume the
binary hypotheses set Θ = {θ0, θ1}. Thus, we let the first n0 agents
k ∈ C0 ≜ {1, . . . , n0} to follow hypothesis θ0, and the remain-
ing agents k ∈ C1 ≜ {n0 + 1, . . . , |N |} to follow hypothesis θ1.
For simplicity, we assume that agents in each community (or clus-
ter) have the same level of informativeness measured in terms of the
KL divergence between the two models, as defined by the following
statement.

1The proof is omitted for brevity; proofs can be found in the preprint [32].



Assumption 1 (Homogeneous likelihoods). Within each cluster Ci,
agents have the same level of informativeness. For any k ∈ C0:

d0 ≜ DKL
(
Lk (θ0) ||Lk (θ1)

)
(16)

and for any k ∈ C1:

d1 ≜ DKL
(
Lk (θ1) ||Lk (θ0)

)
(17)

While this assumption is not strictly necessary, it is introduced for
the sake of clarity and for analytical tractability of the results. It
holds, for example, when all likelihoods within each community are
equal, i.e., agents receive samples from the same or similar sources.

4.2. Truth Learning

By using properties (2) and (14) of the combination matrix A and
Assumption 1, we can show that in steady state, the log-ratio of be-
liefs can be bounded as follows1. For agent k ∈ C0, we get that:

Eρk(θ0, θ1) ≥ (1− δ) · q0n0r0d0 − q1n1r1d1
q0n0r0 + q1n1r1

+ δ · p0n0d0 − q1n1d1
r0

+O(min{n0, n1}−4/3) (18)

and for agent k ∈ C1, the log-ratio is bounded from above:

Eρk(θ0, θ1) ≤ (1− δ) · q0n0r0d0 − q1n1r1d1
q0n0r0 + q1n1r1

− δ · p0n0d0 − q1n1d1
r0

+O(min{n0, n1}−4/3). (19)

where expectations are taken w.r.t. ζℓ,i andA. The desired outcome
is a positive sign for (18) and a negative sign for (19), ensuring that
each community will arrive at its own truth. Remarkably, the first
term in both (18) and (19) is the same. If we let δ → 0, the whole
network will converge to the more prevalent hypothesis, and will
therefore behave similarly to traditional social learning. In contrast,
a reasonably large δ would allow the less dominant cluster (i.e., the
cluster with smaller informativeness level di) to drive itself to their
own truth. It can be shown that we can find such δ that allows the
desired behavior1.

Theorem 1 (Log-belief ratios for the SBM). If the probabilities
between clusters are sufficiently smaller than the probabilities inside
the clusters, more specifically:

p0n0d0 − q1n1d1 > 0, p1n1d1 − q0n0d0 > 0 (20)

Then, there exist a δ0 ∈ (0, 1), that for any δ > δ0, on av-
erage, each cluster converges to its own hypothesis, i.e. both
limi→∞ E log

µk,i(θ0)

µk,i(θ1)
and limi→∞ E log

ψk,i(θ0)

ψk,i(θ1)
are strictly pos-

itive or strictly negative depending on the cluster.

5. COMPUTER SIMULATIONS

We consider the SBM graph shown in Figure 1a with connection
probabilities p0 = p1 = 0.8 and q0 = q1 = 0.1. Each clus-
ter has 15 agents and all agents have equal likelihood models with
Bernoulli distributions: Lk(θ0) = Bernoulli(0.1) and Lℓ(θ1) =
Bernoulli(0.5). Agents of the first block follow hypothesis θ0 and
agents from the second block follow θ1. The Kullback-Leibler diver-
gence for the first group is smaller since 0.37 = d0 < d1 = 0.51.

Fig. 3: Evolution of log-belief ratios log
ψi,k(θ0)

ψi,k(θ1)
over time with dif-

ferent step-size δ (mean and standard deviations over 500 algorithm
runs). Agent 1 belongs to the first cluster and follows θ0, while agent
21 belongs to the second cluster and follows θ1.

Therefore, for small δ → 0, the network is expected to converge to
θ1.

Figure 3 illustrates Theorem 1. We let the network follow the
ASL strategy with different step-size parameters δ. We see that
when δ = 0.01, the log-ratios of both group are below zero. When
δ = 0.1, the log-belief ratio of the first group is able (on average) to
stay above the zero threshold, therefore its expectation converges to
hypothesis θ0. And, for larger δ = 0.3, we observe further increase
in the gap. However, it is evident that the gap grows together with
the variance, and therefore leads to an increased probability of er-
ror P(argmaxθ ψk,i(θ) ̸= θ⋆k) for the second cluster in the steady
state. Figure 1 shows probability of errors for different values of δ,
that support the same considerations.

6. CONCLUSIONS

This work examines the behavior of social learning algorithms under
multiple hypotheses. We show that traditional social learning tech-
niques behave conservatively and the whole network converges to a
consensus solution, which is not necessarily optimal at the individual
or cluster level. In other words, if the majority of high-informative
agents operate with observations following the true hypothesis, ma-
licious or malfunctioning agents (the agents that receive observa-
tions from another state) will not be able to drive the network to a
wrong conclusion. Adaptive social learning strategies behave sim-
ilarly when the adaptation hyperparameter δ → 0. However, for
sufficiently large δ > 0, the ASL strategy is the preferred choice for
graphs with community structure (such as SBM). In this case, the
learning strategy is able to discover the underlying hypotheses of the
individuals. The results were illustrated by computer simulations.
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