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Abstract—In this paper we study the problem of social learning
under multiple true hypotheses and self-interested agents. In this
setup, each agent receives data that might be generated from a
different hypothesis (or state) than the data other agents receive.
In contrast to the related literature on social learning, which
focuses on showing that the network achieves consensus, here we
study the case where every agent is self-interested and wants to
find the hypothesis that generates its own observations. To this
end, we propose a scheme with adaptive combination weights and
study the consistency of the agents’ learning process. We analyze
the asymptotic behavior of agents’ beliefs under the proposed
social learning algorithm and provide sufficient conditions that
enable all agents to correctly identify their true hypotheses. The
theoretical analysis is corroborated by numerical simulations.

Index Terms—social learning, information diffusion, disparate
hypotheses

I. INTRODUCTION

Social learning [1]–[8] refers to the distributed hypothesis
testing problem where agents exchange information and aim at
learning an unknown hypothesis of interest. Every agent has
access to its own data, as well as to information provided by
its neighbors. Agents update their beliefs (probability distri-
butions over the possible states) according to the following
two-step procedure. First, they perform a Bayesian update
using their own data and then they fuse their own beliefs with
the beliefs shared by their neighbors. Most of the existing
literature focuses on studying the agents’ belief convergence to
the true hypothesis or to the hypothesis that better describes all
the agents’ observation models. In this way, network consensus
(i.e., all agents’ beliefs converge to the same hypothesis) is
achieved.

The setup we study is related to the conflicting hypothesis
setup considered in [2] where authors showed that agents
will converge to the hypothesis that best describes all agents’
observation models. In contrast, in this work we are inter-
ested in studying the problem where each agent wants to
find its individual true hypothesis instead of converging to
a consensus. There are many reasons for which this problem
is interesting, especially when consensus does not describe
a system’s behavior in an accurate manner. Real-life social
networks provide one such one example, where there are
generally disparate opinions among the interacting parties.
Another example is the scenario of a network of communicat-
ing classifiers that use the social learning protocol as in [9],
with different subsets of agents aiming at classifying scenes
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from distinct underlying classes. Likewise, sensor networks
where the agents receive observations generated from different
sources is another example.

To tackle the problem, we use the idea that agents’ coop-
erative beliefs are driven by agents’ private information. Our
contributions are the following. We propose a scheme with
adaptive combination weights that utilizes the agents’ private
information and helps them in identifying other agents that aim
at finding the same hypotheses. In this way, we extend the log-
linear social learning algorithm [1] to the problem of multiple
true hypotheses and self-interested agents. For the proposed
algorithm we provide sufficient conditions under which all
agents in the network manage to find their true hypotheses
and demonstrate the agents’ learning behavior via computer
simulations.

The problem we study is also close to the problem of
multi-task learning over networks studied in [10]–[14]. In
[10], [11], every agent aims at estimating its true parameter
vector, which might be different from the target vector of
other agents. The authors devise an adaptive combination
policy to correctly identify the neighbors with which agents
should cooperate to correctly estimate their true parameter
vectors. The agents adapt their combination weights based
on a mean-square deviation (MSD) criterion and a diffusion
least-mean squares (LMS) algorithm. A different approach was
followed in [13], where every agent keeps a stand-alone LMS
estimate (updated based only on the agent’s own signals and
not on information from neighbors). At every time instant,
the agent performs a binary hypothesis test to decide whether
each of its neighbors is searching for the same parameter
vector. Related formulations followed in [12], [14]–[19] and
references therein.

The aforementioned works focus on parameter estimation
tasks. Here, we focus on the distributed hypothesis testing
problem where every agent aims at identifying an underlying
hypothesis of interest. Thus, our work is closer to the multi-
task decision problem [20]. In [20], an LMS-type algorithm is
devised. In contrast, here we study the social learning problem,
where every agent performs local Bayesian updates before
exchanging information with its neighbors. An interesting
result of our analysis is the fact that identifiability (i.e., the
ability of an agent to correctly distinguish among different
hypotheses) plays a crucial role on the outcome of the learning
process over the network.

A. Notation

We use boldface letters to denote random variables and
normal letters to denote their realizations. We denote the
KL divergence from distribution L1 to distribution L2 by
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DKL(L1||L2). We use the notation a.s.−→ and P.−→ to denote
almost sure convergence and convergence in probability, re-
spectively. Moreover, the notation 1 and |·| denote the all-ones
vector and the cardinality of a set.

II. SYSTEM MODEL

We assume a set N = {1, . . . , N} of agents interacting over
a network, which is represented by an undirected graph G =
⟨N , E⟩, where E includes bidirectional links between agents.
The set of neighbors of an agent k (including k) is denoted
by Nk. The set of all possible hypotheses is denoted by Θ =
{θ1, . . . , θM}.

We assume that each agent k has access to observations
ζk,i ∈ Zk at every time instant i ≥ 1. Agent k also has access
to the likelihood functions Lk(ζk,i|θ), θ ∈ Θ. The signals ζk,i
are independent and identically distributed (i.i.d.) over time.
In this work, the sets Zk are assumed to be finite. We will use
the notation Lk(θ) instead of Lk(ζk,i|θ) whenever it is clear
from the context. Every agent k’s true hypothesis θ(k) is drawn
according to some probability P(θ(k)) initially and remains
unchanged throughout the process. Agent k’s observations are
generated according to the model

ζk,i ∼ Lk

(
ζk,i|θ

(k) = θ(k)
)
, θ(k) ∈ Θ. (1)

The states θ(k) are independent across agents, meaning that
P(θ(k),θ(ℓ)) = P(θ(k))P(θ(ℓ)) for all agents k ̸= ℓ.

Agents’ observations are possibly generated by different
hypotheses and each agent k aims at finding the realization
θ(k) of its true hypothesis θ(k) ∈ Θ according to which
the ζk,i are generated. Agents share information with their
neighbors in a distributed fashion. This information can be
utilized to find the underlying true hypothesis by forming
beliefs, which are probability distributions over the set of
hypothesis Θ. Our algorithm is based on the log-linear social
learning rule [1] where the agents update their beliefs, denoted
by νk,i, in the following manner:

φk,i(θ) =
Lk(ζk,i|θ)νk,i−1(θ)∑
θ′ Lk(ζk,i|θ′)νk,i−1(θ′)

, k ∈ N (2)

νk,i(θ) =

∏
ℓ∈Nk

(φℓ,i(θ))
aℓk∑

θ′
∏

ℓ∈Nk
(φℓ,i(θ

′))aℓk
, k ∈ N (3)

where aℓk denotes the static (time-invariant) combination
weight assigned by agent k to neighboring agent ℓ, satisfying
0 < aℓk ≤ 1, for all ℓ ∈ Nk, aℓk = 0 for all ℓ /∈ Nk and∑

ℓ∈Nk
aℓk = 1. Let A denote the combination matrix, which

consists of all combination weights with [A]ℓk = aℓk. Clearly,
A is left-stochastic.

It is known that if agents use the above algorithm, under the
assumption of a strongly connected network [21] (information
flows from every agent to any other agent in the network and
at least one agent has a self-loop, akk > 0), then the network
achieves consensus [1]–[3], thus ruling out the possibility for
agents with different true states to correctly identify them.

In order for agents to find their true state, they should
evaluate over time if the received information is beneficial

to them or not. This means that they have to decide how
much weight they should give to the information received
from their neighbors in the information aggregation step (3).
One way to do so is to dynamically adjust the combination
weights according to whether agents believe each one of their
neighbors aims at finding the same state or not.

III. SELF-AWARE SOCIAL LEARNING

The idea is that an agent should gradually assign less weight
to neighbors that seek different states. If an agent can identify
its true state alone, then it might be better for that agent not to
cooperate and just perform stand-alone Bayesian learning. In
this way, it will be guaranteed to converge to its true hypothesis
without being misled by other agents. However, some agents
might not be able to find their true states alone. This happens
when for an agent k, its true state θ(k) is observationally
equivalent to some other θ ̸= θ(k). In that case this agent
will be unable to find its true state without other agents’ help.
We define the set of states that are observationally equivalent
to θ(k) as follows.

Definition 1. (Observationally equivalent states). The set

Θ⋆
k ≜

{
θ ∈ Θ : Lk(ζk,i|θ) = Lk(ζk,i|θ(k)), ∀ζk ∈ Zk,∀i

}
(4)

is comprised of all states that are observationally equivalent
to θ(k) for an agent k ∈ N . ■

Note that θ(k) is always contained in Θ⋆
k. Before we intro-

duce the adaptive combination weights scheme, we provide a
motivating example. In the network example presented in Fig.
1 the set of possible hypotheses is Θ = {θ1, θ2, θ3} and the
true hypotheses of agents 1, 2, 3 are θ2, θ2, θ3, respectively.
However, agent 1 cannot distinguish between hypotheses θ1
and θ2. Since agent 1 communicates with both agents 2 and
3, it may not converge to hypothesis θ2. However, if agent 1
over time realizes that agent 3’s true hypothesis is θ3 (i.e., it
is different than its own true hypothesis), then it can cut off
the link with agent 3 and find its true hypothesis with the aid
of agent 2 (which can find θ2 alone as Θ⋆

2 = {θ2}), provided
that agent 2 also realizes that its true hypothesis is different
from agent 3’s true hypothesis and cuts off its link to agent
3 as well. Our goal is to devise an adaptive mechanism that
enables agents to discriminate over time which agents aim at
finding the same hypothesis with them against other agents.

To begin with, each agent can form a local belief about
hypothesis θ(k) based only on its own observations ζk,1:i =
(ζk,1, . . . , ζk,i) until time i. Local beliefs do not contain any
(potentially) misleading information from other agents and
they are given by

πk,i(θ) = P(θ(k) = θ|ζk,1:i), θ ∈ Θ (5)

where πk,i is the posterior belief over θ(k) given the sequence
of private observations of agent k. The local belief πk,i can
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Fig. 1: A network example with three agents. The true state
of agents 1, 2 is θ2, while the true state of agent 3 is θ3.

be computed given πk,i−1 and ζk,i recursively according to
Bayes’ rule:

πk,i(θ) =
Lk(ζk,i|θ)πk,i−1(θ)∑

θ′∈Θ Lk(ζk,i|θ′)πk,i−1(θ′)
. (6)

Now, we can design a scheme based on the local beliefs so that
the weights assigned to every neighbor ℓ by agent k evolve
according to the probability that the two distinct agents are
trying to find the same hypothesis (i.e., θ(k) = θ(ℓ)). Let us
denote the event that the two agents have the same hypothesis
by

Skℓ ≜ {θ(k) = θ(ℓ)} = ∪
θ∈Θ

Sθ
kℓ, k ̸= ℓ (7)

where

Sθ
kℓ ≜ {θ(k) = θ ∩ θ(ℓ) = θ}, k ̸= ℓ (8)

is the event that both agent k’s and agent ℓ’s true state is θ.
Since the Sθ

kℓ are disjoint events for different θ:

P( ∪
θ∈Θ

Sθ
kℓ) =

∑
θ∈Θ

P(Sθ
kℓ). (9)

Obviously, the probability that agent k has the same state with
itself is 1. Then, the weight each agent k may assign to its
neighbor ℓ can be set to

aℓk,i = [Ai]ℓk =


P(Skℓ| ζk,1:i,ζℓ,1:i)

σk,i
, if ℓ ∈ N ⋆

k

1
σk,i

, if ℓ = k

0, otherwise

(10)

where N ⋆
k ≜ Nk \ {k} is the set of neighbors of k without

including k and σk,i is a normalizing factor to ensure that Ai

is left-stochastic.
Construction (10) ensures that agent k incorporates infor-

mation from agent ℓ in a manner that is proportional to the
probability that agents k and ℓ are observing the same state. As
agents gain confidence in their true state over time, this allows
them to exclude inconsistent information, and collaborate only
with agents who observe data that are generated from the same
state they are observing. We first show that agents are able to
efficiently compute P(Skℓ|ζk,1:i, ζℓ,1:i) by simply exchanging
their local beliefs (proofs are omitted due to space limitations).

Lemma 1. (Conditional probability of two agents sharing

the same hypothesis). The probability of two distinct agents
k, ℓ having the same state conditioned on the joint observa-
tions ζk,1:i, ζℓ,1:i is given by

P(Skℓ|ζk,1:i, ζℓ,1:i) =
∑
θ

πk,i(θ)πℓ,i(θ) (11)

■

Utilizing Lemma 1, the normalizing factor is given by

σk,i = 1 +
∑
ℓ∈N⋆

k

∑
θ∈Θ

πk,i(θ)πℓ,i(θ). (12)

Note that according to (10), we have akk,i > 0 for all i ≥ 1
and for all k ∈ N . In order to account for the information
from local beliefs, agents perform two parallel updates in our
proposed Self-Aware Social Learning (SASL) algorithm. A
non-cooperative update, where the local belief πk,i is formed
by using (6), which is then shared with every neighbor of k;
and a social learning update. The novel part introduced in the
social learning algorithm (2)-(3) is that the combination step
utilizes the adaptive combination weights Ai instead of static
weights. More specifically, every agent k ∈ N updates its
cooperative belief µk,i according to the following procedure:

ψk,i(θ) =
Lk(ζk,i|θ)µk,i−1(θ)∑
θ′ Lk(ζk,i|θ′)µk,i−1(θ

′)
, k ∈ N (13)

µk,i(θ) =

∏
ℓ∈Nk

ψ
aℓk,i

ℓ,i (θ)∑
θ′
∏

ℓ∈Nk
ψ

aℓk,i

ℓ,i (θ′)
, k ∈ N . (14)

For simplicity, and since agents do not have any prior evidence
on their true state, we impose the following assumption on
the prior local beliefs πk,0(θ) and prior cooperative beliefs
µk,0(θ).

Assumption 1. (Uniform prior beliefs). The prior beliefs of
all agents are uniform

πk,0(θ) = µk,0(θ) = 1/|Θ|, k ∈ N , θ ∈ Θ. (15)

■

Moreover, we impose the following technical assumption
[22].

Assumption 2. (Likelihood functions with full support).
Lk(ζ|θ) > α for some α > 0 for all ζ ∈ Zk, and for all
θ ∈ Θ. ■

From (11), it follows that the ability of agent k to correctly
reject inconsistent information from its neighbors is driven by
its ability to reject inconsistent states θ /∈ Θ⋆

k through πk,i(θ).
The following result characterizes the asymptotic behavior of
the adaptive combination weights.

Theorem 1. (Limiting behavior of the adaptive combina-
tion weights). The adaptive combination weights exhibit the
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following limiting behavior as i → ∞ for every agent k ∈ N :

aℓk,i
a.s.−→


ηkℓ

1+
∑

ℓ′∈N⋆
k
ηkℓ′

, if ℓ ∈ N ⋆
k

1−
∑

ℓ′′∈N⋆
k

ηkℓ′′
1+

∑
ℓ′∈N⋆

k
ηkℓ′

, if ℓ = k

0, otherwise

(16)

where ηkℓ ≜
|Θ⋆

k∩Θ⋆
ℓ |

|Θ⋆
k||Θ

⋆
ℓ |

. ■.

We observe that if an agent k can identify its true hypothesis
alone (i.e., Θ⋆

k = {θ(k)}), then it will assign asymptotically
positive weights only to the neighbors ℓ ∈ N ⋆

k for which θ(k)

is within their optimal hypothesis set (i.e., θ(k) ∈ Θ⋆
ℓ ). We

see here the implications of the identifiability capabilities of
the agents. For example, if all agents can identify their true
hypothesis alone (i.e., Θ⋆

k = {θ(k)} for all k ∈ N ), then
the network will (asymptotically) decompose into components
where every agent exchanges information only with the neigh-
bors that aim at finding the same hypothesis. We observe from
Theorem 1 that the combination matrix Ai converges to a
limiting matrix A∞, defined as

A∞ ≜ lim
i→∞

Ai. (17)

We can show that A∞ is comprised of S ∈ N distinct strongly-
connected components A∞,1, . . . , A∞,S . Let us define the set
Ns, s ∈ {1, . . . , S} as the set of agents whose combination
weights comprise A∞,s. Furthermore, let us define for Ns the
sub-network confidence for a state θ ∈ Θ as

Cs(θ) ≜ −
∑
k∈Ns

ps(k)DKL(Lk(θ
(k))||Lk(θ)). (18)

where ps(k) is the kth element of ps, which is the Perron
eigenvector of A∞,s, and let

Θ̄⋆
s ≜

{
θ⋆s ≜ argmax

θ∈Θ
Cs(θ)

}
. (19)

This set is comprised of the hypotheses that best describe the
observation models of the agents belonging to sub-network s
weighted by their centrality.

The question of interest is when all agents manage to
successfuly identify their true states. Whether an agent is able
to learn its true state is dependent on the structure of the sub-
network Ns. From Theorem 1 we see that the structure of Ns

depends on the identifiability capabilities of the agents, i.e.,
on the sets Θ⋆

k and on the graph topology given by G. The
following result provides conditions that guarantee that every
agent in the network will find its true state.

Theorem 2. (Globally consistent learning). Under the pro-
posed adaptive combination scheme, every agent k ∈ N learns
its true state, meaning: µk,i(θ

(k))
P.−→ 1, ∀k ∈ N if both

of the following conditions hold:

Θ⋆
k ∩Θ⋆

ℓ = ∅, ∀k ∈ N ,∀ℓ ∈ N ⋆
k such that θ(k) ̸= θ(ℓ)

(20)

∩
ℓ∈Ns

Θ⋆
ℓ = {θ(k)}, ∀s ∈ {1, . . . , S} such that k ∈ Ns.

(21)

■

Condition (20) ensures that for any two neighboring agents
k, ℓ with different states both agents can rule out the state of
the other agent based on their local beliefs (i.e., θ(k) /∈ Θ⋆

ℓ

and θ(ℓ) /∈ Θ⋆
k). This condition ensures that in every formed

sub-network all agents share the same true state. Then, con-
dition (21) ensures that in every sub-network the agents can
collectively identify their true state.

IV. EXPERIMENTS

In the following experiments we illustrate the agents’ belief
evolution for a network of |N | = 10 agents. To facilitate
the illustration of our results we assume that |Zk| = 10
for all k ∈ N and the set of possible hypotheses is Θ =
{θ1, . . . , θ10}. In order to highlight the need for an adaptive
combination mechanism in updating the cooperative beliefs,
we compare the asymptotic beliefs of our proposed scheme
to the traditional cooperative social learning solution (2) –
(3) with a static (time-invariant) combination matrix A (every
agent assigns uniform combination weights to its neighbors)
as well as to non-cooperative learning (where beliefs are given
by (6)).

We consider the following scenario. Some agents share the
same true hypothesis and some agents face an identification
problem. More specifically, the agents’ true hypotheses are
assigned as follows:

θ(k) =

{
θ1, if k ∈ {1, . . . , 5}
θ6, if k ∈ {6, . . . , 10}.

(22)

The agents’ likelihood functions are constructed as follows.
For agents 1 and 6 their likelihood functions are given by

Lk(ζ
y
k,i|θx) =

{
qk ∈ (0, 1), if y = x,
1−qk
|Zk|−1 , otherwise

(23)

for x, y = 1, . . . , |Zk|. ζyk,i ∈ Zk denotes the yth observation
of agent k. We set qk = 0.28 for all k ∈ N . Thus, agents 1, 6
can identify their true hypotheses alone (i.e., Θ⋆

1 = {θ1},Θ⋆
6 =

{θ6}). The remaining agents cannot discriminate among some
states and their likelihood functions are given as follows. For
agents 2, 3, 4, 5, Lk(ζ

y
k,i|θx) is given by (23) for x ≥ 6 and

by

Lk(ζ
y
k,i|θx) =

1

|Zk|
, ∀y = 1, . . . , |Zk| (24)

for x ≤ 5. For agents 7, 8, 9, 10, Lk(ζ
y
k,i|θx) is given by (23)

for x ≤ 5 and by (24) for x ≥ 6. In this case we see that
(20) is satisfied and the network decomposes into two strongly
connected components (S = 2), one consisting of agents 1 to
5 and one consisting of agents 6 to 10 (see bottom subfigure in
Fig. 2). We can also verify from (23), (24) and for the selected
value of qk that condition (21) holds. As we see in the bottom
subfigure in Fig. 2 (third row), all agents’ beliefs converge to
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their true hypotheses, as expected by Theorem 2, while both
cooperative and non-cooperative solutions lead to inconsistent
learning for some agents as we can see in Fig. 2.
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Fig. 2: Agents’ steady-state beliefs (on true hypothesis θ(k) for
cooperative social learning (first row), non-cooperative learn-
ing (second row) and SASL algorithm (third row). Colormap:
Agents in dark orange indicate that their beliefs on their true
state are close to 1, while light green indicates beliefs close
to 0.

V. CONCLUSIONS

In this work we investigated the problem of social learning
with disparate true hypotheses and self-interested agents. Con-
trary to previous works that aim at showing that the network
achieves consensus, here we investigated the scenario where
every agent aims at learning its own true hypothesis. For this
purpose, we devised an adaptive combination weights scheme
and provided sufficient conditions under which every agent in
the network successfully learns its true hypothesis.
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