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ABSTRACT 

The literature contains several recent fast algorithms for the triangular factoriza- 
tion of strongly regular Toeplitz-plus-Hankel matrices. In this paper we study the 
rather more general sum of quasi-Toeplitz and quasi-Hankel matrices, both Hermitian 
and non-Hermitian. Quasi-Toeplitz and quasi-Hankel matrices are those that are 
congruent to Toeplitz and Hankel matrices in a special sense. The derivation is based 
on the concept of displacement structure and its intimate relation to the Schur 

reduction procedure for triangular factorization. Various special cases covering dis- 
placement ranks from two to eight are considered. Several other problems (e.g., 
factorization of the inverse matrix, solution of exact or overdetermined linear systems) 

can be reduced to the direct factorization problem. 
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1. INTRODUCTION 

Many signal processing problems require the solution of a linear system of 
equations of large dimensions. In many applications, (e.g., linear prediction, 
discrete inverse scattering, cascade synthesis, digital filtering, and the partial 
realization problem), Toeplitz, quasi-Toeplitz, Hankel, or quasi-Hankel matri- 
ces need to be factored or inverted. In many cases the coefficient matrix can 
be represented as the sum of quasi-Toeplitz and quasi-Hankel matrices. For 
example, in 1955 Gelfand and Levitan [I] reduced the solution of the inverse 
scattering problem to the solution of a set of linear integral equations. The 
discretized version of these equations has a Toeplitz-plus-Hankel coefficient 
matrix [2]. Such coefficient matrices also arise in the design of least-squares 
linear-phase prediction and smoothing filters [3] and in the least-squares 
minimization of forward and backward prediction error energies in AR 

spectral estimation [4, 51. Also, in digital signal processing, one is often faced 
with the problem of computing the output noise variance due to fixed-point 
quantization or input signal quantization. This problem was shown [6] to 
reduce to the solution of a linear system of equations whose coefficient matrix 
is the sum of a Toeplitz matrix and a quasi-Hankel matrix. 

Several fast inversion algorithms [ 0(n2)] for Toeplitz-plus-Hankel matri- 
ces have been published in recent years. Friedlander et al. used the general- 
ized Levinson-SzegG algorithm [7] and the multichannel Levinson algorithm 
[8] to derive efficient inversion recursions for sums of products of Toeplitz 
and Hankel matrices [9]. Merchant and Parks [lo] reduced the solution of a 
system of equations with a Toeplitz-plus-Hankel coefficient matrix to the 
solution of a system of equations with a 2 X 2 block Toeplitz coefficient 
matrix, which is then solved by applying the block Levinson algorithm ill]. 
This procedure however, does not work for any strongly regular Toeplitz- 
plus-Hankel matrix, since it requires also the strong regularity of the corre- 
sponding Toeplitz-minus-Hankel matrix. Heinig, Jankowski, and Rost [12] 
also developed fast algorithms for the inversion of strongly regular Toeplitz- 
plus-Hankel matrices. Their recursive procedure is based on the concept of 
IN reduction and the solution of the so-called fundamental equations [ 131. In 
114, 153 Heinig and Rost represented Toeplitz-plus-Hankel inverses as sums 
of products of triangular Toeplitz and Hankel matrices, and in [16] Lev-Ari 
used the Schur reduction procedure to derive a fast algorithm for the 
triangular factorization of Hermitian Toeplitz-plus-Hankel matrices. Gohberg 
et al. [I71 presented a fast algorithm for the solution of a system of linear 
equations with a strongly regular symmetric coefficient matrix which is the 
sum of a real Toeplitz matrix and a real Hankel matrix. Their derivation is 
based on the general approach developed in [17]. More recently, Yagle [18] 
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extended the split Levinson and Schur algorithms [19, 201 to strongly regular 
Toeplitz plus Hankel matrices, and Zarowski [2I] used the algorithm of 
Heinig, Jankowski, and Rost [12] to induce a Schur-type recursion for 
Toeplitz-plus-Hankel matrices. 

We remark that many earlier solutions to the factorization of Toeplitz- 
plus-Hankel matrices have been obtained by embedding the original matrix 
into a larger Toeplitz matrix. This approach, however, does not exhibit any 
nesting properties and so can only lead to fixed-order solutions. That is, if the 
matrix in question grows by one row and one column, then the factorization 
of the larger matrix has to be obtained by repeating the embedding proce- 
dure. In contrast, the algorithm presented in this paper allows for nested 
solutions: it can easily “update” the previous solution to reflect the change in 
the original matrix. 

In this paper we give fast (and parallelizable) triangular factorization 
algorithms for a general class of strongly regular structured matrices which 
can be written as sums of quasi-Toeplitz and quasi-Hankel matrices. This 
class includes, among others, Toeplitz matrices, Hankel matrices, Toeplitz- 
plus-Hankel matrices, and the inverse of a Toeplitz matrix plus a Hankel 
matrix. Both the Hermitian and the non-Hermitian cases are considered. Our 
derivation is based on the observation that a quasi-Toeplitz matrix plus a 
quasi-Hankel matrix is structured, though in a more general sense than the 
“original” notion of displacement structure [22, 231, contrary to the statement 
made in [21]. We derive a general recursive algorithm (Algorithm 1 in Section 
5.1) and then consider some important special cases such as Toeplitz plus 
Hankel matrices. We also exhibit the recursions in matrix form. 

This paper is organized as follows. In Section 2 we review the definition 
of generating functions, quasi-Toeplitz, quasi-Hankel, and structured matri- 
ces, and introduce the family of matrices close to Toeplitz plus Hankel. In 
Section 3 we show how the Schur reduction procedure yields the triangular 
factorization of non-Hermitian matrices, and in Section 4 we derive fast 
triangular factorization algorithms for structured non-Hermitian matrices. 
These algorithms reduce in the Hermitian case to those already presented in 
[23]. In Section 5 the derived algorithms are applied to matrices close to 
Toeplitz plus Hankel, and in Section 6 we specialize these algorithms for 
quasi-Hankel and quasi-Toeplitz matrices. 

2. PRELIMINARIES 

In this section we review the definition of generating functions, quasi- 
Toeplitz matrices, quasi-Hankel matrices, and structured matrices, and intro- 
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duce the class of matrices close to Toeplitz plus Hankel. Our goal will be 
triangular factorization, which is a nested operation. Therefore we can 
assume, without loss of Eenerality, that all matrices are extended to be 
semiinfinite. 

Matrices T that are constant along the diagonals are called Toeplitz 
matrices. That is, the (i, j)th element is a function of (i -j>: 

Cl co c-1 

. 

Similarly, matrices H that are constant along the antidiagonals are called 
Hankel matrices. That is, the (i, j)th element is a function of (i + j>: 

. 

Note that a Hankel matrix H is always symmetric. H is Hermitian if, and 
only if, H is real, whereas T is Hermitian if, and only if, c + = CF. 

DEFINITION 1 (Generating function [23]). The generating function of a 
semiinfinite matrix R = [ rij r j = o is the bivariate function R( x, w> defined 

bY 

R(z,w) = [l 2 Z2 +[I w W2 **.I*. 

It can be easily checked that the generating functions of Toeplitz and 
Hankel matrices are 

T(z,w) = 
C(Z) + ?-*(W) j[ zh( z) - w*h(w*)] 

1 - zw* 
and H(z,w) = 

j( Z - w*) ’ 

(1) 
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where j = m and 

81 

h(z) = ho + zh, + z2h2 + *-* ) 

CO 
c(z) = x + 7x1 + z2c2 + *** ( 

?-*(W) = ; + w*c_1 + w*zc2 + .-* 

Notice that when H is Hermitian (or real), h( z*) = h*(z). 

DEFINTION 2 (Quasi-Toeplitz matrix [23]). A matrix QT is said to be 
quasi-Toeplitz if its generating function QT(z, w) can be written in the form 

QT(z,w) = a(z)T(z,w)b*(w) (2) 

for some Toeplitz matrix T and functions a(z) and b(z). The matrix QT is 
Hermitian if a( Z) = b(z) and T is Hermitian. 

DEFINITION 3 (Quasi-Hankel matrix [23]). A matrix QH is said to be 
quasi-Hankel if its generating function QH(z, w) can be written in the form 

QH(v.4 = a(z>H(z,w)P*(w) (3) 

for some Hankel matrix H and functions a(z) and p(z). The matrix QH is 
Hermitian if a(z) = p(z) and H is real. 

In this paper, we shall study matrices R whose generating functions can 
be written in the form 

R(z,w) = QT( 2,~) + QH(z,w). 

That is, R is the sum of a quasi-Toeplitz matrix and a quasi-Hankel matrix. 
This clearly includes the sum of Toeplitz and Hankel matrices (R = T + H 1. 
It also includes matrices R of the form R = T-' + H, since the inverse of a 
Toeplitz matrix is quasi-Toeplitz (see [23] and the references therein). 
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Using the expression (1) for T(z,w) and H(z,w), and the expressions 
(2)-(3), we obtain that R(z, W) is of the form 

R(z,w) = 
G( 4_v*w 

j( 1 - zW*)( z - W*) ’ 

where G(z) and B(z) are 1 X 8 row matrix functions 

G(z) = [U(Z) m(z) a(z) za(z) z%(z)h(z) 

za(z)h(z) U(Z)C(Z) 2++(~>]> 

J= 

-_i 
_j 

-3 
_i 

-.i 
_i 

-_i 

(4) 

and h( .z) = Zy=,h: zi. Notice that h(z) = h*(z*) is the same power series 
as h(z) but wi!h conjugate coefficients. If a(~> = b(z), a(z) = P(Z), and H 
is real, then h(z) = h(z) and G(z) = B(z), and thus R is Hermitian. In 
some special cases, the matrices G(z) and B(z) can have a lower column 
dimension. For example, if u(z) = a(z) and b(z) = P(Z), then 

G(z) = [+> ZU(Z) u(z)[c(z) +2%(z)] za(z>[c(z) ++)I], 

B(z) = [w h(z) b(z)[r(z) +A(z)] zb(z)[r(z) +qz,]], 
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and -j 
I= 

.i 

i 1, -_i 
j 

This special case includes Toeplitz-plus-Hankel matrices [a(z) = b(z) = 
(u(Z) = p(z) = 11. 

Equation (4) and its special cases belong to the more general family 
whose generating functions can be written as 

R(z,w) = 
G( z)]B*( to) 

d(z,w) ’ 

where J is any constant nonsingular matrix, d(z, W) is the generating 
function of a constant (possibly singular) Hermitian matrix d = [ dijK j = ,,, 
Viz., 

d(z,w) = [l Z .z2 . ..]d[l u: w2 . ..I*. 

and G(z) and B(z) are 1 X p row vector functions, where p is called the 
displacement rank of R. Equation (5) has a matrix-domain equivalent. If we 
define 

V,R = 5 dijZ” RZ*j, 
i,j=O 

(6) 

where Z is the lower triangular shift matrix with ones on the first subdiago- 
nal, then 

VdR = GJB* with p = rank(VdR), 

where G and B are matrices with p columns. Each column of G [respec- 
tively B] is formed by stacking the coefficients of the corresponding function 
in G(s) [respectively B(z)], i.e., 

G(z) = [ 1 Z ;52 . . . ]G and B(z) = [ 1 z zz ... ]B. (7) 
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The structure (5) allows a so-called fast Schur reduction procedure for 
triangular factorization. This is described in the next two sections. 

3. THE SCHUR REDUCTION PROCEDURE 

The Schur reduction is an 0(n3> procedure that factors an n X n matrix 
R into the form 

R = LDU, 

where L is a lower triangular matrix with unit diagonal elements, U is an 
upper triangular matrix with unit diagonal elements, and D is a diagonal 
matrix. A necessary and sufficient condition for D to be nonsingular is that R 

be strongly regular (i.e., all leading principal submatrices of R are nonsingu- 
lar). This condition will be assumed throughout this paper. For a strongly 
regular matrix R = [r,j]~~&, we have 

Let do = roe, and define 

roe 
r10 

10 = r2o I! 

0 . . . 0 0 

fil 1. 

then R = d,Z,u~ + R,. The matrix fil is called the Schur complement of R 
with respect to roO. This suggests the following recursive procedure for the 
triangular factorization of R: 

R, = R, Ri+l = Ri - d,l,uT, 0 < i < n - 1, 

di = eyRiei, Zi = Rieid;‘, and UT = erRid;‘, (8) 

where e, = [0 *** 0 1 0 *** OIT has i leading zeros. Notice that the first i 
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rows and columns of Ri are zero, the first i elements of Zi and ui are zero, 
and the (i + I)th elements of Zi and ui are both equal to 1. For an n X YZ 
matrix R, the matrices L, D, and U are given by 

L= [I, 1, **- I,-& (J= [zig u1 *** u”_l]*, 

D = diag{d,,d, ,..., d,_,}. 

The diagonal elements di are guaranteed to be nonzero by the strong 
regularity of R. For a matrix R that is not strongly regular the recursive 
procedure breaks down if either or both of the following situations arise: 

di = 0 and R,e, # 0, 

di = 0 and e;R, # 0. 

However, if di = 0, R,e, = 0, and eTRi = 0, then we can choose Zj and ui 
arbitrarily. A convenient choice would be Zi = ui = ei, which is consistent 
with L and U having unit diagonal elements. 

4. GENERATING FUNCTION APPROACH 

The complexity of the Schur reduction procedure can be reduced to 
0( pn”) in the case of structured matrices as in (5). This is because the 
recursive procedure (8) reduces to a recursive update of the generator 
matrices G and B, which have pn elements each, as compared to n2 in R. 
We extend here the approach used in [23, 241 to the non-Hermitian case. 
Using the notation of generating functions (and assuming, without loss of 
generality, that R is extended to be semiinfinite as explained at the beginning 
of Section 21, it is easy to check that (8) can be written in the form 

di = &(O, o), (9) 

Zi( z) = z’&( z,O)d;' and ui(w) = w*‘&(O,w)d~‘, (10) 

zw*Ri+ l( 2, w) = &( z,w) - ~j(~,O)R;l(O,O)~i(O,u;), (11) 
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zi(z) = [ 1 2 2’ ‘.’ ]li> 

Ui(W) =u:[ 1 w w2 *‘* ]*, 

&(z,w) = (no*)-'Ri(z,w). 

Notice that the triangular factors of the given finite matrix R are obtained by 
considering the first 12 coefficients of Zi( z> and ui(z). 

We shall now proceed by induction. Suppose 

(this is certainly true for i = 0); then (11) yields 

i 

d(x,w) 
Gt(z) J - d(z,O) d(O,w) _PiJ B*(w) 

zw*tii+l( z,w) = 
I 

d( Z>W> 

where 

A& = B~(0)ti;'(O,O)Gi(O). 

Observe that Mi satisfies 

MJM, = d(0, 0) ML. 

If we can find matrices Oi( z) and r,< z> such that 

then we can write 

(12) 

(13) 

zw*&+l(z,w) = 
Gi(z)Oj(z)Jr,“(w)B*(w) 

d( Z>W> 
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This shows that we can use the following recursions: 

~G,+l(z) = Gi(z)@i(z)a G,(z) = G(z), 
(14) 

ZBi+l( z, = Bi( z)ri( z), B,(z) = B(z) 

for the update of G&z) and Bi(z). Moreover, d,, Zi(z), and u,(z)_can be 
determined from Gi( z) and Bi(z) without the need to evaluate Ri(z, W) 
explicitly: 

di = lim Gi(z)JB*(z) 

Z-+0 d(z,z) ’ 

Gi(z)JBT(O) d_l 

Zi(z) = zi d(~ o) ) , and ui(w) = w 
,iGi(O)_P*(W) d-l 

qw) t 

Since the matrices Gi and B, have each &n - i> elements, then n steps of 
the recursions (14) require O( pn2) operations (additions and multiplications), 
which represents great savings in computation when p 4 n. 

The existence of solutions Oi(z) and T&z) to Equation (13) is guaranteed 
by the following theorem. 

THEOREM 1 (Factorization). 
matrix whose generating function 

R( z,w> 

Let R be a strongly regular structured 
is given by 

G( z)JB*(w) = 
d(z,w) ’ 

where J is a constant nonsingular matrix and d( z, w) is a scalar bivariate 
Hermitian function of the form 

d(z,w) = e(z)e*(w) -f(z)f*(w). (15) 

Then the triangular factorization 
(14) with 

O,(z) = {I - h(z)JM,}U, 

of R can be carried out recursively using 

and r,(z) = {I - h(z)J*M~}Vi 
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h(z) = 
d(z,7) 

d( ~,O)d(O> T) ’ (16) 

Vi and Vi are arbitra y constant matrices satisfying V,]V,* = J, and r is any 
scalar such that d(r, r) = 0. 

Proof. This theorem is an extension to the non-Hermitian case of 
Theorem 3 in [23] and of the discussion in [24]. Using the expressions for 
O,(z) and T,(z) with (121, we have 

O,(z)]r:(w) =] - [h(z) + h*(w) - A(z)h*(w)d(O,O)]JMiJ. 

Substituting into (13), we obtain 

d(z,w) 
d( z, O)d(O, w) 

= A(z) + h*(w) - d(O,O)A(z)A*(w). 

This is the same as an equation obtained in [23, 241, where it is shown that a 
solution A(z) exists if, and only if, d(z, w) is of the form (15). Moreover, 
A( z> is given by (16). n 

COROLLARY 1 (Generators of the Schur complement). Gi and Bi are the 
generator matrices of Ri, which is the Schur complement of R with respect to 
the leading i x i principal submatrix. 

5. FACTORIZATION OF QT + QH MATRICES 

In this section we specialize the recursions of the previous theorem for 
strongly regular matrices R whose generating functions can be expressed in 
the form 

R(z,w) = 
G(z)JB*(w) 

j( 1 - zw*)( 2 - w*) ’ (17) 

where G and B are matrices with p columns each, and ] is a p X p matrix 
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with nonzero elements along the antidiagonal given by an alternating se- 
quence of -j and j: 

I= 

-_i 

-_i 

89 

It is clear that J is Hermitian when p is even, and anti-Hermitian (i.e. 
J* = _-J) when p is odd. We shall denote by J the real matrix defined by 

J =jJ 
Next observe that d( .z, w) in (17) can be written as 

d(z,w) = [l +.z2 Z$! ;j][ I ;:*Z]. 

This shows that d( z, w> is in fact the generating function of a rank-2 
Hermitian matrix d, which has one positive and one negative eigenvalue and 
thus is of the form (15). Hence, quasi-Toeplitz-plus-quasi-Hankel matrices 
are structured with respect to the following matrix-domain displacement 
(recall (6), and see [25, 261 for g eneralized definitions of displacement 
structure): 

V,R = ZR( Z + Z’) - (I + Z’) RZ*. 

We should remark, however, that the sum of two structured matrices, 
each one with a different d(z, w), is not in general structured. That is, the 
resulting d( z, w) need not in general have the form described by (15). Our 
derivation shows that for the special case of sums of QT and QH matrices, 
the corresponding QT + QH matrix is structured and hence the factorization 
procedure described in the previous section can be applied. Observe that this 
procedure has many degrees of freedom represented by the parameters Vi, 
Vi, and r. In the sequel we shall make the simplest choices so as to simplify 
the final algorithms. We have 

1 1 
h(z) = j(1 - m*) - - - 

i I 7* z 
, 

where r is any solution of (1 - TT*)(T - T *) = 0. The simplest form of A( Z> 
is obtained for r = j. In this case A(Z) = -j(z + z-i). We are assuming that 
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R is strongly regular and thus d, = g,(O, 0) # 0 for every i. But d(O,O) in 
(17) is zero, which shows that 

Gj(0)jBT(O) = 0. (18) 

Therefore we need a way to compute Z-$(0,0). 

LEMMA 1 (Diagonal factors). gi(O, 0) can be computed by either of the 
following two expressions: 

&(O,O) = G;(O)jB*(O), 

Z$(O,O) = -G,(O)jB;*(O), 

where G:(O) (respectively B:(O)) is the second row of the corresponding 
matrix Gi (respectively Bi). 

Proof. The proof follows easily by noting that the column vectors Zi and 
ui both have i leading zeros followed by 1. From (8) and (10) we get 

1 = G;(O)fB;(O)d,:l = -G,(O)fB;*(O)d,? n 

The choice of q and Vi is nonunique. We may choose CJ = Vi = I, which 
leads to an overall O(4pn’) computational complexity for each generator. An 
alternative choice would be to reduce the generators Gi and Bi to proper 
form. More specifi_cally, since J is nonsingular and UJV,* = J (which can be 
written also as ZJJV,* = J), the matrices Vi and Vi are nonsingular. More- 
over, neither Gi(O> nor Bj(0) can be 0, because dj would then be zero (by 
Lemma 1) and R would not be a strongly regular matrix. Hence it is always 
possible to find matrices U, and V, such that G,U, and B,V, are reduced to 
the forms 

qJ'",* = j, (19) 

G,(O)U, = 1 $(O, 0) 11’2[ 1 0 .-. 01, (20) 

B,(O)V, =Iti,(0,0)11'2[ 1 0 **. 01. (21) 
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We can, for instance, use a sequence of elementary rotations to achieve 
(20)-(21). This also requires 0(4pn2) operations per generator. We shall 
however give alternative (explicit) expressions for Vi and Vi for all p < 8. 

Meanwhile, suppose we find matrices V, and V, that satisfy (19)--(21); 
then 

O,(z) = q - (2 +2-l )ji3~(o)i;‘(o,o)Gi(o)q 

= q{z - (z + z-')~-~~~~(O)~~'(O,O)G,(O)U,} 

= q{Z - (z + z-‘)fVi*Z?;(0)i,‘(O,O)Gi(O)CJ} 

= u,S,(z), (22) 

where S,(z) is the p X p matrix 

s@(z)=z+ [ _.,,-;_l) o 0 ; 
and 

’ + I &Co, O) I 
gj(“, O) 

if p is even 

Ei = 
< 

I m, 0) I 
- 

&(O, 0) 

if p is odd, 

\ 

Similarly we can show that ri( z> reduces to 

ri( 2) = V{S,( 2) 

(23) 

(24) 



92 

where 

A. H. SAYED, H. LEV-ARI, AND T. KAILATH 

5.1. Matrix Forms 
It is easy to verify that the generator recursions (14) [along with (22) and 

(2411 have the following matrix representations: 

0 

[ 1 = G,U, - ~~(2 + Z*)G,U, 
0,-l 

G+l [ 1 1 ’ 

0 

[ 1 0 

Bi+l 
= B,V, - Ei(Z + z*)B,V, p-1 [ 1 1 ’ 

where Gi(z) and Gj [similarly for B,(z) and Bi] are related as in (7). This 
shows that Gi+ r is obtained as follows (a similar argument holds for Bi + 1>: 

(a) We multiply Gi by Vi and keep the last p - 1 columns. 
(b) The last column of G,U, is shifted up (introducing a zero at the 

bottom) and shifted down (introducing a zero at the top). The two shifted 
versions are added together and multiplied by - ei. The result is then added 
to the first column of G,U,. This gives the first column of Gi+ r. 

Moreover, the nonzero parts of the (semiinfinite) triangular factors Zi and ui 
(denoted by c and Gi respectively), 

OiXl li = 
I 1 c and ui = 

are given by 

OiXl 

[ 1 iii ’ 

c(z) = z-'Gi( z)fB:(O)d,‘, 

&(w) = -w-*G~(O)~B*(W)~;~, 
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which can be rewritten in matrix form as well. Consider the expression for 

c(z) [the same argument holds for Cii(w)l. We write 

( = Z*Gi~fii*B;(0)fi;'(O, 0) 

= 41 l&(0,0) l-1’2Z*gir 

where gi denotes the last column of Gi Ui. Recall that c is a column vector 
starting with 1. Hence the second element of gi must be equal to 
(E~(&(O, 0>1-1’2)- ‘. This follows also from Lemma 1. Similarly, we can show 
that 

6, = EilRi(0,0)I-1’2Z*hi, 

where bi is the last column of B,V,. Moreover, the second element of bi 
must be equal to (E~\&(O, 0)1-1’2)-‘. 

In summary, we have the following algorithm. 

ALGORITHM 1 (Factorization of QT + QH). The triangular factorization 

of a matrix R with generating function R(z, w> as in (17) can be carried out 
recursively as follows: 

[ 0 1 0 

Gi+l 
= G,U, - ~~(2 + Z*)GilJ p-1 [ 1 1 ’ G, = G, 

[ 4+1 0 1 = B,V, - q( 2 + Z*) B,V, [ 0,-l 1 1 ’ B, =.B. 

Let gi and bi denote the last columns of G,U, and B,V, respectively, and let 
gi2 and bi2 denote the second elements of gi and bi respectively. Then 

1’: = z*gi t and ;.=z*b’ 
gi2 ’ bj2 ’ 

The diagonal factor di [or R&O, 011 . 1s computed as in Lemma 1, and l i and ci 
as defined above. 

This leaves only the problem of finding U, and Vi. As we mentioned 
earlier, there are many possible choices. We shall give explicit expressions for 
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two typical examples ( p = 4,5> and the same approach holds for other cases 
that we list in Appendix A. Meanwhile, it is worth noting that the recursions 
in the algorithm get simplified in the following cases: 

(a) p is even and G(z) = B(z): in this case R is Hermitian, and it 
follows from (8) that Zi = ui and dT = dj (i.e., d, is real for all i). 

(b) p is odd and G(x) = B(z): in this case R is anti-Hermitian, and it 
follows-from (8) that Zi = ui and d* = -d, (i.e., di is imaginary for all i). 

EXAMPLE 1 (Displacement rank 4). This example includes the case of 
Toeplitz-plus-Hankel matrices. Define the quantities 

-K:] =]fii(0,0)]P1’2Gi(0), 

vi = 

t-c 
0 

0 

0 

PT 
0 

0 

Xi* -- 
Yi l-c 

i-c 
Yi ’ 
0 

Ki 

rli 

4 
Yi 

From (18), it follows that 

It is easy to check with the help of (25) that (19)-(21) are satisfied. 
Multiplying Gi by ZJ ( similarly for B,V,) requires O(( p2/2)(n - i)) opera- 
tions, which leads to an overall O(( p2/2)n2) complexity. In this example 
p = 4; hence we need 0(8n2) operations, which is of the same order as 
0(12n2) obtained by choosing q = Vi = I, or by using a sequence of 
elementary rotations. 
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For the case of Toeplitz-plus-Hankel matrices, we start the recursions 
with 

G(z) = [l z C(Z) +z%(z) Z[C(Z) ++)]I, 

B(z) = [ 1 z ?-(2) -t n2i;(z) .[r(z) + L(z)]], 

or equivalently, we start the matrix recursions of Algorithm 1 with the 2n X 4 
generators G and B given by 

1 0 
co 

3- 
0 

0 1 Cl 2 + h, 

0 0 % + ho Cl + h, 

G=;f f 

0 0 c,_~ + h,_, c,-~ i h,_, 

0 0 hn-, cn-1 + hnp, 

0 0 hn-, hn 
. . . . 

6 6 h,(,l_,, ’ h P(n- 1) 

and 

1 0 
co 

z 
0 

0 1 CT, 2 +h; 

0 0 CT, + h; CT, + h: 
. 

B= : 

0 

0 

0 

0 

0 CT n+1 + e- 
0 v-2 

0 F-, 

0 &(“_2, 

3 
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EXAMPLE 2 (Displacement rank 5). Define the quantities 

[y: -8; $ -KT &*] =]fii(0,0)]-1’2Gi(0), 

[ /.L: -ff: x,r” -*: VT] =]tii(0,0)]-1’2Bi(0), 

r;* yi *s* - y*:*qT y,:*KT Cpi 

0 1 0 0 *i 

q= 0 0 1 0 Xi P 

0 0 0 1 gi 

0 0 0 0 Pi 

I 

Pi* p,: *vi* - p,: *xi* Pi*+? ti 

0 1 0 0 Ki 

vi= 0 0 1 0 77, 

0 0 0 1 ‘i 

0 0 0 0 Yi 

From (18), it follows that 

- t$_$ + Ki”Ui - 7$xi + a,*& - $, = 0. (26) 

It is easy to check with the help of (26) that (19)-(21) are satisfied. Observe 
that q and Vi are sparse matrices. This leads to an overall 0(4pn2) 

computational complexity. 

6. FACTORIZATION OF QT AND QH MATRICES 

Algorithms for the triangular factorization of quasi-Toeplitz matrices (QT) 
and quasi-Hankel matrices (QH) f o 11 ow readily as special cases of the general 

recursive procedure described by Theorem 1. 

6.1. Quasi-Hankel Matrices 
According to Equations (1) and (3) the generating function of a quasi- 

Hankel matrix can be expressed in the form 

QH(z,w) = 
G( +P*(w> 

j( 2 - to*) ’ 
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G(z) = [ a(.~> za(z)h(z)], and ~(2) = [P(Z) zig]. 
Notice that d( z, W) = j(z - w*> can be written as 

which shows that d( z, w> satisfies (I5), since J has one positive and one 

negative eigenvalue. Following steps similar to those at the beginning of 

Section 5, we get 

h(z)=j k-i , i 1 
which simplifies to h(z) = -jz-’ on setting 7 = w [note that any choice of T 

with Im 7 = 0 satisfies d(~, T) = 01. Now define 

Then it is easy to check that 

j( z - w*) ’ 

Qffi(O, 0) (-1’2Gi(0) > 

QHi(o,0)I-1’2Bi(o)> 

and Vi = 

G,(O)U, = lQH,(O, 0) 11”[ 1 01, 

B,(O)V, =IQHi(0,0)11’2[1 01. 
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and thus we get the following result (which can be written in matrix form as 
well). 

ALGORITHM 2 (Factorization of QH matrices). The triangular factoriza- 
tion of a strongly regular quasi-Hankel matrix QH can be carried out by the 
following recursive procedure: 

d, = G;(O)fB;(O), 
ldil 

‘i = z 

Zi( z) = 2 i-lGi( z)fBT(O)d;‘, and 

ui(w) = -(~*)i-lGi(0)~~*(w)d;l, 

where J = jf Note that when QH is Hermitian we get G,(z) = B,(Z), 
U, = Vi, and the previous recursions reduce to those given in [23]. 

6.2. Quasi-Toeplitz Matrices 
The generating function of a quasi-Toeplitz matrix can be expressed in 

the form 

QT(z,w) = G( z)JB*(w) 
l-zw* ’ 

where G(z) and B(z) are 1 X 2 row vector functions, and 
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Notice that d(z, w) = 1 - zw * can be written as 

d(z,w) = [l zlI[&]> 
which shows that d(z, w) satisfies (15), since J has one positive and one 
negative eigenvalue. Following steps similar to those at the beginning of 

Section 5, we get 

h(z) = 1 - m*, 

which simplifies to A(.z) = 1 - z on setting r = 1 [note that any choice of 7 
with 1~1 = 1 satisfies d(T, 7) = 01. Now define 

QTj(z w) = G(~)JfY(W) 
l-.zw* ’ 

Gj(z) = [si( z) q(z)] = [ 1 z z2 

Bi( 2) = [ xj(z) yi(‘)] = [ 1 Z Z2 

kj = vii/sii and & = y,,/x,,, 

Then it is easy to check that 

v,Jv,* =_l> 

G,(O)U, = sii[ 1 01, 

B,(O)V, = Xii(l - kT&)[ 1 01, 

siixtT,(l - kiti*) = QTi(O,O), 

which yields the following result. 

uii 

?-)i+l i -1 ’ > 
Yii 

Yi+l,i , : I 
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ALGORITHM 3 (Factorization of QT matrices). The triangular factoriza- 

tion of a strongly regular quasi-Toeplitz matrix QT can be carried out by the 
following recursive procedure: 

G+,(z) = 

zBi+l(z) = Bi(z) [ -:* -?][; :]7 
di = G,(O)JB:(O), 

Zi( z) = ziGj( z)JBT(O)d;’ and Us = (zD*)~G~(O)JB*(~)~;~, 

ki = uii/.sii and li = yii/xii. 

Note that when QT is Hermitian positive definite we get G,(Z) 
ki = &, and the previous recursions reduce to 

ki = Q/Q, 

Bi(z), 

(27) 

which is the linearized form of the conventional Schur recursion [23, 27, 281. 
If we define V,(Z) = zivi(z>, Si(z) = .zisi(z), and ~Jz> = Vi(Z)/Si(Z), then 
(27) reduces to the classical Schur recursion [29] for functions that are 
analytic and bounded by unity in the unit disc, 

with ki =f’(O). 

The positive definiteness of QT guarantees 1 k i ( < 1. 
The recursions for the non-Hermitian quasi-Toeplitz case are the same 

expressions derived in [3O], though from a different point of view. We remark 
that the recursions for Gi(z) and BJz) differ by a scaling factor. One can, 
however, choose different matrices Vi and Vi so that the resulting recursions 
for the generators Gj and Bi become similar. 
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7. CONCLUSION 

In this paper we have presented fast triangular factorization algorithms 
[O(n2)] for matrices close to Toeplitz plus Hankel, and in particular for 
quasi-Hankel, quasi-Toeplitz, and Toeplitz-plus-Hankel matrices. Both Her- 
mitian and non-Hermitian matrices were considered. The arguments are 
based on an extension to the non-Hermitian case of the generating-function 
approach discussed in [23]. The results include many special cases studied 
separately in the literature. We remark that we can, as well, compute the 
triangular factorization of the inverse of an n X n close to Toeplitz-plus- 
Hankel matrix R. For this purpose, we define the extended matrix 

and observe that its Schur complement with respect to the (I, I> block entry 
is R-l. We can exploit the structure of this extended matrix in the derivation 
of a fast factorization algorithm for R-l; similar ideas can be used for solving 
linear equations with R as the coefficient matrix, finding orthogonal factoriza- 
tions, etc. See [3I] for details. 

APPENDIX A 

We list here possible choices of q and Vi for other displacement ranks 
than the cases p = 4 and p = 5 treated in Section 5. 

Displacement rank 2: 

[y: -a:] =Iz$(O,O)(-~‘~G~(O), 

[ l-c -“I*] =Iz?i(0,0)1-1’2Bi(0), 

q = yi* ai 
[ I 0 Pi ’ 

and v, = I-C * ‘i 4 I 0 Yi . 
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Displacement rank 3: 

[ 7; -8; $1 =(&(0,0)(-1’2Gi(0), 

Displacement rank 6: 

vi = 

vi = 

0 r* YiS 0 YF ‘pi 

0 0 P&L1 IL; l I%: l *i 
0 0 0 YT Yi! Xi 

0 0 0 0 Pi 1 0; 
0 0 0 0 0 I4 



103 QUASI-TOEPLITZ AND QUASI-HANKEL MATRICES 

Displacement rank 7: 

ri* y,: *s* - y;*$ 7,: *K* 

0 1 0 0 

0 0 1 0 

q= 0 0 0 1 

0 0 0 0 

0 0 0 0 

0 0 0 0 

1 
7, = 

I 

Displacement rank 8: 

- K,* &* 

- yt:*sz y; *q* $i 1 

- p,: *cp* 
0 

0 

0 

1 

0 

0 

0 ei 
0 cpi 
0 *i > 

0 Xi 
1 ai 
0 Pi 

/_Ly*ei* vi 

0 6 
0 5, 
0 Ki 

0 rli 

1 'i 

0 Yi 

-e* s:: 

-d] 

- a* 1 
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ui = 

py ui* a,* - - Xi+ 
Yi I4 

rcli* - 5: Uil vi!2 

0 4 CL: 0 P: l-c 
0 0 Yi l l-c l-q Yi l 

vi= 0 0 0 l-c l-c 0 
0 0 0 0 Y,? Pi 
0 0 0 0 0 l-c 
0 0 0 0 0 0 
0 0 0 0 0 0 

where 

ui3 = $ji* + 8; - 5: + K; - 

vi* 

v: - - ’ PiYjr 

(p,* 
uil 

= q* + I&* - xi* - - 

Yi P? ’ 
7Ji2 = e* + q* - (D* 

vi3 = q + q* - cp* + l+q - 

Sf 
- 

x,* - . Yi P? 
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