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ABSTRACT

Social learning algorithms provide a model for the formation and
propagation of opinions over social networks. However, most
studies focus on the case in which agents share their information
synchronously over regular intervals. In this work, we analyze
belief convergence and steady-state learning performance for both
traditional and adaptive formulations of social learning under asyn-
chronous behavior by the agents, where some of the agents may
decide to abstain from sharing any information with the network
at some time instants. We also show how to recover the underly-
ing graph topology from observations of the asynchronous network
behavior.

Index Terms— Social learning, asynchronous updates, adaptive
social learning, graph learning.

1. INTRODUCTION

Social learning strategies model how opinions are formed and shared
over social networks [1–13]. In this setting, each user (or agent) in
the network of users iteratively forms their opinion (or belief) regard-
ing a finite set of hypotheses by incorporating private observations
and by communicating their beliefs with their neighbors, which are
aggregated using a combination rule. The flow of information among
agents is represented by a graph of users.

In the real world, it is rarely the case that every agent in the net-
work operates synchronously. Instead, agents can be absent at times,
e.g., when they do not have a new piece of information to share, or
when they are not available to communicate. Twitter is an example
of such a network, where users act asynchronously, i.e., users share
posts at different times, and at different frequencies. This is illus-
trated in Fig. 1, where we show for three different Twitter users the
ratio of days they did not share a tweet over each month (hence their
“monthly absence” ratios), over a span of 64 months. Motivated by
this observation, we would like to consider a slightly more general
formulation for social learning, by proposing an asynchronous ver-
sion of social learning.

In traditional social learning, each agent updates its belief by
performing two steps: i) a local Bayesian update using the newly re-
ceived observation, and ii) a combination step, which takes the form
of a weighted geometric average of the beliefs received from neigh-
bors. These beliefs are weighted according to a combination ma-
trix A, which reflects the underlying communication graph and the
confidence weights associated with each link. In the asynchronous
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Fig. 1: Absence ratios of some agents on Twitter over time, each time point
being a month (there are 64 months, plotted between January 2017 and April
2022).

social learning strategy proposed in this work, we introduce a net-
work where, at some time instants, agents may decide not to par-
ticipate in the process of exchanging information with their neigh-
bors. When some agents are absent, one may imagine that the net-
work topology changes momentarily, as if those agents “turn off”
and are not a part of the network at that particular time instant. We
therefore model this behavior by considering a random combination
matrix, denoted by Ai. A related work that considers random com-
bination matrices is [14], in which, at each iteration, agents choose
only one neighbor randomly to communicate. Although the analysis
in our work will make use of some results from [14], their model
is different because we focus on asynchronous communication by
agents. In our strategy, inspired by the literature on asynchronous
distributed learning [15,16], we allow for fairly general forms ofAi,
and require only these general properties: i) Ai should be indepen-
dent over time, ii) Ai should be left stochastic, and iii) the support
graph associated with the expected value of Ai should be strongly
connected, meaning that, in expectation, information can flow be-
tween every two agents in both directions, and that there exists at
least one self-loop [17, 18]. Under the aforementioned conditions,
we show that consistent truth learning is achieved for traditional so-
cial learning [10, 12] and for adaptive social learning [13, 19] over
asynchronous graphs. Moreover, inspired by recent works on graph
topology recovery in the context of adaptive social learning [20,21],
we also formulate the topology learning problem for asynchronous
environments.

Notation: Bold font denotes random variables and normal font
denotes deterministic variables. Symbol a.s.−→ denotes almost sure
convergence and

p−→ denotes convergence in probability. Symbol
⟨x, y⟩ denotes the inner product x⊤y between column vectors x and
y.

2. PROBLEM SETUP
Consider a network of K agents whose confidence weights are gath-
ered into a left stochastic combination matrix A. Agents observe
some common phenomenon represented by a true discrete-valued
state θ⋆. Their goal is to determine the true state from among a
set of possible discrete hypotheses, denoted by Θ. Agents receive
private observations, denoted by ξk,i, which are identically and in-
dependently distributed (i.i.d.) over time, but not necessarily across
agents. For each agent k, the observations ξk,i are assumed to be



distributed according to some likelihood distribution Lk(ξ|θ⋆).
To solve the inference problem, we resort to social learning

strategies [5, 6, 10, 12, 13], wherein the belief of each agent is up-
dated at each instant by performing adaptation and combination
steps in the following manner. The belief vector of agent k at time
i is denoted by µk,i, and each component µk,i(θ) represents the
confidence by that agent that θ ∈ Θ is the true state. Under station-
ary environments, i.e., when the statistical conditions are static over
time, traditional social learning strategies [7–10, 12], perform the
adaptation step in (1) and the combination step in (2):

ψk,i(θ) ∝ Lk(ξk,i|θ)µk,i−1(θ) (1)

µk,i(θ) ∝
∏

ℓ∈Nk

(
ψℓ,i(θ)

)aℓk (2)

where ∝ indicates the belief entries are normalized to add up to 1,
aℓk is the ℓk-th element of the combination matrix A, i.e. the combi-
nation weight assigned by agent k to neighboring agent ℓ, such that
0 ≤ aℓk ≤ 1,

∑K
ℓ=1 aℓk = 1 and aℓk = 0 if ℓ ̸∈ Nk. Here,

the symbol Nk denotes the set of neighbors of agent k. It is known
that this strategy enables asymptotic truth learning under mild condi-
tions, i.e., µk,i(θ

⋆)
a.s.−→ 1. However, when the environment is non-

stationary, the above strategy fails to track changes in the underlying
true state within a reasonable time and in this case, adaptive social
leaning should be considered [13]. In this framework, the adaptation
step (1) is replaced by (3):

ψk,i(θ) ∝ Lk(ξk,i|θ)
δµk,i−1(θ)

1−δ (3)

where 0 < δ < 1 is a step-size parameter that can be used to con-
trol the trade off between adaptation speed and learning accuracy:
larger δ allows the algorithm to adapt to faster changing regimes in
detriment of its steady-state accuracy [13, 19].

The above strategies require agents to operate synchronously.
However, in many situations, agents do not share information with
each other at every instant. To address this issue, we introduce a
random combination matrixAi into the operation of the algorithm.

3. CONVERGENCE OF BELIEFS
In the asynchronous case, we consider a random matrix Ai =
[aℓk,i], where we allow agents to be randomly absent when partici-
pating in the combination step in (2). Hence, the combination rule
in (2) is replaced by:

µk,i(θ) ∝
∏

ℓ∈Nk

(
ψℓ,i(θ)

)aℓk,i (4)

We allow for general forms ofAi as long as they satisfy the follow-
ing conditions. Specific forms forAi will be discussed in Section 4.

Assumption 1 (Conditions on asynchronous matrices). Ai is al-
ways left stochastic and i.i.d. over time, and E[Ai] is primitive, i.e.,
its underlying graph is strongly connected. ■

Let us examine first the convergence behavior of the asyn-
chronous strategy described by (1) and (4). Later, we consider the
adaptive version consisting of (3) and (4).

To begin with, we introduce the vectors of log ratios xi and νi

of dimension K × 1:

xk,i(θ) = log
Lk(ξk,i|θ⋆)
Lk(ξk,i|θ)

(5a) , νk,i(θ) = log
µk,i(θ

⋆)

µk,i(θ)
(5b)

For these log-ratios, from now on, we will drop the dependence on
θ for brevity, i.e., we will write νk,i instead of νk,i(θ). Using these
variables, we can rewrite (1) and (4) as a linear recursion in νi:

νi = A
⊤
i νi−1 +A

⊤
i xi =

[ i∏
t=1

A⊤
t

]
ν0 +

i∑
t=1

[ i∏
m=t

A⊤
m

]
xt (6)

where
∏i

t=1A
⊤
t = A⊤

i A
⊤
i−1 . . .A

⊤
1 . Now, as in [14], let us define

w
(k)
0 ≜ ek = [0, . . . , 0, 1, 0, . . . , 0] where the k-th entry of w0 is 1.

Then, computing the following inner product we get:

νk,i =
〈
νi, w

(k)
0

〉
= ν⊤

i w
(k)
0

=
〈[ i∏

t=1

A⊤
t

]
ν0, w

(k)
0

〉
+

〈 i∑
t=1

[ i∏
m=t

A⊤
m

]
xt, w

(k)
0

〉
=

〈
ν0,

[ i∏
t=1

Ai−t+1

]
w

(k)
0

〉
+

i∑
t=1

〈
xt,

[ i∏
m=t

Ai−m+t

]
w

(k)
0

〉
(7)

Then, let us define:

w
(k)
t ≜

[
t−1∏
m=0

Ai−m

]
w

(k)
0 (8)

Notice that since Ai is left stochastic for all i, then
∏t−1

m=0Ai−m

is also a left stochastic matrix. It follows that w(k)
t is a probability

vector for all agents k and for all t. Substituting w(k)
t into (7) and

dividing both sides by i, we have:

1

i
νk,i =

1

i

〈
ν0,w

(k)
i

〉
+

1

i

i∑
t=1

〈
xt,w

(k)
i−t+1

〉
(9)

The first term on the right hand side of (9) goes to 0 almost surely
since both ν0 and w(k)

i are a.s. bounded by a finite value. We will
show next that 1

i
νk,i

a.s.−→ ⟨π, d⟩, i.e., the second term converges
to ⟨π, d⟩; where π is the Perron vector of E[Ai], and d is a vector
whose entries correspond to the KL divergences1

dk ≜ DKL

(
Lk(θ

⋆)||Lk(θ)
)
= E[xk,i] (10)

i.e., the KL divergence [22] between Lk(ξ|θ⋆) and Lk(ξ|θ). First,
we show in the next lemma that the ensemble average of the vectors
{w(k)

t } converges a.s. to π. The proof is tailored according to the
proof in [14, Lemma 1]. The details are omitted here due to space
limitations.

Lemma 1 (Convergence to Perron vector). Under Assumption 1,
it holds that for all agents k = 1, 2, . . . ,K:

1

i

i∑
t=1

w
(k)
t

a.s.−→ π (11)

■

Before introducing the main convergence result, we present
some usual assumptions in order to avoid singular behaviors.

Assumption 2 (Finite KL divergences). For every agent k, and
θ ∈ Θ, we have DKL(Lk(θ

⋆)∥Lk(θ)) < +∞ .

Assumption 3 (Positive initial beliefs). µk,0(θ) > 0 for all agents
k = 1, 2, . . . ,K and θ ∈ Θ.

Assumption 4 (Global identifiability). For each wrong hypothesis
θ ̸= θ⋆, there is at least one agent k that has strictly positive KL
divergence, DKL(Lk(θ

⋆)∥Lk(θ)) > 0. ■

1Note that the expectation here is computed with respect to the random-
ness in the observations ξk,i, while the expectation in Assumption 1 is com-
puted with respect to the randomness in Ai. Both sources of randomness are
independent.



We are ready to introduce the truth learning result for the tra-
ditional social learning algorithm (1) and (4) under asynchronous
communication.

Theorem 1 (Learning under asynchronous social learning). Us-
ing (1) and (4), under Assumptions 1, 2, 3, we have that:

1

i
νk,i

a.s.−→ ⟨π, d⟩ (12)

Under Assumption 4, expression (12) implies that all agents learn
the truth as i grows with probability one, i.e.,

µk,i(θ
⋆)

a.s.−→ 1 (13)

Proof sketch. Using Lemma 1, we can compute the inner products
of both sides in (11) with d to show that 1

i

∑i
t=1⟨d,w

(k)
t ⟩ a.s.−→

⟨π, d⟩. Using this intermediate result and similar arguments as in
[14] under the Assumptions 1, 2, 3 we show that (12) holds. Then,
under the Assumption 4, we can prove that (13) holds [14, Corollary
2]. ■

Consider next the adaptive social learning strategy, given by
steps (2) and (3) in the synchronous case. In this case, the beliefs do
not go to zero at the wrong hypothesis, as is the case with traditional
social learning. Instead, despite this fact, the agents are still able to
achieve consistent truth learning in that the belief is maximized at
the location of the true hypothesis, i.e., it holds that

θ⋆ = argmax
θ∈Θ

µk,i(θ) (14)

This result is established in [13] for small δ. In the following, we
will show that consistent truth learning continues to hold under asyn-
chronous communication, and Assumption 1.

To see this, using the notation in (5a) and (5b), we rewrite (3)
and (4) as the following linear recursion:

ν
(δ)
i =(1− δ)i

[
i∏

m=1

A⊤
m

]
ν0 + δ

i∑
t=1

(1− δ)t−1

[
i∏

m=i−t+1

A⊤
m

]
xi−t+1

(15)
Following similar arguments as in [13], we can show that ν(δ)

i con-
verges in distribution to a random vector ν̃(δ) as i goes to infinity.
Proofs are omitted due to space constraints.

Lemma 2 (Steady-state random belief ratio). Under Assumptions
1, 2 and 3, ν(δ)

k,i converges in distribution to ν̃(δ)
k as i goes to infinity,

where ν̃(δ)
k is the k-th element of the random vector defined by

ν̃(δ) ≜ δ

∞∑
t=1

(1− δ)t−1

[
t∏

m=1

A⊤
m

]
xt (16)

■

To characterize the steady-state random variable defined by (16)
for any δ is a challenging task. We therefore follow the steps in [13]
and focus on the behavior of this random variable as δ goes to zero.
In the next theorem, we characterize the small-δ regime and show
that the algorithm achieves consistent learning. Proofs are omitted.

Theorem 2 (Learning under asynchronous adaptive social learn-
ing). Under Assumptions 1, 2 and 3, we have that

ν̃
(δ)
k

p−→
δ→0

⟨π, d⟩ (17)

Furthermore, under Assumption 4, all agents consistently learn the
truth, i.e.,

lim
δ→0

P
(
argmax

θ∈Θ
µk,∞(θ) = θ⋆

)
= 1 (18)

■

4. ASYNCHRONOUS PROTOCOLS

In this section, we discuss the form of the Perron vector π of E[Ai],
which governs the asymptotic convergence rate as revealed by (12).
To that end, we introduce some formulations to construct appropriate
Ai, while satisfying the required conditions listed in Assumption 1.
Thus, consider a situation in which some agent ℓ is absent with prob-
ability pℓ and introduce the Bernoulli random variable βℓ,i, which is
1 with probability pℓ and indicates that agent ℓ is absent at iteration
i, i.e., it does not share any information with its neighbors. When
agent ℓ is absent at iteration i, we zero out the combination weights
aℓk,i for all k, except when k = ℓ (indicating that the agent does not
communicate with its neighbors). We assume we start from an ini-
tial graph with a constant combination matrix A. There are at least
two approaches to update the entries of A when agent ℓ is absent to
construct Ai. In the first approach, we add the missing combina-
tion weights from the other agents to the self loops of agent ℓ. More
formally, we set:

aℓk,i =

{
(1− βℓ,i)aℓk, if k ̸= ℓ

akk +
∑

j ̸=k βj,iaℓj , if k = ℓ
(19)

Using (19), we can expressAi in terms of A as follows:

Ai = A+

K∑
ℓ=1

βℓ,i

∑
k ̸=ℓ

aℓk[eke
⊤
k − eℓe

⊤
k ] (20)

Note that in (19) and (20), since the random variables βℓ,i are in-
dependent over i, we also have that the Ai are independent over i.
In the second approach, instead of adding the missing weights to the
self loop of ℓ, we renormalize the columns of the combination matrix
to add up to one:

Ai = A+

K∑
ℓ=1

βℓ,i

∑
k ̸=ℓ

aℓk

[∑
j ̸=ℓ

ajk∑
r ̸=ℓ ark

eje
⊤
k − eℓe

⊤
k

]
(21)

Furthermore, if we were to assume thatAi is constructed according
to (20), for the expected value ofAi, we would get:

E[Ai]ℓk =

{
(1− pℓ)aℓk, if k ̸= ℓ

akk +
∑

j ̸=k pℓaℓj , if k = ℓ
(22)

so that

E[Ai] = A+

K∑
ℓ=1

pℓ
∑
k ̸=ℓ

aℓk[eke
⊤
k − eℓe

⊤
k ] (23)

From (22) we note that, for pℓ < 1, if aℓk > 0 it follows that
E[Ai]ℓk > 0. This means that the graph support of A is contained
in the graph support of E[Ai]. Thus, if A is strongly connected and
has a self loop, so does E[Ai]. Besides, since A is assumed left-
stochastic, we can verify from (22) that so is E[Ai]. These facts
imply that E[Ai] is primitive with Perron eigenvector π.

5. LEARNING THE GRAPH TOPOLOGY

Let us now examine the inverse problem, where the aim is to dis-
cover the underlying combination matrix A by analyzing the infor-
mation shared by the users over the network. In particular, in this
section we are going to show that by formulating an appropriate op-
timization problem inspired by [20], we can solve this optimization
problem to recover the so-called effective combination matrix of the
network under asynchronous communication, E[Ai]. Then, we will
show that under some assumptions, we can recover A from E[Ai].



Here, we introduce K × (|Θ| − 1) dimensional matrices of log-
ratios, Λi, Li as follows for the true hypothesis θ⋆ and any arbitrary
hypothesis θj ̸= θ⋆:

[Λi]kj = log
ψk,i(θ

⋆)

ψk,i(θj)
, [Li]kj = log

Lk(ξk,i|θ⋆)
Lk(ξk,i|θj)

(24)

We can thus write the following recursion by using the update rules
(2) and (3) of adaptive social learning given as in [20]:

Λi = (1− δ)A⊤Λi−1 − δLi (25)

In asynchronous adaptive social learning, at each time i, agents com-
municate with each other according to the stochastic matrix Ai.
Hence, the recursion in (25) becomes

Λi = (1− δ)A⊤
i Λi−1 − δLi (26)

We work under the assumption that we only observe publicly ex-
changed beliefs ψk,i and allow limited knowledge of likelihoods,
namely, we assume we know the mean matrix E[Li] = L̄. Hence,
the recursion above allows to define the cost function as follows:

Q(A
∧
;Λi,Λi−1) =

1

2
∥Λ⊤

i − (1− δ)Λ⊤
i−1A

∧
− δL̄

⊤∥2F (27)

We can define the corresponding risk function as:

min
A
∧ J(A

∧
) ≜

1

N

N∑
i=1

Ji(A
∧
) (28)

where
Ji(A

∧
) ≜ EQ(A

∧
;Λi,Λi−1) (29)

since Λi has different statistics for different i. This leads to the
stochastic gradient recursion

A
∧

i = A
∧

i−1 +α(1− δ)×Λi−1(Λ
⊤
i − (1− δ)Λ⊤

i−1A
∧

i−1 − δL̄
⊤
)

(30)
where α is the learning rate. We state the next relevant properties of
the risk function without proof, due to space limitations.

Lemma 3 (Properties of the risk function). The risk function in
(29) denotes a strongly convex function with Lipschitz gradients.
Furthermore, E[Ai] is the unique minimizer of this risk function.

■

Hence, according to Lemma 3, if we were to apply the algorithm
in (30), we would find E[Ai], which does not depend on i. Then, as-
suming the formulation in (20) holds, we can recover A from E[Ai]
by estimating the probability of absence of agents from the experi-
mental data (by simply finding the absence ratio of agents) as p̂ℓ and
then doing the following conversion:

1

1− p̂ℓ
E[Ai]ℓk −→ Aℓk , for ℓ ̸= k (31)

Finally, for all k, we select Akk such that the columns of A add up
to 1.

6. EXPERIMENTS

To demonstrate the convergence of beliefs under asynchronous so-
cial learning, and to show how the Perron eigenvector π of E[Ai]
changes with the asynchronous behavior of the agents, we first con-
sider a numerical example with a network of 3 agents with |Θ| =
2 hypotheses. We construct the combination matrix A using the
Metropolis rule, yielding a primitive matrix that is doubly stochas-
tic, i.e., uniform Perron vector [17]. For this example, we assume

that the construction of Ai in (20) holds. Then, we run the asyn-
chronous social learning algorithm (i.e., (1) and (4)) for different
probabilities of absence. As in [21], we consider binary observa-
tions ξk,i ∈ {0, 1}, and we define the likelihood functions for all
agents k and hypotheses θ ∈ Θ as:

Lk(ξ|θ) = I[ξ = 0]ρk,θ + I[ξ = 1](1− ρk,θ) (32)

where ρk,θ ∈ (0, 1) are randomly generated. In this experiment, il-
lustrated in the left panel of Fig. 2, we observe that all agents learn
the truth, in accordance with (13). We also illustrate how the en-
tries of π change with different probabilities of absence of agents,
pk, in the right panel of Fig. 2. This experiment shows that the Per-
ron entries of agents with high probability of absence are smaller.
The experiment thus agrees with the intuition that more active agents
have on average a larger centrality and exert larger dominance on the
asymptotic convergence rate of the convergence, ⟨π, d⟩.

In Fig. 3, we illustrate how well we can recover the true graph
by following the steps explained in Section 5. For this example, we
build an Erdős-Rényi graph of 12 nodes (agents) with edge proba-
bility pedge = 0.2. Then we build the left stochastic and primitive
combination matrix A using the averaging rule [17]. We set the step
size of the model to δ = 0.1, with a learning rate α = 0.5. The
likelihood model and the hypotheses set Θ are the same as in the
previous simulation. Next, we run the graph learning algorithm in
(30), where Ai is constructed according to (20). From this experi-
ment, we see in the third panels in the top and bottom of Fig. 3 that
we learn E[Ai], which contains information on the “connectivity”
of the nodes, i.e., the graph edges. After that step, using the changes
explained in (31), we adjust the weights of the edges in the fourth
panels of in the top and bottom of Fig. 3, and recover A.
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Fig. 2: Belief evolution and Perron vector entries under different
probabilities of absence. Left: The belief concentrates on the true hy-
pothesis over time for all setups, as suggested by Theorem 1. Right:
There is an inverse relationship between Perron vector entry of agent
k, πk, and its probability of absence, pk.

Fig. 3: Learning the graph topology with the descent algorithm in
(30) and then recovering it with (31). Top: Combination matrices.
Bottom: Illustrations of the graphs, where the edge width represents
the combination weight between each pair of agents, and the node
size represents the weight of each self-loop.
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