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ABSTRACT

This paper studies the non-asymptotic classification performance of
the social machine learning strategy. This strategy involves an in-
dependent training phase followed by a cooperative inference phase
to classify a growing number of samples. By considering instead a
finite number of samples, we provide an upper bound for the proba-
bility of misclassification. This bound helps characterize the gener-
alization ability of the social machine learning strategy, in terms of
the statistical properties of the classification problem and the com-
bination policy among the distributed classifiers. The analysis es-
tablishes the exponential decay of the probability of error with the
number of samples when the training phase is consistent.

Index Terms— Social machine learning, probability of error,
non-asymptotic analysis.

1. INTRODUCTION

Social learning is a cooperative inference scheme where a collection
of networked agents work together to infer the true state, out of a
finite number of hypotheses, from local observations. Various social
learning rules have been proposed in the literature [1–9], which rely
largely on adaptation and combination steps. In the adaptation step,
the Bayes rule is employed to update the agents’ belief vectors using
the new observations; while in the combination step, agents aggre-
gate the information from their neighbors using either arithmetic or
geometric averaging. When the social learning problem is globally
identifiable, these algorithms have been shown to attain asymptotic
truth learning, i.e., the belief on the true state converges to 1 when
a growing number of observations are collected. In order to uti-
lize the Bayes rule in the adaptation step, a key assumption in the
works [1–9] is knowledge of the underlying likelihood models for
the observations. However, these likelihood models are generally
unavailable in real-world applications, which motivated the intro-
duction of the social machine learning (SML) framework in [10,11].

The SML strategy is a two-phase learning framework, as de-
picted in Fig. 1. In the training phase, each agent trains a classifier
independently with a finite set of labeled samples. The purpose is
to learn the discriminative information for distinguishing different
hypotheses. The output of the trained classifier is used as the lo-
cal decision statistic for inference [12], playing the role of the log-
likelihood ratio when the likelihood models are known [1–9]. In the
prediction phase, agents observe unlabeled samples and implement
a social learning protocol based on the trained classifiers to infer the
true state. This framework is fully data-driven and therefore the as-
sumption of known likelihood models is avoided.

In [10,11], the authors provide a rigorous theoretical analysis on
the probability of consistent learning, i.e., the probability of asymp-
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Fig. 1: SML architecture.

totic truth learning in the prediction phase when a large number of
unlabeled samples are available, and illustrate the excellent classi-
fication performance of the SML strategy with experiments. This
work supplements the theoretical analysis and examines the perfor-
mance of the SML strategy when the amount of samples for infer-
ence, i.e., in the prediction phase, is limited. Collecting abundant
samples is a time-consuming and expensive task, therefore learning
with a limited number of samples is of practical interest. To this
end, we conduct a non-asymptotic analysis of the classification er-
ror for the SML strategy. By characterizing a decision margin for
the trained classifiers, we provide an upper bound on the instanta-
neous probability of error during the prediction process. Our result
captures the influence of data heterogeneity and graph topology on
the classification performance of the SML strategy. Numerical sim-
ulations with a network of feedforward neural networks are imple-
mented to help illustrate the results.

Notation: We use boldface fonts to denote random variables, and
normal fonts for their realizations. E and P denote expectation and
probability operators, respectively. Variables related to the training
phase are topped with the symbol ∼.

2. THE SML STRATEGY

We consider a network of K connected agents or classifiers indexed
by k ∈ K , {1, 2, . . . ,K}, trying to solve a binary classifica-
tion task. The agents are heterogeneous in that their observations
may follow different statistical models even when they arise from
the same class. For instance, in multi-view learning, each agent ob-
serves a different view of the same data [13]. In Fig. 1, we present a
diagram of the SML architecture. We denote the binary hypotheses
by Γ = {+1,−1}. Each agent k has a set of Nk labeled examples
consisting of pairs {(h̃k,n, γ̃k,n)}Nk

n=1, where h̃k,n ∈ Hk is the n-
th feature vector and γ̃k,n ∈ Γ is the corresponding label. The pair



(h̃k,n, γ̃k,n) is distributed according to

(h̃k,n, γ̃k,n) ∼ p̃k(h, γ) = Lk(h|γ)p̃k(γ), (1)

where Lk(h|γ) is the unknown likelihood model and p̃k(γ) is the
class probability in the training set. We assume that the training set
is balanced, i.e., p̃k(γ) = 1

2
. For the binary classification problem,

the logit (i.e., log-ratio between posterior probabilities), defined as

ck(h) , log
p̃k(+1|h)

p̃k(−1|h)

uniform
prior
= log

Lk(h|+ 1)

Lk(h| − 1)
, (2)

is an important statistic for decision. The optimal Bayes classifier
would assign γ = +1 to the feature vector h if ck(h) is positive
and γ = −1 otherwise. However, ck(h) is not accessible due to the
unknown likelihood models Lk(h|γ). The two phases of the SML
strategy operate as follows [11].

2.1. The training phase

In the training phase, each agent k approximates the logit function
ck defined in (2) by means of a function f̃k from an admissible class
Fk : Hk 7→ R by minimizing the following local empirical logistic
risk:

f̃k = arg min
fk∈Fk

R̃k(fk) ,
1

Nk

Nk∑
n=1

log
(

1 + e−γ̃k,nfk(h̃k,n)
)
.

(3)
The learned function f̃k is used to formulate the local decision statis-
tic c̃k(h) of agent k for the unseen feature vector h ∈ Hk:

c̃k(h) = f̃k(h)− µ̃k(f̃k), (4)

where µ̃k(f̃k) is the empirical training mean calculated via

µ̃k(fk) =
1

Nk

Nk∑
n=1

fk(h̃k,n), ∀fk ∈ Fk. (5)

Discounting the empirical training mean is suggested in [11] as a de-
biasing operation, i.e., to mitigate possible biased models resulting
from the training process.

2.2. The prediction phase

In the prediction phase, the agents work jointly to solve the binary
classification problem with the learned decision function c̃k in (4).
In [11], the social learning problem (i.e., a classification problem
with an infinite number of streaming observations) is considered.
Specifically, we assume that at each time instant i, each agent k re-
ceives a new feature vector hk,i ∈ Hk. That is, we consider that
each agent k has access to a growing stream of observations

hk,1,hk,2, . . . (6)

generated from the unknown likelihood model Lk(·|γ0), where
γ0 ∈ Γ is the true state. The random variables {hk,i : k ∈ K}
are mutually independent conditioned on the underlying truth γ0.
We use the boldface font γ0 here to highlight that the true label is a
random variable for the prediction phase. The class probability of
γ0 is denoted by P (γ0). To solve the social learning problem, the
distributed learning rule based on the learned decision function c̃k
is formed as [11]:

λk,i =

K∑
`=1

a`k (λ`,i−1 + c̃`(h`,i)) (7)

where λk,i denotes the decision variable for agent k at time instant
i. That is, agent k prefers the label +1 (or−1) at time instant i when
λk,i is positive (or negative). For the social learning problem with
accurate likelihood models [1–9], λk,i represents the log-belief ratio
between labels +1 and −1 for agent k at time instant i. The combi-
nation weight a`k that agent k assigns to its neighbor ` satisfies:

K∑
`=1

a`k = 1, a`k ≥ 0, a`k = 0 if ` /∈ Nk, (8)

where Nk denotes the neighboring set of agent k (see Fig. 1 for an
illustration). The communication network is assumed to be strongly
connected, which means that the combination matrix A = [a`k] is
primitive and its Perron eigenvector π satisfies [14]:

Aπ = π,

K∑
k=1

πk = 1, πk > 0, ∀k ∈ K. (9)

An important feature of (7) is that the information from the obser-
vations is aggregated over both space (through `) and time (through
i), which strengthens the decision-making capabilities of the agents.
The SML strategy is called consistent if asymptotic truth learning
is attained, i.e., the true state γ0 is learned by all agents when the
number of observations goes to infinity. For all k ∈ K, we introduce
the following asymptotic decision statistic λ̂k,∞:

λ̂k,∞ , lim
i→∞

1

i
λk,i, (10)

then the SML strategy is consistent if γ0λ̂k,∞ > 0. That is, λ̂k,∞ >

0 if γ0 = +1, and λ̂k,∞ < 0 otherwise. We recall here an important
conclusion of the social learning rule (7) from [7, 11]:

λ̂k,∞
a.s.
=

K∑
k=1

πkEhk,i∼Lk(·|γ0)c̃k(hk,i), (11)

where “a.s.” means almost sure convergence.

2.3. Consistent learning

Based on the learning rule (7) and its convergence property in (11),
the authors in [11] established the following condition for consistent
learning:

µ+(f̃) > µ̃(f̃) and µ−(f̃) < µ̃(f̃), (12)

where µ̃(f̃) =
∑K
k=1 πkµ̃k(f̃k) is the network average of the em-

pirical training mean (5) and

µ+(f̃) =

K∑
k=1

πkEhk,i∼Lk(·|+1)f̃k(hk,i), (13)

µ−(f̃) =
K∑
k=1

πkEhk,i∼Lk(·|−1)f̃k(hk,i) (14)

are the network average of the conditional mean for the two hypothe-
ses. Let Pc denote the probability of consistent learning:

Pc , P
(
µ+(f̃) > µ̃(f̃), µ−(f̃) < µ̃(f̃)

)
. (15)



Under some technical assumptions, it is shown in [11] that if the
network target risk Ro < log 2 and the network Rademarcher com-
plexity ρ < E(Ro), then Pc is lower bounded by

Pc ≥ 1− 2 exp

{
−8Nmax

α2β2
(E(Ro)− ρ)2

}
(16)

where Nmax , maxkNk, α ,
∑K
k=1 πkNmax/Nk, and β is a

uniform bound on the functions fk, i.e.,

|fk(h)| ≤ β, ∀h ∈ Hk, fk ∈ Fk and k ∈ K. (17)

The formal definitions of Ro, ρ, and E(Ro) can be found in [11], and
are omitted here due to space limitation.

The probability of error achieved by the SML strategy is defined
as the probability of inconsistent learning:

Pe , P
(
γ0λ̂k,∞ ≤ 0

)
(18)

where the randomness stems from both the training phase (i.e., the
training set) and the prediction phase (i.e., the true label γ0). We next
show that an upper bound for Pe can be obtained from the probabil-
ity of consistent learning Pc. Combining the convergence result (11)
with the definitions (4), (5), (13), and (14), we have

λ̂k,∞
a.s.
=

{
µ+(f̃)− µ̃(f̃), γ0 = +1,

µ−(f̃)− µ̃(f̃), γ0 = −1.
(19)

This yields

Pe
(18)
= P(γ0 = +1)P

(
λ̂k,∞ ≤ 0|γ0 = +1

)
+ P(γ0 = −1)P

(
λ̂k,∞ ≥ 0|γ0 = −1

)
(19)
= P (+1)P

(
µ+(f̃)− µ̃(f̃) ≤ 0

)
+ P (−1)P

(
µ−(f̃)− µ̃(f̃) ≥ 0

)
≤ P (+1)(1− Pc) + P (−1)(1− Pc)
= 1− Pc. (20)

Therefore, when the number of observations for inference is large
enough in the prediction phase, the probability of error achieved by
the SML strategy is upper bounded by 1− Pc, which can be further
bounded using (16).

3. NON-ASYMPTOTIC PERFORMANCE

In this section, we analyze the probability of error for the binary
classification task with a finite number of observations. In this set-
ting, the agents try to identify the true label γ0 given a sequence of
streaming feature vectors

hk,1,hk,2, . . . ,hk,S (21)

where S is the size of the unlabeled samples in the prediction phase.
It is noted that when S tends to infinity, we recover the classical
social learning problem [11], whose probability of error can be up-
per bounded by 1 − Pc as shown in (20). Since S is finite, the
non-asymptotic performance analysis on the prediction phase is re-
quired. To this end, we characterize the instantaneous probability of
error for each agent k, whose decision at time instant i is denoted
by γk,i. Without loss of generality, we assume an uninformed initial
condition in the subsequent analysis, i.e., λk,0 = 0, ∀k ∈ K.

Since the agents make a decision according to the sign of their
decision variables, i.e.,

γk,i , sign(λk,i), (22)

an error occurs at agent k if λk,i and γ0 have different signs. Let
P ek,i denote the instantaneous probability of error associated with
agent k at time instant i:

P ek,i , P (γ0λk,i ≤ 0) . (23)

Before analyzing the classification error (23), we first introduce a
δ-margin consistent learning condition:

µ+(f̃) > µ̃(f̃) + δ and µ−(f̃) < µ̃(f̃)− δ (24)

where δ ≥ 0 describes the expected distance between the asymptotic
decision statistic λ̂k,∞ and the decision boundary 0, which we will
refer to as decision margin.

It is clear that the δ-margin consistent learning condition (24) is
stronger than the consistent learning condition given in (12). In fact,
expression (24) specifies the condition of asymptotic truth learn-
ing when the agents are conservative in making decisions. That is,
they remain uncertain about the underlying label when the decision
threshold of λ̂k,∞ is not larger than δ. Let Pc,δ denote the probabil-
ity of δ-margin consistent learning:

Pc,δ , P
(
µ+(f̃) > µ̃(f̃) + δ, µ−(f̃) < µ̃(f̃)− δ

)
(25)

We have Pc,δ ≤ Pc and Pc,0 = Pc. A lower bound on Pc,δ is
obtained as follows.

Lemma 1 (Probability of δ-margin consistent learning). Assume
that 0 ≤ δ < Ro

2
and ρ < E(Ro − 2δ) − δ

4
, then we have the

following bound for the probability of δ-margin consistent learning:

Pc,δ ≥ 1− 2 exp

{
−8Nmax

α2β2

(
E(Ro − 2δ)− δ

4
− ρ
)2
}

(26)

Sketch of proof. The key to the proof is to rewrite 1− Pc,δ as

1− Pc,δ = P
({
µ+(f̃) ≤ µ̃(f̃) + δ

}
∪
{
µ−(f̃) ≥ µ̃(f̃)− δ

})
= P

(∣∣∣µ̃(f̃)− µ(f̃)
∣∣∣ ≥ µ+(f̃)− µ−(f̃)

2
− δ
)

with µ(f̃) = µ+(f̃)+µ−(f̃)
2

, and to upper bound this probability
using the techniques introduced in [11].

Let A denote the event of wrong classification of agent k at time
instant i and let B denote the event of δ-margin consistent learning:

A , {γ0λk,i ≤ 0} , (27)

B ,
{
µ+(f̃)− µ̃(f̃) > δ, µ−(f̃)− µ̃(f̃) < −δ

}
. (28)

According to the law of total probability, the following inequality
holds:

P ek,i
(23)
= P(A ∩B) + P(A ∩ B) ≤ P (A|B) + P[B] (29)

where B denotes the complement of event B. Therefore, an up-
per bound for P ek,i can be obtained by characterizing the conditional
probability P(A|B). This is established in the following theorem.



Theorem 1 (Classification error). Let σ denote the second largest-
magnitude eigenvalue of combination matrixA. Suppose that agents
perform the social learning protocol (7), then under the δ-margin
consistent learning condition, we have

P(A|B) ≤ exp

{
− (δi− κ)2

2β2i

}
(30)

for all i ≥ κ
δ

, where

κ ,
8β logK

1− σ . (31)

Hence for any sequence of observations with size S ≥ κ
δ

, the prob-
ability of classification error P ek,S is upper bounded by

P ek,S ≤ 2 exp

{
−8Nmax

α2β2

(
E(Ro − 2δ)− δ

4
− ρ
)2
}

+ exp

{
− (δS − κ)2

2β2S

}
. (32)

Sketch of proof. The proof is based on the convergence property of
the combination matrix A and McDiarmid’s inequality [15, 16] as
well as Lemma 1.

As the number of samples S grows, P ek,S approaches the first term
of (32), which is an upper bound for 1−Pc,δ . Since Pc,δ ≤ Pc, then
in view of (20), 1−Pc,δ is an upper bound on the probability of error
for the social learning problem (i.e., S =∞). By letting δ → 0, we
recover the upper bound 1− Pc established in (20) [11]. According
to (32), it is expected that the decay rate of P ek,S with respect to S
will be larger when the decision margin δ increases.

4. NUMERICAL SIMULATIONS

In the simulations, we consider the FashionMNIST dataset [17] and
build a binary classification problem to distinguish ‘T-Shirt’ (labeled
with +1) from ‘Trouser’ (labeled with −1). Each image of this
dataset contains 784 pixels. We employ a network of 9 spatially
distributed agents, where each agent observes a part of the image
(see Fig. 2(a)) and they are connected through a strongly-connected
communication network with the topology depicted in Fig. 2(b). We
also assume a self-loop for each agent (not shown in Fig. 2(b)). A
uniform averaging rule is employed for constructing the combination
policy A [14].

In the prediction phase, each agent trains its own classifier,
which is a feedforward neural network with one hidden layer of
15 neurons and activation function tanh. This simple structure is
employed to better visualize the probability of error curves. To
illustrate the δ-margin consistent learning condition, we consider
different sizes of training sets. For simplicity, we assume an identi-
cal training size for all agents, i.e., Nk = N0, ∀k ∈ K. Given the
value of N0, a balanced training set is generated by randomly sam-
pling from the FashionMNIST dataset. For each selected training
set, the training is running using mini-batch iterates of 10 samples,
over 30 epochs. We employ the Adam optimizer [16] with learning
rate 0.0001 in the simulations.

In Fig. 3(a), we plot the decision margins achieved under differ-
ent N0, where the results are averaged over 100 different randomly
generated training sets for each N0. It can be seen that the decision
margin increases as N0 grows. This indicates a better learning con-
dition for the prediction phase. In Fig. 3(b), the evolution of the
instantaneous probability of error of agent 1 for i ∈ [0, 30] under
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Fig. 2: Setting of distributed classifiers.
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Fig. 3: Performance of the SML strategy.

different N0 is presented. The underlying class for all observations
is set to be ‘T-Shirt’. For each training set considered in Fig. 3(a),
we conduct 2000 Monte Carlo runs of binary classification with the
trained classifiers based on this dataset and obtain the average re-
sult. The simulation result for a specified size N0 is then estimated
empirically from the associated 100 training sets. We can see from
Fig. 3(b) that for all training sizes, the instantaneous probability of
error decreases over time i. For largerN0, the decaying is almost ex-
ponential and the decay rate is positively correlated to the decision
margin, which is consistent with (32).

5. CONCLUDING REMARKS

This paper studies the learning performance of the social machine
learning strategy from [11] when the amount of samples for infer-
ence is finite in the prediction phase. An upper bound for the proba-
bility of error was presented. Our results extend the analysis in [11],
which investigated the classification performance when the number
of observations grows. An interesting future extension would be to
consider the classification performance using a single sample.
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