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ABSTRACT
This work focuses on adversarial learning over graphs. We propose
a general adversarial training framework for multi-agent systems us-
ing diffusion learning. We analyze the convergence properties of the
proposed scheme for convex optimization problems, and illustrate
its enhanced robustness to adversarial attacks.

Index Terms— Adversarial training, decentralized optimiza-
tion, diffusion strategy, multi-agent systems.

1. INTRODUCTION

In many machine learning algorithms, small malicious perturbations
that are imperceptible to the human eye can cause classifiers to reach
erroneous conclusions [1–5]. To mitigate the negative effect of ad-
versarial examples, one methodology is adversarial training [6], in
which clean training samples are augmented by adversarial samples
by adding purposefully crafted perturbations. Due to the lack of an
explicit definition for the imperceptibility of perturbations, additive
attacks are usually restricted within a small bounded region. Most
earlier studies, such as [6–10], have focused on studying adversarial
training in the context of single agent learning. In this work, we de-
vise a robust training algorithm for multi-agent networked systems
by relying on diffusion learning [5, 11, 12], which has been shown
to have a wider stability range and improved performance guaran-
tees for adaptation in comparison to other decentralized strategies
[5, 11, 12].

There of course exist other works in the literature that applied
adversarial learning to a multiplicity of agents, albeit using a differ-
ent architecture. For example, the works [13–15] employ multiple
GPUs and a fusion center, while the works [16–18] consider graph
neural networks. In this work, we focus on a fully decentralized ar-
chitecture where each agent corresponds to a learning unit in its own
right, and interactions occur locally over neighborhoods determined
by a graph topology.

We formulate a sequential minimax optimization problem in-
volving adversarial samples, and assume in this article that the
perturbations are within an ℓ2−bounded region. We hasten to add
though that the analysis can be extended to other norms, such as ℓ1−
and ℓ∞−bounded perturbations. For simplicity, and due to space
limitations, we consider the ℓ2−case here.

In the performance analysis, we examine the convergence of the
proposed framework for convex settings due to space limitations, but
note that similar bounds can be derived for nonconvex environments
by showing convergence towards local minimizers. In particular,
we show here that with strongly-convex loss functions, the proposed
algorithm approaches the global minimizer within O(µ) after suffi-
cient iterations, where µ is the step-size parameter.
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2. PROBLEM SETTING

Consider a collection of K agents where each agent k observes inde-
pendent realizations of some random data (xk,yk), where xk plays
the role of the feature vector and yk plays the role of the label vari-
able. Adversarial training in the decentralized setting deals with the
following stochastic minimax optimization problem

w⋆ = argmin
w∈RM

{
J(w)

∆
=

K∑
k=1

πkJk(w)

}
(1)

where {πk}Kk=1 are positive scaling weights adding up to one, and
each individual risk function is defined by

Jk(w) = E{xk,yk}

{
max

∥δk∥≤ϵ
Qk(w;xk + δk,yk)

}
(2)

in terms of a loss function Qk(·). In this formulation, the variable δk
represents an ℓ2 norm-bounded perturbation used to generate adver-
sarial examples, and yk is the true label of sample xk. We refer to
w⋆ as the robust model. In this paper, we assume all agents observe
data sampled independently (over time and space) from the same
statistical distribution.

One methodology for solving (1) is to first determine the inner
maximizer in (2), thus reducing the minimax problem to a standard
stochastic minimization formulation. Then, the traditional stochastic
gradient method could be used to seek the minimizer. We denote the
true maximizer of the perturbed loss function in (2) by

δ⋆
k(w) ∈ argmax

∥δk∥≤ϵ

Qk(w;xk + δk,yk) (3)

where the dependence of δ⋆
k on w is shown explicitly. To apply the

stochastic gradient method, we would need to evaluate the gradient
of Q(w;xk + δ⋆

k(w),yk) relative to w, which can be challenging
since δ⋆

k(w) is also dependent on w. This difficulty can be resolved
by appealing to Danskin’s theorem [19–21]. Let

g(w)
∆
= max

∥δk∥≤ϵ
Qk(w;xk + δk,yk) (4)

Then, the theorem asserts that g(w) is convex over w if Qk(w; ·, ·)
is convex over w. Moreover, g(w) need not be differentiable over w
even when Qk(w; ·, ·) is differentiable. However, and importantly
for our purposes, we can determine a subgradient for g(w) by using
the actual gradient of the loss evaluated at the worst perturbation,
namely, it holds that

∇wQk(w;xk + δ⋆
k,yk) ∈ ∂wg(w) (5)

where ∂w refers to the subdifferential set of its argument. In (5), the
gradient of Qk(·) relative to w at the maximizer δ⋆

k is computed by



treating δ⋆
k as a stand-alone vector and ignoring its dependence on

w. When δ⋆
k in (3) happens to be unique, then the gradient on the left

in (5) will be equal to the right side, so that in that case the function
g(w) is differentiable.

Motivated by these properties, and using (5), we can now pro-
pose an algorithm to enhance the robustness of multi-agent systems
to adversarial perturbations. To do so, we rely on the adapt-then-
combine (ATC) version of the diffusion strategy [11, 12] and write
down the following adversarial extension to solve (1)–(2)

x⋆
k,n = xk,n + δ⋆

k,n (6a)
ϕk,n = wk,n−1 − µ∇wQk(wk,n−1;x

⋆
k,n,yk,n) (6b)

wk,n =
∑

ℓ∈Nk

aℓkϕℓ,n (6c)

where

δ⋆
k,n ∈ argmax

∥δk∥≤ϵ

Qk(wk,n−1;xk,n + δk,yk,n) (7)

In this implementation, expression (6a) computes the worst-case ad-
versarial example at iteration n using the perturbation from (7),
while (6b) is the intermediate adaptation step in which all agents si-
multaneously update their parameters with step-size µ. Relation (6c)
is the convex combination step where the intermediate states ϕℓ,n

from the neighbors of agent k are combined together. The scalars
aℓk are non-negative and they add to one over ℓ ∈ Nk.

3. CONVERGENCE ANALYSIS

This section analyzes the convergence of the adversarial diffusion
strategy (6a)–(6c) for the case of strongly convex loss functions. We
list the following assumptions, which are commonly used in the lit-
erature of decentralized multi-agent learning and single-agent adver-
sarial training [11, 22–25].

Assumption 1. (Strongly-connected graph) The entries of the com-
bination matrix A = [aℓk] satisfy aℓk ≥ 0 and the entries on each
column add up to one, which means that A is left-stochastic. More-
over, the graph is assumed to be strongly-connected, meaning that
there exists a path with nonzero weights {aℓk} linking any pair of
agents and, in addition, at least one node k in the network has a
self-loop with akk > 0.

Assumption 2. (Strong convexity) For each agent k, the loss
function Qk(w; ·) is ν−strongly convex over w, namely, for any
w1, w2, x ∈ RM and y ∈ R, it holds that

Qk(w2;x, y) ≥ Qk(w1;x, y) +∇wTQk(w1;x, y)(w2 − w1)

+
ν

2
∥w2 − w1∥2 (8)

□

We remark that it also follows from Danskin’s theorem [19–21]
that, when Qk(w; ·, ·) is ν−strongly convex over w, then the adver-
sarial risk Jk(w) defined by (2) will be strongly convex. As a result,
the aggregate risk J(w) in (1) will be strongly-convex as well.

Assumption 3. (Smooth loss functions): For each agent k, the gra-
dients of the loss function relative to w and x are Lipschitz in relation
to the three variables {w, x, y} in the following manner:

∥∇wQk(w2;x+ δ, y)−∇wQk(w1;x+ δ, y)∥ ≤ L1 ∥w2 − w1∥
(9a)

∥∇wQk(w;x2 + δ, y)−∇wQk(w;x1 + δ, y)∥ ≤ L2 ∥x2 − x1∥
(9b)

∥∇wQk(w;x+ δ, y2)−∇wQk(w;x+ δ, y1)∥ ≤ L3 ∥y2 − y1∥ (9c)

and

∥∇xQk(w2;x+ δ, y)−∇xQk(w1;x+ δ, y)∥ ≤ L4 ∥w2 − w1∥
(10a)

∥∇xQk(w;x2 + δ, y)−∇xQk(w;x1 + δ, y)∥ ≤ L5 ∥x2 − x1∥
(10b)

where ∥δ∥ ≤ ϵ. For later use, we use L = max{L1, L2, L3, L4, L5}.

Assumption 4. (Bounded gradient disagreement) For any pair of
agents k and ℓ, the squared gradient disagreements are uniformly
bounded on average, namely, for any w ∈ RM and ∥δ∥ ≤ ϵ, it
holds that

E{x,y}∥∇wQk(w;x+ δ,y)−∇wQℓ(w;x+ δ,y)∥2 ≤ C2 (11)

□

Note that (11) is automatically satisfied when all agents use the
same loss function and collect data independently from the same
distribution.

To evaluate the performance of the proposed framework (6a)–
(6c), it is critical to compute the inner maximizer δ⋆

k,n defined by
(7). Fortunately, for some convex problems, such as logistic re-
gression, the maximization in (7) has a unique closed-form solution,
which will be shown in the simulation section. Thus, we analyze the
convergence properties of (6a)–(6c) when δ⋆

k,n is unique. We first
establish the following affine Lipschitz result for the risk function in
(2); proofs are omitted due to space limitations.

Lemma 1. (Affine Lipschitz) For each agent k, the gradient of
Jk(w) is affine Lipschitz, namely, for any w1, w2 ∈ RM , it holds
that

∥∇wJk(w2)−∇wJk(w1)∥2 ≤ 2L2∥w2 − w1∥2 + 8L2ϵ2 (12)

□

Contrary to the traditional analysis of decentralized learning al-
gorithms where the risk functions Jk(w) are generally Lipschitz, it
turns out from (12) that under adversarial perturbations, the risks in
(2) are now affine Lipschitz. This requires adjustments to the conver-
gence arguments. A similar situation arises, for example, when one
studies the convergence of decentralized learning under non-smooth
losses — see [5, 26, 27].

To proceed with the convergence analysis, we introduce the gra-
dient noise process, which is defined by

sk,n(wk,n−1) = ∇wQk(wk,n−1;x
⋆
k,n,yk,n)−∇wJk(wk,n−1)

(13)
This quantity measures the difference between the approximate gra-
dient (represented by the gradient of the loss) and the true gradient
(represented by the gradient of the risk). The following result estab-
lishes some useful properties for the gradient noise process, namely,
it has zero mean and bounded second-order moment (conditioned on
past history).

Lemma 2. (Moments of gradient noise) For each agent k, the gra-
dient noise defined in (13) is zero mean and its variance satisfies

E {sk,n(wk,n−1)|Fn−1} = 0 (14)

E
{
∥sk,n(wk,n−1)∥2 |Fn−1

}
≤ β2

k,ϵ ∥w̃k,n−1∥2 + σ2
k,ϵ (15)



for some non-negative scalars β2
k,ϵ and σ2

k,ϵ that depend on ϵ and
can vary across agents. In the above notation, the quantity Fn−1

is the filtration generated by the past history of the random process
col{wk,n}, and

w̃k,n−1 = w⋆ −wk,n−1 (16)

□

The main convergence result is stated next; the proof is again
omitted due to space limitations.

Theorem 1. (Network mean-square-error stability) Consider a net-
work of K agents running the adversarial diffusion learning al-
gorithm (6a)–(6c). Under Assumptions 1– 4 and for sufficiently
small step size µ, the network converges asymptotically to an O(µ)-
neighborhood around the global minimizer w⋆ at an exponential
rate, namely,

lim sup
n→∞

E ∥w̃k,n−1∥2 ≤ O(µ) (17)

□

The above theorem indicates that the proposed algorithm en-
ables the network to approach an O(µ)-neighborhood of the robust
minimizer w⋆ after enough iterations, so that the worst-case perfor-
mance over all possible perturbations in the small region bounded by
ϵ can be effectively minimized.

4. COMPUTER SIMULATIONS

In this section, we illustrate the performance of the proposed algo-
rithm using a logistic regression application. Let γ be a binary vari-
able that takes values from {−1, 1}, and h ∈ RM be a feature vari-
able. The robust logistic regression problem by a network of agents
employs the risk functions:

Jk(w) = E max
∥δ∥≤ϵ

{
ln (1 + e−γ(h+δ)Tw)

}
(18)

The analytical solution for the inner maximizer (i.e., the worst-case
perturbation) is given by

δ⋆ = −ϵγ
w

∥w∥ (19)

which is consistent with the perturbation computed from the fast gra-
dient method (FGM) [7].

Fig. 1. A randomly generated graph structure used in the simulations

(a) MNIST

(b) CIFAR10

Fig. 2. The convergence plots for the two datasets: (a) The evo-
lution of the average classification error over adversarial examples
bounded by ϵ = 4 during training for MNIST; (b) The evolution of
the average classification error of adversarial examples bounded by
ϵ = 1.5 during training for CIFAR10.

In our experiments, we use both the MNIST [28] and CIFAR10
[29] datasets, and randomly generate a graph with 20 nodes, shown
in Fig. 1. We limit our simulations to binary classification in this
example. For this reason, we consider samples with digits 0 and 1
from MNIST, and images for airplanes and automobiles from CI-
FAR10. We set the perturbation bound in (18) to ϵ = 4 for MNIST
and ϵ = 1.5 for CIFAR10. In the test phase, we compute the average
classification error across the network to measure the performance of
the multi-agent system against perturbations of different strengths.

We first illustrate the convergence of our algorithm, as antici-
pated by Theorem 1. From Fig. 2, we observe a steady decrease in
the classification error towards a limiting value.

The robust behavior of the proposed algorithm is illustrated in
Fig. 3 for both MNIST and CIFAR10. We explain the curves for
MNIST and similar remarks hold for CIFAR10. In the simulation,
we use perturbations generated in one of two ways: using the FGM
worst-case construction and also using the DeepFool construction
[5, 30]. The figure shows three curves. The red curve is obtained by
training the network using the traditional diffusion learning strategy



(a) MNIST

(b) CIFAR10

Fig. 3. The robustness plots for the two datasets: (a) Classification
error versus perturbation size for MNIST; (b) Classification error
versus perturbation size for CIFAR10. The graphs show three plots
illustrating the behavior of the traditional (nonrobust) algorithm to
worst-case perturbations generated by means of FGM, as well as the
performance of the proposed adversarial diffusion strategy (6a)–(6c)
to attacks generated by FGM and DeepFool.

without accounting for robustness. The network is subsequently fed
with worst-case perturbed samples (generated using FGM) during
testing corresponding to different levels of ϵ. The red curve shows
that the classification error deteriorates rapidly. The blue curve re-
peats the same experiment except that the network is now trained
with the adversarial diffusion strategy (6a)–(6c). It is seen in the
blue curve that the testing error is more resilient and the degradation
is better controlled. The same experiment is repeated using the same
adversarially trained network, where the perturbed samples are now
generated using DeepFool as opposed to FGM. Here again it is seen
that the network is resilient and the degradation in performance is
better controlled.

In Fig. 4, we plot some randomly selected CIFAR10 images,
their perturbed versions, and the classification decisions generated
by the nonrobust algorithm and its adversarial version (6a)–(6c). We
observe from the figure that no matter which attack method is ap-
plied, the perturbations are always imperceptible to the human eye.

Fig. 4. Visualization of the original and adversarial samples. The
first row consists of 10 random original samples with the titles rep-
resenting their true classes. The second row shows the adversarial
examples generated by DeepFool and applied to the standard (non-
robust) algorithm. The third row shows the results obtained by the
adversarial (robust) algorithm. The titles are the predictions by the
corresponding models. The same construction is repeated in the last
two rows using FGM. If the prediction of an image is wrong, the title
is shown in red color. It is seen that the adversarial algorithm fails
less frequently.

Moreover, while the nonrobust algorithm fails to classify correctly
in most cases, the adversarial algorithm is more robust and leads to
fewer classification errors.

5. CONCLUSION

In this paper, we proposed a diffusion defense mechanism for adver-
sarial attacks. We analyzed the convergence of the proposed method
under convex losses and showed that it approaches a small O(µ)
neighborhood around the robust solution. We further illustrated the
behavior of the trained network to perturbations generated by FGM
and DeepFool constructions and observed the enhanced robust be-
havior. Similar results are applicable to nonconvex losses and will
be described in future work.
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