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ABSTRACT

The adaptive social learning paradigm deals with the opinion
formation process by a network of communicating agents in a
dynamic environment. In this study, we show that a sequence
of publicly exchanged beliefs allows users to discover rich
information about the underlying model. In particular, it is
shown that it is possible (i) to identify the influence of each
individual agent to the objective of truth learning, (ii) to dis-
cover how well-informed each agent is, and (iii) to learn the
underlying network topology.

Index Terms— Social learning, social influence, explain-
ability, inverse modeling, online learning, graph learning.

1. INTRODUCTION AND RELATED WORK

The social learning paradigm is a popular non-Bayesian for-
mulation that enables a group of networked agents to learn
and track the state of nature. It has motivated several stud-
ies in the literature with many useful variations under varied
modeling assumptions (see, e.g., [1, 2, 3, 4, 5, 6, 7]). Under
this framework, agents observe streaming data and share in-
formation with their immediate neighbors. Through a process
of localized cooperation, the agents continually update their
beliefs about the underlying state. The main question in social
learning is whether agents are able to learn the truth eventu-
ally, i.e., whether the beliefs on the wrong hypotheses will
vanish. In this work, we adopt the Adaptive Social Learning
(ASL) strategy from [8], which showed how to extend tra-
ditional non-Bayesian learning under fixed truth to dynamic
scenarios where the state of nature is allowed to drift with
time.

Given a collection of networked agents tracking the state
of nature by means of the adaptive social learning (ASL) strat-
egy, our main objective is to focus on two questions related
to explainability and inverse modeling. In particular, by ob-
serving the sequence of publicly exchanged beliefs, we would
like to discover the underlying graph topology (i.e., how the
agents are connected to each other). We would also like to
discover each agent’s contribution (or influence) to the net-
work’s learning process.
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The question of explainability over graphs is a challeng-
ing task, and it has been receiving increasing attention — see,
e.g., [9, 10, 11, 12], where explainability is considered from
different perspectives and with different aims. Overall, higher
transparency and a better understanding of the solutions are
generally crucial for critical applications. Likewise, identify-
ing the most influential users and their communication pat-
terns can provide valuable insights in social network analy-
sis [13]. Actually, the problem of identifying the most influ-
ential nodes in a network is also increasingly relevant [14, 15,
16, 17, 18, 19], especially following the rise of online social
networks. Once identified, this information can be useful in
many contexts. For example, it can be used to enhance recom-
mendations for marketing purposes [14, 15, 16, 17, 18, 19],
where the objective is to maximize the number of influenced
nodes.

2. SOCIAL LEARNING MODEL

We consider a collection of agents N performing peer-to-peer
exchanges of beliefs according to some combination matrix
A⋆ with non-negative entries, [A⋆]ℓ,k = aℓk ≥ 0. Agent
ℓ is able to communicate with agent k when aℓk is positive;
this scalar refers to the weight that agent k assigns to the in-
formation received from agent ℓ. We assume that the matrix
A⋆ is left-stochastic and corresponds to a strongly connected
graph [6, 2, 8]. It follows from the Perron-Frobenius theorem
[20, Chapter 8], [21] that the power matrix At

⋆ converges to
u1T as t → ∞ at an exponential rate, where u is the Perron
eigenvector that satisfies:

A⋆u = u, uℓ > 0,
∑
ℓ∈N

uℓ = 1. (1)

where the uℓ denote the individual entries of u. Each of these
entries describes the centrality of the corresponding agent in
the graph.

At each time instant i, each agent k observes a measure-
ment ζk,i. We assume initially that each agent k ∈ N has ac-
cess to private likelihood functions, Lk(ζ|θ), which describe
the distribution of the observation ζ conditioned on each po-
tential model θ. The observations ζk,i are assumed to be in-
dependent and identically distributed (i.i.d.) over time. In
order to be able to distinguish the true hypothesis θ⋆ from any



other hypothesis θ ̸= θ⋆, we need to assume that there ex-
ists at least one clear-sighted agent k ∈ N that has strictly
positive KL-divergences relative to the true likelihood, i.e.,
DKL (Lk (θ) ||Lk (θ

⋆)) > 0, for all θ ̸= θ⋆ ∈ Θ. The follow-
ing boundedness assumption on the likelihood is common in
the literature [22, 12]; it essentially amounts to assuming that
the likelihoods share support regions.

Assumption 1 (Bounded likelihoods). There exists a finite
constant b > 0 such that, for all k ∈ N :∣∣∣∣∣ log Lk(ζ|θ)

Lk(ζ|θ′)

∣∣∣∣∣ ≤ b (2)

for all θ, θ′ ∈ Θ, and ζ. ■

Next, we describe the ASL strategy from [8]. At each
time step i, each agent k performs a local update based on
the newly received observation and forms the intermediate
(public) belief:

ψk,i(θ) =
Lδ
k(ζk,i|θ)µ

1−δ
k,i−1(θ)∑

θ′∈Θ Lδ
k(ζk,i|θ′)µ

1−δ
k,i−1(θ

′)
, k ∈ N . (3)

Here, δ ∈ (0, 1) is a step-size parameter that controls the
adaptation capacity. Subsequently, agent k fuses the beliefs
received from its neighbors, i.e., from all agents for which
aℓk > 0:

µk,i(θ) =

∏
ℓ∈Nk

ψaℓk

ℓ,i (θ)∑
θ′∈Θ

∏
ℓ∈Nk

ψaℓk

ℓ,i (θ
′)
, k ∈ N . (4)

Once (4) is performed, the true state θ⋆ can be estimated by
agent k at time i using the maximum a-posteriori construction
over either the private (µk,i) or public (ψk,i) beliefs.

Following [12], we introduce two matrices Λi and Li in
order to represent the recursions (6) in a more compact matrix
form as follows:

Λi = (1− δ)AT
⋆Λi−1 + δLi. (5)

The matrices are of size |N |× (|Θ| − 1), and their entries are
log-belief and log-likelihood ratios given by:

[Λi]k,j ≜ log
ψk,i(θ0)

ψk,i(θj)
, [Li]k,j ≜ log

Lk(ζk,i|θ0)
Lk(ζk,i|θj)

(6)

where the reference state θ0 ∈ Θ can be chosen at will by the
designer.

After a sufficient number of iterations i (i.e., for i > M ≫
1), the average of the log-belief matrix converges in probabil-
ity to a limit value given by [12, Lemma 1] as follows:

1

M

i−1∑
j=i−M

Λj
M→∞−−−−→ EΛ. (7)

The matrices Li are i.i.d. over time due to the assumed
i.i.d. assumption on the observations. We introduce the fol-
lowing condition on the higher-order moments of Li [8, 12].

Assumption 2 (Positive-definite covariance matrix). The
covariance matrix RL is uniformly positive-definite for all
i ≥ 0, i.e., there exists τ > 0 such that:

RL ≜ E
(
Li − L̄

) (
Li − L̄

)T ≥ τI. (8)

■

3. INVERSE LEARNING FROM PUBLIC BELIEFS

3.1. Problem Statement

The data available from the social network might be limited
for various reasons, including privacy. Therefore, in this
work, we assume that we can only observe the evolution of
the public beliefs over time:{

ψk,i(θ)
}
i≫1

, ∀k ∈ N (9)

Here, by i ≫ 1 we underline that we are observing Λi after
a sufficient amount of iterations, i.e., after Λi has reached its
steady-state distribution.

A good illustration for this setting is the social network
of Twitter users. From each post (or tweet) that a user posts
to their followers, we can extract an intermediate belief ψk,i

based on sentiment analysis, a.k.a., opinion mining. After
that, each user k reads the posts of its followers and constructs
the private belief µk,i according to (4).

3.2. Algorithm Development

The previous work on learning the combination matrix A⋆

in [12] assumes that the expected log-likelihood matrix L̄ ≜
ELi is known, where it can be verified that:

[L̄]k,j ≜ [ELi]k,j

= DKL(Lk(θ
⋆)||Lk(θj))−DKL(Lk(θ

⋆)||Lk(θ0)). (10)

In this work, we do not assume that L̄ is known beforehand,
and will instead estimate L̄ at each iteration i by using

L̂i−1(A) =
1

δM

i−1∑
j=i−M

(
Λj − (1− δ)ATΛj−1

)
, (11)

where A will be the estimate that is available for A⋆ at that
point in time. Accordingly, the risk function is strongly con-
vex and has Lipschitz gradients, and is given by:

J(A) ≜
1

2(N −M)

N−1∑
i=M

E∥Λi − (1− δ)ATΛi−1 − δL̄∥2F

(12)



It can be shown that the unique minimizer of this risk func-
tion, denoted by Amin, gets closer to the true combination
matrix as M grows:

∥Amin −A⋆∥2F = O
(
1/δ2M2

)
(13)

To minimize J(A), we apply stochastic gradient descent
(SGD) with constant step-size µ > 0. At each iteration i, the
estimateAi for the combination matrix is updated via:

Ai = Ai−1 + µ(1− δ)

(
Λi−1 −

1

M

i−1∑
j=i−M

Λj−1

)

×
(
ΛT

i − (1− δ)ΛT
i−1Ai−1 − δL̂

T

i−1

)
(14)

4. GLOBAL INFLUENCE IDENTIFICATION

In this section, we establish a strong connection between the
probability of error for truth learning and the network diver-
gence. The network divergence is defined in terms of the Per-
ron eigenvector of A⋆, and the KL-divergences between the
likelihoods:

K(θ⋆, θ) ≜
∑
k∈N

ukDKL(Lk(θ
⋆)||Lk(θ)) > 0. (15)

The probability of truth learning error is defined as the prob-
ability of picking a wrong hypothesis θ ̸= θ⋆:

pk,i = P
(
∃θ ̸= θ⋆ : log

ψk,i(θ
⋆)

ψk,i(θ)
≤ 0

)
. (16)

For this subsection, we additionally assume that the observa-
tions {ζk,i} are independent between different agents. Now,
we know from [8, Theorem 3] that each random variable (for
any k) in (16) can be approximated by a Gaussian random
variable in the steady state with the following moments:

log
ψk,i(θ

⋆)

ψk,i(θ)
≈ G

(
K (θ⋆, θ) +O (δ) , δC +O

(
δ2
) )

(17)

for some finite and constant covariance matrix, C. Thus,
the probability of error (16) becomes the probability of the
Gaussian random variable (17) assuming negative values for
at least one θ ∈ Θ. This Gaussian random variable concen-
trates around its mean (i.e., the network divergence in (15)),
which is positive.

The larger the contribution of agent k to the network di-
vergence (15) is, the stronger its influence will be towards
moving the network away from an erroneous decision. We
therefore say that

ukDKL(Lk(θ
⋆)||Lk(θ)) (18)

determines the amount of information that agent k has about
θ agreeing with θ⋆. We define the level of informativeness of

agent k to the learning process by considering the aggregate
of its contributions for all θ:

Ik ≜ uk

∑
θ∈Θ

DKL(Lk(θ
⋆)||Lk(θ)). (19)

This quantity serves as a measure of influence, since agents
with large Ik contribute the most to learning the truth by the
network.

In what follows, we describe how to estimate the quanti-
ties Ik by the learning algorithm. First, to obtain the Perron
eigenvector forAi, we need to normalize any of its eigenvec-
tors corresponding to the eigenvalue at 1. We let j′ denote the
index within the hypothesis set Θ that maximizes the public
belief after a sufficient number of iterations iN :

θ̂j′ = argmax
θ∈Θ

ψk,iN (θ). (20)

Returning to (10), we approximate the KL-divergences by

DKL (Lk(θ
⋆)||Lk(θ0)) ≈ −[L̂iN ]k,j′ , (21)

DKL (Lk(θ
⋆)||Lk(θj)) ≈ [L̂iN ]k,j + [L̂iN ]k,j′ , (22)

where L̂iN is an estimate for L̄.

5. THEORETICAL RESULTS

To investigate the steady-state performance of recursion (14),
we adopt the following independence assumption, which is
typical in the study of adaptive systems [23, 24].

Assumption 3 (Separation principle). We denote the esti-
mation error by Ãi ≜ A⋆ −Ai, and assume the step-size µ
is small enough to allow ∥Ãi∥2F to attain a steady-state dis-
tribution. The separation principle states that the error Ãi is
independent of the observations Λi, . . . ,Λi−M , conditioned
on the history of previous observations. ■

The following results quantify the performance of the pro-
posed algorithm. Proofs are omitted due to space limitations.

Theorem 1 (Steady-state performance). In the limit, the
mean-square deviation (MSD) satisfies:

lim sup
i→∞

E∥Ãi∥2F ≤ O(µ) +O(1/δ3M2). (23)

Theorem 2 (Steady-state log-likelihood learning). The
MSD converges exponentially fast with

lim sup
i→∞

E∥L̂i − L̄∥2F

≤ 1

M
Tr (RL) +O(µ/δ2) +O

(
1/δ5M2

)
(24)

where RL = E
(
Li − L̄

) (
Li − L̄

)T
.

We can reduce the limiting MSD for both problems by
using arbitrary small step-size µ ≪ δ2 and by the number of
samples M .



(a) True combination matrix. (b) Learned combination matrix.

Fig. 1: True combination matrix and learned combination ma-
trices using M = 50.

Fig. 2: Algorithm performance when L̄ is known and when
estimated by (11) for different M ∈ {1, 10, 50}.

6. COMPUTER SIMULATIONS

We generate a graph with |N | = 20 agents according to the
Erdos-Renyi model with an edge probability of p = 0.2. We
set the adaptation hyperparameter to δ = 0.05. Then, we
generate the combination weights (see Fig. 1a) with uniform
weights in the column, such that the resulting matrix is left-
stochastic. We consider |Θ| = 5 states, where the likelihood
models Lk(θ) for each agent k ∈ N are assumed to follow
a binomial distribution with randomly generated parameters.
We generate likelihood models such that we observe only 3
agents with high informativeness.

First, we consider how well the combination matrix is
learned for different M ∈ {1, 10, 50}. We additionally com-
pare with [12], where the expectation L̄ was assumed to be
known beforehand. For M = 50, we use µ = 0.1, for
M = 10, we use µ = 0.01, and for M = 1, we use µ = 0.001
for better convergence. In Figure 2, we plot the reconstruction
error with respect to the iteration number:

∥Ãi∥2F = ∥Ai −A⋆∥2F (25)

We notice that the higher M improves the limiting MSD as
reflected in Theorem 1.

Figure 3 illustrates how well the learned KL-divergences

(a) 3 influential agents.

(b) 1 influential agent.

Fig. 3: Agents’ influences (19) based on the learned graph
and KL-divergences.

and combination matrix can recover the global influences
(19). For better interpretability, we normalize the values so
that they add up to one. We see that for some agents, the al-
gorithm does not perfectly recover these components, but yet
allows us to identify that the first agents are driving the learn-
ing the most. This property allows us to search for agents that
are the most contributing to learning the true state.

7. CONCLUSIONS

In this study, we show that a sequence of publicly exchanged
beliefs in the adaptive social learning protocol contains rich
information about the underlying model. We present an algo-
rithm for learning the agents’ informativeness in terms of KL-
divergences between likelihood models, and for identifying
a combination graph. We demonstrate that these quantities
determine the probability of error of the true hypothesis esti-
mator, and we introduce a notion of a global agent influence,
which quantifies the individuals’ contribution to learning. As
a result, the suggested approach enables us to determine the
most influential agents in the opinion formation process. Our
experiments illustrate that we can accurately find global influ-
encers and learn the underlying graph.
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