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ABSTRACT

In social learning, a group of agents linked by a graph topology
collect data and exchange opinions on some topic of interest, rep-
resented by a finite set of hypotheses. Traditional social learning
algorithms allow all agents in the network to gain full confidence
on the true underlying hypothesis as the number of observations
increases. Under partial information sharing, agents can exchange
opinions only on a single hypothesis. This introduces significant
challenges as compared to the standard case of full opinion shar-
ing. We propose a novel strategy where each agent forms a valid
belief by completing the partial beliefs received from its neighbors.
The completion process exploits the knowledge accumulated in the
past beliefs, thanks to a principled memory-aware rule inspired by
a Bayesian criterion. We provide a detailed characterization of the
memory-aware strategy, which reveals novel learning dynamics and
highlights its advantages over previously considered schemes.

Index Terms— Social learning, Bayesian update, information
diffusion, partial information.

1. INTRODUCTION AND RELATED WORK

Social learning refers to a family of distributed inferential strategies
through which agents propagate their opinions over a network [1–
11]. All agents collect streaming data related to a phenomenon of
common interest, which is represented by a discrete-valued state,
the hypothesis θ ∈ Θ. Each agent summarizes its opinions regard-
ing these hypotheses into a probability vector (the belief). Under
a fully-Bayesian approach, the beliefs should be iteratively updated
over time by blending previous beliefs and the likelihood of the new
incoming data through a Bayesian update. However, fully Bayesian
approaches are usually not viable in social learning because a joint
model encompassing all agents in the network is seldom available,
and even when it is, the complexity in implementing the associated
updates is a formidable task [12,13]. These challenges motivated the
introduction of non-Bayesian social learning, which basically con-
sists of a two-step algorithm: i) a Bayesian update performed locally
by each agent using its private likelihood model and observations;
and ii) a cooperation step where each agent combines the beliefs
received from its immediate neighbors [3, 4, 8, 14–18].

A common assumption in social learning is that each agent has
access to the entire belief vector of its neighbors. However, this
condition is not verified in several contexts, as it is often the case
that agents share opinions on a single candidate state. For example,
consider the problem of selecting one commercial product among
brands {θ1, θ2, θ3}. A new product has been recently released by
brand θ1, which motivates the social group to exchange reviews
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regarding only the new release and ignore the remaining hypothe-
ses. At the end of the learning process, the individuals end up with
some updated convictions as regards the overall collection of brands
{θ1, θ2, θ3}. From an engineering-design perspective, partial in-
formation sharing is also motivated by the requirement of devising
multi-agent communication schemes that are parsimonious in terms
of communication resources, or systems where sharing full informa-
tion is forbidden or restricted due to privacy concerns [19, 20].

We can distinguish two major approaches to deal with social
learning under limited exchange of information. The first approach
prescribes sharing the full beliefs, albeit by imposing some com-
munication constraints. Under this category we find the work [21],
where quantized belief ratios are exchanged. In comparison, an
event-triggered algorithm is proposed in [22], where the commu-
nication burden is reduced by transmitting only at instants when the
beliefs are deemed sufficiently innovative. Another strategy to re-
duce the communication load is to exchange beliefs with only one
randomly-sampled neighbor at a time [23].

The second approach, known as partial information sharing,
was introduced in [24,25], and prescribes that agents can only trans-
mit their beliefs concerning a single hypothesis of interest, denoted
by θTX. A critical part of this approach is that agents need to fill in
the missing information regarding the non-transmitted components.
The maximum-entropy choice was proposed in [24, 25], where the
non-transmitted belief components have equal mass. Since this fill-
ing strategy ignores past information, it is a memoryless strategy.

In the present work we propose a novel filling strategy where,
instead of performing a blind allocation, each agent exploits its most
updated local knowledge to fill in the missing entries in its neigh-
bors’ beliefs. Contrasted with the memoryless allocation, this alter-
native approach leads to a memory-aware strategy. The main con-
tribution of this work is to provide a detailed characterization of the
learning mechanism of the proposed strategy. The analysis reveals
novel dynamics arising from partial sharing of opinions, highlighting
a nontrivial interplay between memory and cooperation.

2. PARTIAL INFORMATION SHARING

We consider a network of K agents, cooperating to learn the true
state of nature θ0 ∈ Θ ≜ {1, 2, . . . , H}. Each agent k at instant i
collects an observation ξk,i ∈ Xk (we use bold font for random vari-
ables) and possesses a set of private models Lk(ξ|θ) for the proba-
bility (density or mass) function of ξ ∈ Xk given θ ∈ Θ. The ob-
servations ξk,i are distributed according to the true model Lk(ξ|θ0).
They are independent and identically distributed over time, but they
can be dependent across agents.

The network is represented by a graph, whose nodes correspond
to the agents, and whose edges correspond to communication links
between the agents. The symbol Nk denotes the set of neighbors of
agent k (including k itself). Each agent k associates to each agent



Fig. 1. Social learning under partial information sharing.

ℓ a nonnegative weight aℓk. These weights can be conveniently ar-
ranged into a left-stochastic matrix A = [aℓk] satisfying:

1
⊤A = 1

⊤, aℓk ≥ 0, aℓk = 0 if ℓ /∈ Nk. (1)

The main output of social learning is the belief vector µk,i ∈ ∆H ,
where ∆H denotes the probability simplex with dimension H . The
θ-th componentµk,i(θ) quantifies how confident agent k is at instant
i that θ is the true state of nature. We assume throughout the work
that the initial belief vectors are uniform, i.e., µk,0(θ) = 1/H for all
θ ∈ Θ and all k = 1, 2, . . . ,K. In traditional social learning, each
agent k iteratively updates its belief vector µk,i using the following
two-step procedure:

ψk,i(θ) ∝ Lk(ξk,i|θ)µk,i−1(θ), (2a)

µk,i(θ) ∝
∏

ℓ∈Nk

[ψℓ,i(θ)]
aℓk . (2b)

As is standard in Bayesian theory, the proportionality sign hides
the constant (independent of θ) that is necessary to obtain a prob-
ability vector. Step (2a) outputs an intermediate belief vector ψk,i

through a local Bayesian update with prior µk,i−1 and likelihood
Lk(ξk,i|θ). The intermediate beliefs are then shared over the net-
work and, in step (2b), each agent k combines the intermediate be-
liefs in its neighborhood Nk using a weighted geometric average
with combination weights aℓk. It is known that with strategy (2a)-
(2b) all agents learn the truth almost-surely as i → ∞, that is,
µk,i(θ0)

a.s.−−→ 1 [14, 17, 18].
In traditional social learning, each agent k receives from each

neighbor ℓ ∈ Nk the complete belief vector ψℓ,i. We here con-
sider instead the challenging scenario of partial information sharing,
where agents share a single component of their belief vector corre-
sponding to a hypothesis of interest θTX ∈ Θ. The new learning
algorithm consists of the following three steps — see Fig. 1:

ψk,i(θ) ∝ Lk(ξk,i|θ)µk,i−1(θ), (3a)

ψ̂ℓk,i = Fk

(
ψℓ,i(θTX)

)
, for ℓ ∈ Nk (3b)

µk,i(θ) ∝
∏

ℓ∈Nk

[ψ̂ℓk,i(θ)]
aℓk . (3c)

Steps (3a) and (3c) are still a Bayesian update and a geometric aver-
aging rule, respectively. The novelty is in step (3b), where agent k,
upon receiving the single belief componentψℓ,i(θTX) from a neigh-
boring agent ℓ, builds a complete estimated belief vector ψ̂ℓk,i. This
is the estimated belief vector constructed by agent k relative to its
neighbor ℓ, in the sense that, starting from the received component
ψℓ,i(θTX), agent k fills in the missing entries according to a filling
strategy Fk : R 7→ ∆H . The mapping Fk will be allowed to be
random since it can depend on the beliefs possessed by agent k.

The choice of the filling strategy Fk is critical to achieve cor-
rect learning. We now show how it can be derived from a Bayesian

approach. Assume that in the construction of the estimated belief
ψ̂ℓk,i, agent k trusts agent ℓ and, hence, it sets:

ψ̂ℓk,i(θTX) = ψℓ,i(θTX). (4)

Once (4) is enforced, the residual mass assigned to the set T = {θ ̸=
θTX} is 1−ψℓ,i(θTX). From Bayes’ rule, this implies that the belief
conditioned on set T, say bk(θ|T), must fulfill the condition:

ψ̂ℓk,i(θ) = bk(θ|T)(1−ψℓ,i(θTX)), for all θ ̸= θTX. (5)

To complete the filling strategy, it is necessary to choose the form of
bk(θ|T). In [25], the maximum-entropy choice was proposed:

bk(θ|T) =
1

H − 1
. (6)

In this work, we propose a novel strategy that exploits more fully the
knowledge that agent k has accumulated up to time i. To this end,
we consider the most updated belief available at agent k at time i,
namely, ψk,i, which leads then to the following conditional belief:

bk(θ|T) =
ψk,i(θ)

1−ψk,i(θTX)
. (7)

While strategy (6) forgets any evidence from the past and performs
a uniform allocation, strategy (7) diversifies the allocation based on
the available knowledge stored in the intermediate belief vectorψk,i.
We shall accordingly refer to (6) as the memoryless strategy, and to
(7) as the memory-aware strategy.

Note also that strategy (7) automatically ensures self-awareness,
meaning that for ℓ = k we get ψ̂kk,i = ψk,i. It is interesting
to remark that this compelling property arose naturally from our
Bayesian interpretation of the filling strategy, once we allowed it
to incorporate the information contained in ψk,i. In comparison,
strategy (6) does not provide self-awareness.

3. ASSUMPTIONS

For ease of reference, we collect in this section the assumptions in-
volved in our analysis, which are common in the study of social
learning methods. The first assumption is a standard condition of
network connectivity.

Assumption 1 (Strongly-Connected Network). There exists at
least one path linking every two nodes in both directions and at least
one self-loop, i.e., akk > 0 for some agent k. □

Since A is left-stochastic, strong connectivity implies that A is
a primitive matrix [26,27]. Then, the Perron-Frobenius theorem im-
plies the existence of a vector v = [vk], a.k.a. the Perron eigenvector,
which satisfies the following conditions [26, 27]:

Av = v, 1
⊤v = 1, vk > 0 ∀k. (8)

Next we list two regularity conditions on the likelihoods.

Assumption 2 (Finiteness of KL Divergences). For each k =
1, 2, . . . ,K and each pair θ, θ′: DKL(Lk,θ0 ||Lk,θ) < ∞, where
DKL(Lk,θ0∥Lk,θ) denotes the Kullback-Leibler divergence between
Lk(ξ|θ0) and Lk(ξ|θ) [28]. □

The next assumption excludes some redundancy from the likeli-
hood models. It rules out the case where at some agent the likelihood
of the true hypothesis is equal to a convex combination of the like-
lihoods of the distinguishable hypotheses. Preliminarily, we need to
introduce the set of hypotheses distinguishable for agent k.

Dk ≜ {θ ∈ Θ \ {θ0} : DKL(Lk,θ0∥Lk,θ) > 0} . (9)



Assumption 3 (Regular Likelihoods). Let Dk ̸= ∅. Consider a
convex combination vector α = [α(θ)]θ∈Dk

and introduce the con-
vex combination:

fk,α(ξ) ≜
∑
θ∈Dk

α(θ)Lk(ξ|θ). (10)

We assume that min
α∈∆|Dk|

DKL(Lk,θ0 ||fk,α) > 0. □

We continue by introducing the set of hypotheses indistinguish-
able for agent k:

Ik ≜ {θ ∈ Θ \ {θ0} : DKL(Lk,θ0∥Lk,θ) = 0} . (11)

Note that if agent k learns in isolation, hypothesis θ0 is identifiable
only if Ik = ∅, otherwise θ0 would be indistinguishable from any
hypothesis belonging to Ik. However, in social learning it is often
sufficient to relax this local identifiability notion and to resort instead
to the following condition of identifiability at the network level.

Assumption 4 (Global Identifiability). For each θ ̸= θ0, there
exists at least one agent k with θ /∈ Ik, namely,

⋂K
k=1 Ik = ∅. □

Under global identifiability, if agent k is able to distinguish one
hypothesis θ from the true one (i.e., if θ ∈ Dk), then the entire
network can benefit from this ability, including some other agent ℓ
for which θ ∈ Iℓ. A special case of global identifiability is when
there exists one powerful agent which is able to distinguish all the
false hypotheses. We refer to this case as strong-agent identifiability.

Assumption 5 (Strong-Agent Identifiability). There exists one
agent k with Ik = ∅. □

Note that “strong-agent identifiability” is significantly milder
than local identifiability, since it does not require identifiability at
all agents, but just at one powerful agent.

4. MAIN THEOREMS

In the following we use the notation, for any S ⊆ Θ:

µk,i(S) ≜
∑
θ∈S

µk,i(θ), (12)

with the convention that µk,i(∅) = 0. Moreover, the cardinalities of
the indistinguishable sets Ik will be denoted by Jk, and we introduce
the network average of the individual cardinalities:

J ≜
K∏

k=1

J
vk
k , (13)

that is, a weighted geometric average of the individual {Jk}, with
weights given by the entries {vk} of the Perron eigenvector.

Our main result is collected in the next theorems, whose proofs,
omitted for space constraints, are available in [29].

Theorem 1 (Convergence in the case θTX ̸= θ0). Under As-
sumptions 1–4, we have the following properties for each k =
1, 2, . . . ,K:

• Belief of the transmitted hypothesis:

µk,i(θTX)
a.s.−−→ 0. (14)

• Beliefs of the non-transmitted distinguishable hypotheses θ ∈
Dk \ {θTX}:

µk,i(θ)
a.s.−−→ 0. (15)

• Beliefs of the true hypothesis and of the non-transmitted in-
distinguishable hypotheses θ ∈ {θ0} ∪

(
Ik \ {θTX}

)
:

µk,i(θ)
a.s.−−→ 1

1 + |Ik \ {θTX}|
, (16)

i.e., the mass is equipartitioned over the set comprising the
true and the non-transmitted indistinguishable hypotheses.

Theorem 2 (Convergence in the case θTX = θ0). Under As-
sumptions 1–4, we have the following properties for each k =
1, 2, . . . ,K:

• Belief of the true hypothesis:

µk,i(θ0)
a.s.−−→ 1

1 + J
. (17)

• Beliefs of the distinguishable hypotheses θ ∈ Dk:

µk,i(θ)
a.s.−−→ 0. (18)

• Beliefs of the indistinguishable hypotheses θ ∈ Ik:

µk,i(θ)
a.s.−−→ J

Jk

1

1 + J
. (19)

Theorems 1 and 2 capture the fundamental learning mechanism
of the memory-aware strategy. Ideally, we want a learning strategy
that places negligible confidence on θTX when θTX ̸= θ0, and full
confidence otherwise [25]. As a matter of fact, Theorem 1 guaran-
tees that all agents are able to learn well when θTX ̸= θ0, since they
end up placing zero mass on the (false) shared hypothesis. Let us
switch to the case θTX = θ0, which is covered by Theorem 2. Equa-
tion (17) reveals that the belief of the true hypothesis converges to
1/(1 + J). From (13) we know that J is a weighted geometric av-
erage of the single-agent cardinalities {Jk}. As such, J is zero even
if a single agent k has Ik = ∅, i.e., if Assumption 5 holds. When
J = 0, from (17) we have µk,i(θTX)

a.s.−−→ 1, and we conclude that
truth learning is achievable under strong-agent identifiability.

It remains to examine the memory-aware strategy when strong-
agent identifiability does not hold. To this end, observe that the ge-
ometric average of a group of numbers is bounded by the minimum
and maximum values in the group. Thus, in the network we will
have two subsets of agents: one subset of agents with cardinality Jk

greater than the average cardinality J , and another subset of agents
with Jk ≤ J . Consider first the case Jk > J . From (17) and (19)
we see that, almost surely for large i:

µk,i(θ0) > µk,i(θ), for all θ ∈ Θ \ {θ0}. (20)

Conversely, agents with Jk ≤ J end up with:

µk,i(θ0) ≤ µk,i(θ), for all θ ∈ Θ \ {θ0}. (21)

Examining jointly (20) and (21), we discover an interesting and per-
haps unexpected implication. After cooperation, the agents that were
individually more confused (larger Jk) truly benefit from coopera-
tion, ending up with a belief that is maximized at the true hypoth-
esis. The situation is reversed for the agents that were individually
less confused (smaller Jk) but then end up with a belief that is no
longer maximized at the true hypothesis (or, if it is, there are multi-
ple indistinguishable maxima). In the next section we show how this
issue can be resolved since we prove that, when strong-agent iden-
tifiability is violated, it is still possible to implement a decision rule
that leads to correct learning.
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Fig. 2. First plot. Network graph. Second and third plots. The algorithm is run with indistinguishable sets {Ik} provided in (28). Therefore,
only global (i.e., not strong-agent) identifiability holds. Fourth plot. Strong-agent identifiability is enforced by letting I1 = ∅.

4.1. A Consistent Decision Rule

Consider the following threshold test, for some small ε:{
µk,i(θTX) > (1/H)− ε ⇒ accept θTX

µk,i(θTX) ≤ (1/H)− ε ⇒ reject θTX

(22)

Since Jk ≤ H − 1, which implies that J ≤ H − 1, we have:

0 <
1

H
− ε︸ ︷︷ ︸

threshold

<
1

1 + J
. (23)

From Theorems 1 and 2 we know thatµk,i(θTX) converges to zero if
θTX ̸= θ0, and to 1/(1+J) otherwise. Using (23), we conclude that
the decision rule (22) guarantees always correct learning as i → ∞.

The rationale behind (22) is that the transmitted hypothesis is ac-
cepted if the observed belief exceeds (but for a small ϵ) the uniform
value 1/H corresponding to the initial belief assignment. Note that
this rule is not based on the maximization of the belief. In contrast,
the rule accepts θTX provided the minimal requirement of exceeding
the average probability, even if there could be other indistinguishable
hypotheses featuring a higher belief. In other words, the decision
rule (22) is biased in favor of θTX, because the agents are conscious
of the limitations of partial information sharing, and they try to over-
come them by adjusting the decision threshold.

4.2. Comparison Against the Memoryless Strategy

It was shown in [25] that with the memoryless filling strategy (6),
the social learning problem can be reinterpreted as a binary detection
problem involving the comparison between the likelihood of the true
hypothesis, Lk(ξ|θ0), and a fictitious distribution:

fk(ξ) =
1

H − 1

∑
τ ̸=θTX

Lk(ξ|τ). (24)

Then, the following KL divergences were introduced:

dTX ≜
K∑

k=1

vk DKL(Lk,θ0∥Lk,θTX), (25)

dfict ≜
K∑

k=1

vk DKL(Lk,θ0∥fk). (26)

Consider first the case θTX ̸= θ0. We know that in this case the
memory-aware strategy always learns well. According to [25, The-
orem 3], the memoryless strategy learns correctly if dfict < dTX,

which means that, to declare that θTX is false, the true distribution
must be more similar to the fictitious distribution than to the distri-
bution of the shared hypothesis. Notably, when dfict > dTX, the
memoryless strategy incurs mislearning, i.e., it is completely fooled
and places full mass on the wrong hypothesis [25].

Conversely, in the case θTX = θ0, the memoryless strategy al-
ways learns [25], while the memory-aware strategy requires strong-
agent identifiability. However, the memory-aware strategy does not
display the mislearning behavior since it places a nonzero mass on
the true hypothesis, and thanks to this property, we have shown that
it can be driven to the right decision by means of (22).

5. SIMULATION RESULTS

We consider the network graph with K = 20 agents shown in Fig. 2,
equipped with a Metropolis combination matrix [27]:

aℓk =

{
1/max{|Nℓ|, |Nk|}, ℓ ∈ Nk \ {k}
aℓk = 0, ℓ /∈ Nk,

(27)

with akk = 1−
∑

ℓ∈Nk
aℓk. Note that the Perron eigenvector is uni-

form since A is doubly stochastic. We use this combination matrix
in the social learning algorithm (3a)–(3c) with filling strategy (7).

The learning problem has H = 10 hypotheses, and Lk(ξ|θ) is
Gaussian with unit variance and mean equal to θ. The true hypoth-
esis is θ0 = 1. The sets of indistinguishable hypotheses have the
following cardinalities:

Jk =

 4, for k ∈ [1, 10],
8, for k ∈ [11, 15],
2, for k ∈ [16, 20],

and
K⋂

k=1

Ik = ∅. (28)

Note that (28) implies that strong-agent identifiability is not satisfied,
since Ik ̸= ∅ for any k, whereas global identifiability is satisfied. In
view of (13), we have J = (410 · 85 · 25)1/20 = 4.

In the second plot of Fig. 2, we illustrate the dynamics of the
agents’ belief relative to the transmitted hypothesis, for the case
θTX ̸= θ0. We see that, according to (14), the beliefs all converge
to 0. In the third plot we consider instead θTX = θ0. We see that,
as predicted by (17), the beliefs now converge to 1/(1 + J) = 1/5.
Finally, we consider a variation of the previous experiment where
we enforce strong-agent identifiability at agent 1. We run the social
learning algorithm for θTX = θ0 and, as shown in the fourth plot of
Fig. 2, the beliefs of all agents converge to 1, as it must be.
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