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ABSTRACT

We examine the learning performance achievable by a network of
agents that solve a distributed regression problem using the recently
proposed ACTC (Adapt-Compress-Then-Combine) diffusion strat-
egy. The agents operate under communication constraints: they are
allowed to communicate only with their immediate neighbors, and
the exchanged signals are encoded by using randomized differen-
tial compression operators. We show that the mean-square estima-
tion error of each agent comprises the error that the agents would
achieve without communication constraints plus a compression loss.
Our results reveal the fundamental quantitative relationship existing
between the compression loss and the peculiar attributes of the dis-
tributed regression problem. We show how these quantitative rela-
tionships can be used to optimize the allocation of communication
resources across the agents and improve their learning performance
as compared to a uniform allocation.

Index Terms— Distributed optimization, diffusion strategy,
randomized quantizers, differential quantization.

1. INTRODUCTION AND RELATED WORK

A distributed learning system consists of a group of cognitive agents,
linked by a graph, which cooperate to solve a common inferential
task. Two major distributed paradigms are federated learning and
fully-decentralized learning [1–6]. In this work, we focus on the lat-
ter paradigm [1–3], where there is no fusion center, and each agent
accomplishes the learning task by means of local exchanges of infor-
mation with its neighbors. We work under the online setting where
the learning algorithm must be adaptive to track drifts in the stream-
ing data. Common tools adopted in this setting are stochastic gradi-
ent algorithms with constant step-size [1], and distributed strategies
like consensus [7, 8] or diffusion [1–3].

The communication burden due to information transmission
among network agents represents a bottleneck for distributed learn-
ing. As a result, information compression strategies, e.g., quan-
tization [9], need to be considered to cope with communication
constraints. Data compression has already been successfully applied
in distributed inferential systems [10–13], but distributed optimiza-
tion, which is the core of this work, poses peculiar challenges. Two
major issues are: i) the data distribution is unknown, preventing the
use of traditional quantizer design [9]; and ii) the convergence of the
iterative optimization algorithms can be impaired by the accumu-
lation of compression errors. Recent works showed that the afore-
mentioned issues can be alleviated using randomized [14–16] and
differential [17] compression strategies. Randomized compression
operators generate randomly coded outputs that exhibit properties
useful for inferential purposes, such as unbiasedness and bounded
variance. Examples of randomized compression operators applied
in distributed optimization are randomized quantizers [14, 18] and

randomized sparsifiers [15, 16]. Building on well-established tech-
niques for the design of communication systems, e.g., Differential
Pulse Code Modulation and Delta Modulation [9], differential com-
pression can be used to exploit the dependence between consecutive
samples in the optimization algorithm. By encoding only the differ-
ence between consecutive samples, the input range of the encoder
can be considerably reduced, implying significant savings in terms
of communication resources.

There already exist some useful works dealing with gradient-
based algorithms in the presence of randomized and/or differential
compression [19–23]. In these works, there are some restrictive de-
sign choices such as: i) non-adaptive implementations with dimin-
ishing step-size; ii) symmetric combination policies to model the
network; iii) strong convexity at all agents; iv) consensus strate-
gies to merge the information shared by the agents across the net-
work, which lead to reduced stability ranges compared to diffusion
strategies. Recent works [24–27] overcome these limitations and
consider instead adaptive algorithms with constant step-size to track
data drifts; non-symmetric and left-stochastic combination policies,
or subspace constraints [26, 27] to represent a wide variety of net-
work scenarios; strong convexity only at the global level, thus al-
lowing for convex and non-convex cost functions at the local level;
diffusion strategies, which have been shown to lead to superior con-
vergence and mean-square-error performance under adaptive scenar-
ios [1].

In [24,25], a novel diffusion strategy nicknamed ACTC (Adapt-
Compress-Then-Combine) is proposed. To meet communication
constraints, the ACTC algorithm incorporates in the classical ATC
(Adapt-Then-Combine) diffusion [1] an intermediate step of ran-
domized differential compression. The mean-square stability and
the transient behavior of the ACTC diffusion strategy were char-
acterized in great detail in [24, 25]. It was shown that, by tuning a
suitable design parameter, mean-square stability is guaranteed de-
spite data compression. All agents converge to a small neighborhood
of the desired solution with the same transient behavior of the ATC
strategy, but spending significantly less transmission resources.

This work complements the aforementioned analysis of the
ACTC strategy by characterizing its steady-state performance. The
analysis focuses on the popular decentralized learning setting where
distributed agents cooperate to solve a linear regression problem [1].
In the context of communication-constrained systems, this setting
was examined in [28], where imperfect communication was mod-
eled through noisy links. In comparison, in this work we take into
account the compression mechanism (e.g., the quantizers) and the
related budget (e.g., the bit-rates). Accounting for these elements in
the analysis will be critical to perform an optimized allocation of the
communication resources. Specifically: i) we prove the existence
of an upper bound on the mean-square-error of each network agent,
which is the sum of the error achieved without communication con-
straints and of a compression loss; ii) we derive useful quantitative



relationships between the compression loss and the attributes of
the distributed learning problem, e.g., the network topology and
the different error sources such as gradient noise and bias; and
iii) exploiting the obtained formulas, we show that communica-
tion resources can be allocated in an informed manner according to
the features of each agent, improving the learning performance as
compared to a uniform allocation.

Notation. We denote random variables with bold font and their
realizations with normal font. All vectors are column vectors. IM is
the identity matrix of size M . For a matrix X , the notation X > 0
means that X is positive definite, whereas Tr(X) is the trace of X .
The symbol E denotes the expectation operator.

2. BACKGROUND

We focus on a distributed linear regression problem tackled by a net-
work of N agents, labeled k = 1, 2, . . . , N , which operate in an on-
line setting by observing, over time epochs i = 0, 1, . . . , a streaming
sequence of random variables dk,i ∈ R and random regression vec-
tors uk,i ∈ RM with covariance matrix Ru,k = E[uk,iu

⊤
k,i]. The

processes {dk,i} and {uk,i} obey the linear regression model:

dk,i = u
⊤
k,iw

o
k + vk,i, (1)

where vk,i is a zero-mean additive noise process with E[v2
k,i] =

σ2
v,k and independent from the regressors, and wo

k ∈ RM is an un-
known deterministic parameter vector. The processes {uk,i} and
{vk,i} are independent over time and across the agents. Each agent
is equipped with a local mean-square-error risk function:

Jk(w) = E
[(
dk,i − u⊤

k,iw
)2]

, (2)

where the expectation is taken w.r.t. the random data {dk,i,uk,i}.
By means of cooperation, the agents wish to minimize the following
global cost function:

J(w) =

N∑
k=1

pkJk(w), (3)

for some positive and convex (i.e., adding up to one) weights {pk}.

Assumption 1 (Global Strong Convexity). At least one agent has
a positive definite covariance matrix Ru,k, which implies that the
global cost function (3) is ν-strongly convex. Since J(w) is twice
differentiable, we have ∇2J(w) ≥ νIM for some ν > 0.

Under Assumption 1, the cost function in (3) has a unique min-
imizer w⋆, which can be shown to be a Pareto optimal solution rel-
ative to the individual cost functions Jk(w) [1, 31]. By varying the
weights {pk} in (3), we can attain different Pareto optimal solutions.

One popular tool to minimize (3) is a decentralized gradient-
descent algorithm, which would rely on the exact gradient:

∇Jk(w) = 2 (Ru,kw − rdu,k) , (4)

where rdu,k = Ru,kw
o
k. However, the exact gradient is not available

in learning applications, as it depends on the data moments, which in
turn depend on the same unknown parameters the inferential process
is attempting to learn. For this reason, we will resort instead to the
stochastic gradient-descent algorithm, were ∇Jk(w) is replaced by
a stochastic instantaneous approximation thereof:

gk,i(w) = 2uk,i

[
u⊤

k,iw − dk,i

]
. (5)

Since the agents use a stochastic approximation of the actual gradi-
ent, we also introduce the gradient noise:

sk,i(w) ≜ gk,i(w)−∇Jk(w), (6)

and its covariance matrix evaluated at the minimizer w⋆, denoted by
Rs,k, which can be shown to be [1]:

Rs,k=4σ2
v,k Ru,k + 4E

[
Uk,i(w

⋆ − wo
k)(w

⋆ − wo
k)

⊤U⊤
k,i

]
, (7)

where Uk,i = uk,iu
⊤
k,i −Ru,k.

Finally, we introduce the bias vector b, whose k-th entry bk
quantifies how far from 0 is the gradient of agent k evaluated at w⋆:

bk ≜ ∇Jk(w
⋆) = 2 (Ru,kw

⋆ − rdu,k) . (8)

Note that the biases bk are all equal to zero in the important case
where all costs Jk(w) are minimized at the same location, i.e., when
the global minimizer w⋆ coincides with the unknown parameter vec-
tor wo

k of each agent.

2.1. Network Graph and Combination Matrix

The agents are arranged in a network described by a combination
matrix A = [aℓk]. When no link is present between two agents ℓ
and k, the weights aℓk and akℓ must be equal to zero. Conversely,
when information can flow only in one direction, say from ℓ to k, we
have aℓk > 0 and akℓ = 0. Accordingly, the directed neighborhood
of agent k (possibly including the self-loop ℓ = k) is Nk ≜ {ℓ =
1, 2, . . . , N : aℓk > 0}.

Assumption 2 (Strongly-Connected Network). Given any pair of
nodes (ℓ, k), a path with nonzero weights exists in both directions
(i.e., from ℓ to k and vice versa), and at least one agent k in the
entire network has a self-loop (akk > 0). □

Assumption 3 (Left-Stochastic Combination Matrix). For each
agent k = 1, ..., N , the following conditions hold: aℓk ≥ 0,∑

ℓ∈Nk
aℓk = 1, aℓk = 0 for ℓ /∈ Nk. □

Under Assumptions 2 and 3, the combination matrix A is a prim-
itive matrix and, from the Perron-Frobenius theorem, it has an eigen-
vector π = [π1, π2, . . . , πN ]⊤, the Perron vector, with all strictly
positive entries such that:

∑N
k=1 πk = 1 and Aπ = π [1].

2.2. The ACTC Diffusion Strategy

In order to solve the distributed linear regression problem, the agents
employ the ACTC strategy [24, 25], which consists of the follow-
ing three steps, performed iteratively by all agents and for all time
epochs i > 0.1

ψk,i = wk,i−1 − µ gk,i(wk,i−1) (9a)
qℓ,i = qℓ,i−1 + ζQℓ(ψℓ,i − qℓ,i−1), ∀ℓ ∈ Nk (9b)

wk,i =
∑
ℓ∈Nk

aℓkqℓ,i (9c)

— Adaptation step (9a): each agent k follows the descent direc-
tion −gk,i(·) in (5), weighted by the step-size µ > 0, to update the
past iteratewk,i−1, yielding the intermediate value ψk,i.

1At time i = 0 each agent k is initialized with an arbitrary vector qk,0
(with finite second moment), receives the initial states {qℓ,0}ℓ∈Nk

and com-
putes an initial minimizer wk,0 =

∑
ℓ∈Nk

aℓkqℓ,0.



— Compression step (9b): each agent k compresses the dif-
ference, i.e., the innovation, between ψk,i and the previous quan-
tized state qk,i−1, applying a suitable randomized operator Qk(·).
All agents simultaneously transmit the encoded signals over the net-
work. Then, each agent k receives from its neighbors ℓ ∈ Nk the
compressed differences Qℓ(ψℓ,i − qℓ,i−1). The quantized states
qℓ,i, for ℓ ∈ Nk, are recovered by adding to the previous states
qℓ,i−1 the received compressed differences, scaled by a design pa-
rameter ζ ∈ (0, 1) governing the stability of the ACTC strategy —
see [24, 25].

— Combination step (9c): each agent k computes a weighted
combination of the updated quantized states {qℓ,i}ℓ∈Nk , yielding
the minimizer estimatewk,i.

2.3. Compression Operators

Following [14, 19, 21, 23–25], we implement the ACTC strategy in
(9) relying on the following class of randomized operators.

Assumption 4 (Compression operators). Given a constant ω > 0
and a deterministic input x ∈ RM , the randomized compression
operatorQ : RM → RM satisfies the following properties:

E
[
Q(x)− x

]
= 0 [unbiasedness] (10)

E ∥Q(x)− x∥2 ≤ ω ∥x∥2 [non blow-up property] (11)

where expectations are evaluated w.r.t. the randomness of the op-
erator. When the input is random, conditions (10) and (11) are
intended to hold conditionally on the input. Moreover, when ap-
plied in the middle of the ACTC strategy, given the past history
{{ψℓ,j}ij=1, {qℓ,j}i−1

j=0}
N
ℓ=1, the randomized compression mecha-

nism at agent k depends only on the differential input ψℓ,i − qℓ,i−1,
and is independent across the agents. □

From (11) we notice that small values of the compression pa-
rameter ω correspond to low distortion, i.e., to finely quantized data,
while large values of ω correspond to coarsely quantized data.

3. STEADY-STATE PERFORMANCE

The next theorem characterizes the ACTC performance, in terms of
an upper bound on the mean-square-error of each agent k in steady-
state, i.e., as i → ∞. Proofs are omitted for space limitations.

Theorem 1 (Steady-State Performance). Let w⋆ be the minimizer
of the function J(w) in (3) with weights pk = πk. Under Assump-
tions 1-4, for sufficiently small values of µ and ζ such that the ACTC
strategy is mean-square stable,2 the mean-square-error of agent k is
upper bounded as follows:

lim sup
i→∞

E∥wk,i − w⋆∥2

≤ µ ζ ·

{
1

4
Tr

((
N∑

k=1

πkRu,k

)−1( N∑
k=1

π2
kRs,k

))
︸ ︷︷ ︸

error without compression

+
1

2ν

[
N∑

k=1

π2
kωk

(
Tr(Rs,k)+2∥bk∥2

)]
︸ ︷︷ ︸

gradient noise and bias compression loss

+
ζc

ν︸︷︷︸
network error

compression loss︸ ︷︷ ︸
compression loss

}
+O(µ3/2),

(12)

2The conditions on µ and ζ for the mean-square stability of the ACTC
strategy are discussed in [24, 25].

where c is a constant (i.e., it is independent of µ) that can be com-
puted from the system parameters (including {ωk}), whose expres-
sion is omitted for space limitations. ■

Theorem 1 allows us to decompose the steady-state error of the
ACTC strategy in two main terms.

— Error without compression. This term embodies the estima-
tion error of the distributed strategy when uncompressed information
is shared. It has the same shape of the error achieved by the classical
ATC diffusion strategy [1, 30].

— Compression loss. This term corresponds to the additional
estimation error caused by the sharing of compressed information.
It can be decomposed in two further components: the gradient noise
and bias compression loss and the network error component com-
pression loss. As regards the former term, observe that in classical
quantization systems, the compression error scales with the variance
of the quantizer input. In our setting, the role of this variance is
played by two sources of variability that affect the quantizer input,
namely, the gradient noise and the bias.

The network error component is instead due to the local discrep-
ancies between the agents, i.e., to the difference between the individ-
ual agents’ iterates and a coordinated, centralized evolution. In the
classical ATC strategy, this is a higher-order term w.r.t. µ [1,29,30],
while from (12) we see that in the presence of data compression it
scales as µ and, compared with the other error terms, it is further
weighted by the stability parameter ζ.

Inspecting the compression loss in (12), we see that it depends
on structured interaction between compression resources, network
topology and difficulty of the regression problem, encoded in the
following main quantities: the local compression parameters {ωk},
the Perron weights {πk}, the gradient noise covariances {Rs,k}, and
the biases {bk}. In the next section we will show how these features
can be combined to provide an optimized allocation of the commu-
nication resources.

4. ILLUSTRATIVE EXAMPLES

We consider N = 10 agents, arranged according to the topology de-
picted in Fig. 1. Over this topology, we build a left-stochastic com-
bination matrix using the uniform averaging rule [1]. The agents
observe regressors with dimensionality M = 30 and diagonal co-
variance matrices Ru,k. The step-size is µ = 10−2 and the stability
parameter is ζ = 10−1. In the forthcoming simulations, all agents
share the same minimizer w⋆ = wo

k for all k, and use the random-
ized quantizer proposed in [14], which belongs to the class defined
by Assumption 4. We evaluate the performance of the ACTC strat-
egy by means of the network mean-square-error, namely,

1

N

N∑
k=1

E∥wk,i − w⋆∥2. (13)

Figure 1 shows that, as the bit-rate used by the agents increases, the
performance of the ACTC strategy approaches the reference perfor-
mance of the uncompressed ATC strategy [24, 25].

The quantitative relationships of the performance bound in The-
orem 1 can be exploited to distribute the communication resources
in a non-uniform manner, accounting for the peculiarities of distinct
agents. Let x = [x1, x2, . . . , xN ], where xk is the bit-rate assigned
to agent k. In view of Theorem 1, we focus on optimization of the
upper bound in (12). To facilitate the illustration of the main result,
we neglect the network error component term that has a reduced im-
pact for sufficiently small ζ, and we remove the integer constraint on



Fig. 1. ACTC network mean-square-error with uniform bit al-
location, for different values of the bit-rate, for the setting in
Sec. 4. Regressors and noises are sampled from Gaussian distri-
butions. The covariance matrices Ru,k and the noise variances
σ2
v,k are set as {4IM , 2IM , IM , 2IM , IM , IM , IM , IM , IM , IM}

and {1, 0.3, 0.1, 0.3, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1}, respectively. All
errors are estimated by means of 103 Monte Carlo runs.

the bit-rates {xk}, arriving at:

x⋆ = argmin
x∈RN

N∑
k=1

π2
kωk

(
Tr(Rs,k) + 2∥bk∥2

)
s.t.

N∑
k=1

xk = X, xmin ≤ xk ≤ xmax ∀k,

(14)

where for the compression parameter of the randomized quantizer it
is possible to find the relation [14, 18]:

ωk =
1

4

M

(2xk − 1)2
. (15)

Problem (14) can be solved exactly calling upon the Karush-Kuhn-
Tucker (KKT) conditions [32], as shown in Fig. 2. It is also possible
to gain insight on the rationale behind a given optimized allocation,
by resorting to a common approach in bit-allocation problems [9],
as we promptly show. Ignoring the box constraints xmin ≤ xk ≤
xmax, using the high-resolution approximation ωk ≈ (M/4)2−2xk ,
and solving (14) by the method of Lagrange multipliers (or by ap-
plying the arithmetic/geometric mean inequality) we get [9]:

x⋆
k = x̄+ log2

πk

πav
+

1

2
log2

dk
dav

, (16)

where
x̄ =

X

N
, dk = Tr(Rs,k) + 2∥bk∥2, (17)

and πav, dav are the geometric averages of {πk} and {dk}.
Rule (16) states that the optimal allocation is a perturbation of

the uniform average bit allocation, depending on the Perron weights
πk and the “distortion” term dk. In particular, the rule prescribes
that the assigned bit budget increases with the values of πk and dk,
which has the following useful interpretation. Agents with many
neighbors are very influential in assessing the network mean-square-
error performance, as their compressed data is employed by many
other agents to compute their minimizer — see steps (9b) and (9c)
of the ACTC strategy. This explains why a higher Perron weight πk

Fig. 2. ACTC network mean-square-error with uniform and opti-
mized bit allocation, for the setting in Fig. 1. The allocation shown
in the right plot is the solution (obtained using the KKT conditions)
to problem (14) with X = 20, xmin = 1, and xmax = 11, rounded
to the closest integer values meeting the constraints. Referring to
Fig. 1, we see that agents 1, 2, 4 have wider neighborhoods (see the
topology) and noisier data (see Ru,k and σ2

v,k in the caption). Ac-
cording to (16), these features favor the assignment of more bits.

favors the assignment of more bits. Likewise, equipping agents char-
acterized by high distortion dk with many communication resources,
reduces the compression errors that propagate across all agents’ es-
timates. Moreover, in the presence of conflicting requirements (e.g.,
high centrality and low distortion), the allocation rule (16) manages
the trade-off. Figure 2 compares the uniform allocation, xk = x̄
for all k, against the optimized allocation obtained with the KKT
conditions, when the overall budget is X = 20 bits. Without any ad-
ditional expense of communication resources, the knowledge of the
quantitative relationship between the network performance and the
agents’ attributes allows to push the learning performance closer to
the reference ATC performance, by approximately 2 dB.

5. CONCLUSION

We considered the recent ACTC diffusion strategy to solve a dis-
tributed regression problem under communication constraints. We
obtained an upper bound on the mean-square-error performance of
the algorithm. This bound was used to optimize the allocation of the
bit budget across the network agents, achieving improved learning
performance as compared to a uniform bit allocation. Future exten-
sions include the online estimation of the parameters necessary to
optimize the quantizers, a decentralized resource allocation strategy,
and the case of globally non-convex risks [33–35].
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