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ABSTRACT

This work examines the problem of learning a network graph from
signals emitted by the network nodes, according to a diffusion model
ruled by a Laplacian combination policy. The challenging regime of
partial observability is considered, where signals are collected from
a limited subset of nodes, and we wish to estimate the subgraph of
connections between these probed nodes. For the static setting where
the network graph is fixed during the estimation process, we examine
the sample complexity (number of time samples necessary to achieve
consistent learning as the network size grows) of Erdős-Rényi and
Bollobás-Riordan graphs. This complexity is almost quadratic for
the former and almost linear for the latter class of graphs. We then
examine the dynamic graph setting where the graph of latent nodes
grows over time, while the probed subset remains fixed. We show
that in this case the sample complexity can be reduced, implying
the unexpected conclusion that dynamic graphs might help topology
inference under partial observability.

Index Terms— Topology inference, partial observability, sam-
ple complexity, dynamic graphs, preferential attachment.

1. INTRODUCTION AND RELATED WORK

Network graphs are useful to describe a significant number of com-
plex systems and phenomena arising in real-world applications, in-
cluding social learning systems [1, 2], collective cognition in animal
groups [3], or “brain networks” [4]. One critical problem in network
science is the estimation of the graph topology (i.e., the connections
between nodes) from signals collected from the network nodes. This
graph learning problem has been addressed in several works before.
We refer the reader to [5] for a broad literature survey. Most works
consider the full observability setting, where signals from all net-
work nodes are available, and the static setting, where both the node
signals and the graph structure do not evolve over time. We consider
here the challenging situation where: i) signals from only a limited
subset of nodes are collected (partial observability); ii) signals at
different nodes evolve over time, with a combination matrix ruling
the information exchange between neighboring nodes; and iii) the
latent (or unobserved) network graph is allowed to grow over time.

For the case of static graphs that do not grow over time, there
exist useful works dealing with high-dimensional graphical models
with latent variables [6, 7]. However, these works do not consider
the time dynamics of the signals emitted by the nodes. For the case
where time dynamics is taken into account, there are results under
full observability [8–12], results on partial observability for graph
topologies obeying specific structural conditions [13–17], and results
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focusing on asymptotic performance guarantees over large and/or
random graphs [18–22]. Recent works address the case where the
graph is allowed to grow over time [23, 24]. These works do not ac-
count for partial observability. Moreover, their focus is to learn the
growing graphs and tracking the topology evolution dictated by the
new incoming nodes. In comparison, in our work we probe only a
partial subset, which is fixed, while the unobserved part of the net-
work grows over time. The evolution of the probed signals depends
on the entire network (i.e., on both the probed and latent nodes),
and the goal is to estimate the topology linking the probed nodes.
Our main results concern the sample complexity (i.e., the number of
samples necessary to achieve consistent learning as the network size
scales to infinity) of a graph learning strategy based on the Granger
estimator, which is a popular estimator in the context of causal in-
ference [19–22]. We first characterize the sample complexity as-
sociated with two useful models of random graphs: Erdős-Rényi
(ER) and Bollobás-Riordan (BR) graphs [25–28]. This characteriza-
tion is provided for the case where the network size is fixed. Then,
we present some experiments regarding the dynamic graph setting,
where the network size is allowed to increase over time. The results
are compared with the sample complexity arising in the static case,
with some novel and interesting trends emerging.

Notation. We use boldface font to denote random variables. If
A is a matrix, we denote its (k, ℓ)-entry by akℓ. Sets and graphs are
denoted by upper-case calligraphic letters. For an N × N matrix
A, the submatrix spanning the rows and columns indexed by a set
P ⊂ {1, 2, . . . , N} is denoted by AP, or alternatively by [A]P. The
symbols

p−→ and a.s.−−→ denote convergence in probability and almost-
sure convergence, respectively. In both cases the parameter that goes
to infinity is the network size (i.e., the number of nodes in the graph).

2. RANDOM GRAPH MODELS

An undirected graph is defined as a set of nodes (or vertices) and
a set of edges connecting some pairs of nodes. No self-loops are
permitted. A random graph with n nodes will be denoted by Gn

(bold font emphasizes randomness). One important graph descriptor
is the degree of node k, which counts the number of nodes connected
to k, that is, the neighbors of k.

We focus on two popular models of random graphs: Erdős-
Rényi [25] and Bollobás-Riordan [27, 28] random graphs. The
former model builds the graph through a sequence of independent
Bernoulli experiments: for each pair of nodes, an edge is drawn
with probability p, and independently across all pairs of nodes. The
resulting graph is homogeneous, meaning that, on average, all nodes
are treated equally.

In contrast, Bollobás-Riordan random graphs are highly inho-
mogeneous, with central nodes acting as hubs with many neighbors,



Fig. 1. One example of iterative construction of a Bollobás-Riordan
multigraph with parameter η = 3.

and with peripheral nodes having fewer connections; a dichotomy
often arising over real-world networks [29]. Bollobás-Riordan
graphs belong to the family of preferential attachment graphs [29],
and they are built in the following iterative manner. Starting from
some initial graph, at each iteration a new node is added, along
with a fixed number of edges, say η, linking this node to the current
graph. The probability that the new node is connected to an existing
node is proportional to the degree of the latter, which explains the
terminology “preferential attachment”. Note that this procedure
follows “the rich get richer” philosophy: it promotes connections
in favor of nodes that experienced a large amount of connections in
previous steps of the iterative construction. This explains why BR
graphs will end up being inhomogeneous. Note also that over BR
graphs, there is strong dependence in the edge formation process, as
opposed to the edge independence characterizing ER graphs. Let us
now illustrate more closely the BR construction.

First, this construction focuses on multigraphs, namely, graphs
where multiple self-loops and multiple edges are permitted. We de-
note by Mn a random multigraph with n nodes. The BR model
with parameter η ∈ N generates iteratively a random sequence of
multigraphs as follows — see Fig. 1. The initial multigraph M1

is a deterministic multigraph with one node and η self-loops. The
multigraph Mn is constructed starting from the previous multigraph
Mn−1 by adding the fresh node n and η new connections (edges or
self-loops). The η new connections are added sequentially. At each
step s = 1, 2, . . . , η, we build an intermediate multigraph Mn,s by
connecting n to a node randomly chosen from the set {1, 2, . . . , n}.
We denote by vn,s the particular node that becomes connected to
n through the edge introduced at step s, and by d

(k)
n,s the degree of

node k in the intermediate multigraph Mn,s. We adopt the conven-
tion that the degree of a node in a multigraph is the number of edges
connected to the node plus twice the number of its self-loops [30].
The description of the multigraph construction is completed by as-
signing the probability that a particular node k ∈ {1, 2, . . . , n} is
picked:

P [vn,s = k|Mn,s−1] =



d
(k)
n,s−1

1 +
∑n

ℓ=1 d
(ℓ)
n,s−1

, k ̸= n,

1 + d
(n)
n,s−1

1 +
∑n

ℓ=1 d
(ℓ)
n,s−1

, k = n.

(1)

Rule (1) implements the preferential attachment concept, since the
new node n is more likely to be connected to nodes featuring higher
degrees in Mn;s−1. The final Bollobás-Riordan graph Gn is ob-
tained from the multigraph Mn by simply removing all self-loops
and by replacing multiple edges with a single edge [27, 28].

2.1. Maximum Degrees

A graph descriptor that plays an important role in our treatment is
the maximum degree. The maximum degree over a graph Gn is:

µn ≜ max
k=1,2,...n

d(k)
n [maximum degree]. (2)

In particular, it is of interest to characterize how the maximum
degree scales asymptotically as n → ∞. This scaling law can
be precisely characterized for both ER graphs [5, 21, 30] and BR
graphs [22, 31]. We have that:

µn

np

p−→ 1 [ER graphs],
µn√
n

a.s.−−→ µ [BR graphs], (3)

where we recall that p is the connection probability of the ER graph,
and where µ is a certain positive random variable [28].

3. STATIC GRAPHS

In this section we illustrate the static setting where the network size
is fixed beforehand. Denoting this fixed size by N , and given an
underlying graph GN , the network nodes emit signals that evolve
according to a diffusion model, a.k.a. first-order vector autoregres-
sive (VAR) model [32]. More precisely, each node k = 1, 2, . . . , N ,
at time t = 1, 2, . . . , is driven by a stochastic input source xk,t and
produces the output signal yk,t according to the linear model:

yk,t =

N∑
ℓ=1

akℓ yℓ,t−1 + xk,t ⇔ yt = Ayt−1 + xt, (4)

where the N × 1 vectors xt and yt collect the entries xk,t and yk,t,
and where A = [akℓ] is a Schur stable matrix collecting the non-
negative combination weights akℓ. We stick to a popular choice in
distributed optimization and learning, namely, the Laplacian com-
bination policy (so named since it is related to the graph Lapla-
cian [33, 34]), which is defined as follows. For some positive pa-
rameters ρ < 1 and λ ≤ 1, and for k ̸= ℓ:akℓ = 0, (k, ℓ) unconnected over GN ,

akℓ =
ρλ

1 + µN
, (k, ℓ) connected over GN ,

(5)

with akk = ρ −
∑

ℓ ̸=k akℓ. We see that the combination weights
in (5) reflect the network topology, with null weights corresponding
to unconnected node pairs, and positive weights to connected pairs.
Note also that the positive weights are inversely proportional to (1
plus) the maximum degree of the graph.

Once a graph realization is fixed, the combination matrix be-
comes deterministic, and the system in (4) evolves according to the
randomness of the initial state y0 and the input signals xk,t. The
latter random variables have zero mean and unit variance, are inde-
pendent and identically distributed (i.i.d.) both spatially (index k)
and temporally (index t), and they are also independent of the graph.
The initial vector y0 has finite second moment, is independent of
signals xk,t, but it can depend on GN .

3.1. Partial Observability

In several applications of practical interest, it is seldom possible to
collect signals from all nodes, whereas it is more likely to have ac-
cess only to a subset of nodes. Under this regime of partial observ-
ability, given an observation time interval t = 1, 2, . . . , T , and a
probed subset P, the collection of available signals is:

YP(T,N) ≜ {yk,t : k ∈ P, t = 1, 2, . . . , T }. (6)



In this work we focus on the following graph learning problem un-
der partial observability. We want to estimate the topology of the par-
tial graph GP (that is, the subgraph of nodes belonging to P) starting
from the collection YP(T,N). In the static setting, the graph has
fixed dimension N from the beginning of the time interval. In or-
der to assess the performance of a graph estimator, one standard ap-
proach is to consider the asymptotic regime of large network sizes.
Under this regime, it is necessary to establish how the number of
samples T = TN must scale with the network size to provide faith-
ful graph learning. The scaling law followed by TN characterizes
the so-called sample complexity of the estimator. In other words, the
value TN quantifies how many samples are needed to achieve good
performance for a fixed network size N .

3.2. Granger Estimator

We introduce the covariance matrix and the one-lag covariance ma-
trix corresponding to model (4), which are, respectively:

R0(t) = E
[
yty

⊤
t

∣∣∣A]
, R1(t) = E

[
yty

⊤
t−1

∣∣∣A]
. (7)

The bold notation for the covariance matrices is used because of the
randomness of the underlying combination matrix A. Exploiting
(4), it is straightforward to show that [32]:

R1(t) = AR0(t− 1) ⇒ AP = [R1(t)R
−1
0 (t− 1)]P. (8)

Unfortunately, under partial observability we can compute the co-
variance matrices only relative to the probed subset, which prevents
the computation of the inversion formula in (8), owing to unavail-
ability of signals from the latent nodes. It is nevertheless meaningful
to compute the following Granger estimator or predictor:

ÂP(t) = [R1(t)]P([R0(t− 1)]P)
−1, (9)

which provides the best linear prediction of the future samples from
the past one-lag samples collected over the probed subset. In the
static case, the covariance matrices converge as t → ∞, such that
we can introduce the estimator:

ÂP = [R1]P([R0]P)
−1, (10)

where Rj = limt→∞ Rj(t), for j = 0, 1. Actually, to estimate the
topology of the subgraph on P from the data, we will employ the
sample Granger estimator:

ÂP(T,N) =
[
R̂1(T,N)

]
P

([
R̂0(T,N)

]
P

)−1

, (11)

which replaces the true covariance matrices used in (10) with
the sample covariance matrices that we denote by R̂0(T,N) and
R̂1(T,N). It is also useful to consider the following regularized
version of (11). For k ∈ P, the k-th row of the matrix estimator
ÂP(T,N) is a solution to the following optimization problem:

min
x

∥∥∥x [
R̂0(T,N)

]
P
−

[
R̂1(T,N)

]
kP

∥∥∥
∞

, subject to ∥x∥1 ≤ 1,

(12)
where x ∈ R|P| is a row vector, and, for a matrix M , the nota-
tion [M ]kP denotes the k-th row of the submatrix MP. Note that,
when the non-regularized Granger estimator (11) exists (i.e., when
the sample covariance is invertible) and fulfills the bounded-norm
constraint in (12), it coincides with the regularized estimator.

Once we have a matrix estimator, the underlying graph on P
can be estimated by means of a clustering algorithm that separates
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Fig. 2. Sample complexity of ER and BR graphs. We use the sam-
ple Granger estimator (11), followed by the modified k-means algo-
rithm proposed in [21]. The curves represent the number of samples
needed to attain 90% of the probability of correct graph learning
achieved by the ideal estimator in (10) (which uses the exact co-
variance matrices, i.e., it would need an infinite number of samples).
The ER graphs have connection probability p = 0.5. The BR graphs
have parameter η = 3. The number of Monte Carlo runs is 103. For
the Laplacian combination policy we use ρ = 0.5 and λ = 0.75.

the matrix-estimator entries in two classes (connected/unconnected).
Useful algorithms are the classical k-means algorithm [35] (run with
k = 2) and one variation thereof proposed in [21] which selects,
among the possible stationary points of the k-means algorithm, the
one that maximizes the distance between clusters’ centroids.

It is possible to characterize the sample complexity of the
Granger estimator when the underlying graph is Erdős-Rényi or
Bollobás-Riordan, as stated in the next theorem, whose proof is
omitted for space constraints. Details for the ER and BR models can
be found in [21] and [22], respectively.

Theorem 1 (Sample Complexity for ER and BR Graphs). Con-
sider the diffusion model (4) when the input source is Gaussian and
the initial state (conditioned on a realization of GN ) is distributed
according to the stationary Gaussian distribution of (4). Let the car-
dinality of the probed subset scale with N such that |P|/N → ξ > 0.
Consider the following sample-complexity laws:

TN ∝ N2 logN [ER graphs], TN = ωNN logN [BR graphs],
(13)

where ωN is a positive sequence diverging in an arbitrary fashion.
Then, the regularized Granger estimator in (12), followed by the
modified k-means algorithm proposed in [21], learns the subgraph
of probed nodes with probability converging to 1 as N → ∞. ■

In Fig. 2, we evaluate empirically the number of samples needed
to attain a probability of correct learning equal to 90% of the proba-
bility achieved by the ideal (i.e., with an infinite number of samples)
Granger estimator in (10). We see that the displayed scaling laws
match well the predictions of Theorem 1: the sample complexity is
almost quadratic for ER graphs, and almost linear for BR graphs.

The main reason behind this behavior is tightly coupled with the
behavior of the maximum degree of the graph. According to the
Laplacian matrix in (5), the growth of the maximum degree deter-
mines the way the nonzero entries of the matrix vanish as N → ∞.
The smaller these nonzero entries are, the higher the precision that is
necessary for the estimators to distinguish the nonzero entries from
the zero entries. As a result, a faster increase of the maximum degree
corresponds to an increase of the number of samples. This argument
is made rigorous in the proof of Theorem 1 to show that the sample
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Fig. 3. Left plot. Dynamic versus static graphs. Middle plot. ER graphs with connection probability p = 0.5. In the dynamic case, the
network size scales as Nt ∼ t4/5. Right plot. BR graphs with parameter η = 3. In the dynamic case, the network size scales as Nt ∼ t3/2.
In both experiments: we use the sample Granger estimator (11), followed by the modified k-means algorithm proposed in [21]; the probed
subset is {1, 2, . . . , 10}; the parameters of the Laplacian combination matrix are λ = 0.75 and ρ = 0.5; and we use 103 Monte Carlo runs.

complexity goes (up to a logN factor arising from a union bound
on the cardinality of P) as the square of the maximum degree and,
hence, quadratically in the ER case, and linearly in the BR case.

4. DYNAMIC GRAPHS

We now consider the dynamic setting where the latent graph grows
as time t progresses. Specifically, we assume the network size in-
creases according to some law Nt, and modify (4) to:

yt = At yt−1 + xt, (14)

where the combination matrix At is obtained by using (5) over the
dynamic graph GNt

. For example, when we consider a BR model,
GNt

can be constructed according to the preferential attachment rule
described in Sec. 2, where a new node is added at each time instant
when Nt increases by 1. We assume that the probed subset P is fixed,
whereas the graph involving the latent nodes (including connections
between latent and probed nodes) grows over time. The critical dif-
ference that distinguishes the dynamic setting from the static setting
considered in Sec. 3 is illustrated in the left panel of Fig. 3, where
probed nodes are displayed in cyan, while latent nodes in black. In
the static setting (bottom diagram in the left panel), a fixed graph
underlies the diffusion process for the entire observation interval
during which topology inference is performed. In contrast, in the
dynamic setting (top diagram) the latent graph grows over time.

We consider graph growths of the form Nt = N0 +α tβ , where
N0 is some initial graph size. Note that there is a connection between
the graph growth Nt and the sample complexity. Indeed, saying that
the network size at time t is Nt ∼ tβ means that the number of
samples employed to estimate a graph of size N is TN ∼ N1/β .
Therefore, the following remarkable coupling between sample com-
plexity and graph growth emerges in the dynamic setting. If a certain
minimum sample complexity TN is necessary to learn faithfully, this
means that a maximum graph growth is permitted. In other words,
sample complexity places a limit on the maximum allowable velocity
at which the dynamic graph can grow over time. Building on the
results available from Theorem 1, we would expect the following
graph growth laws:

Nt ∼ t1/2 [ER graphs], Nt ∼ t [BR graphs]. (15)

In Fig. 3 we test instead the following alternative laws:

Nt ∼ t4/5 [ER graphs], Nt ∼ t3/2 [BR graphs]. (16)

The exponents 4/5 and 3/2 are based on numerical experiments, as
there is currently no counterpart of Theorem 1 available for the dy-
namic case. Note that in (16) we increase the velocity at which the
graph grows, for both the ER and the BR models. As was mentioned,
increasing the velocity corresponds to reducing the number of sam-
ples, which, inverting the relations in (16), is TN ∼ N5/4 < N2

for ER graphs and TN ∼ N2/3 < N for BR graphs. Remarkably,
the middle and right plots in Fig. 3 reveal that, despite the increased
velocity (i.e., the reduced number of samples), the graph learning
problem becomes feasible. In contrast, in the static case (where the
graph has constant size N = 200, which is the size correspond-
ing to the end of the observation window for the dynamic case), the
performance is not good since we are violating the prescriptions of
Theorem 1. It is worth reporting that we have also tested the di-
rected counterparts of ER graphs (a.k.a. binomial graphs) and of
BR graphs,1 obtaining results similar to those shown in Fig. 3.

One conclusion arising from the obtained results is that, under
partial observability, application of the Granger estimator – in our
experiments we implemented the sample version in (11) – over dy-
namic graphs can deliver superior performance as compared to the
static case. This is a remarkable and perhaps unexpected behavior.
It is possible to provide an interpretation of this behavior based on
Theorem 1. Even though this theorem characterizes only the static
case, its proof reveals that the main factor determining the sample
complexity is the magnitude of the nonzero entries in the combina-
tion matrix: the smaller they are, the higher the sample complexity
will be. On the other hand, the nonzero entries are inversely pro-
portional to the maximum degree of the graph, which increases with
the network size, leading to an increase in sample complexity. Un-
der a static model, the system works during the entire observation
interval with the largest graph. In contrast, under the dynamic model
the system works with growing graphs and, hence, on average the
network size is smaller (i.e., more favorable) than the size consid-
ered in the static case. This is one reason why the dynamic case
looks less demanding in terms of samples, ultimately implying that
a faster growth is permitted for the sequence of dynamic graphs.

1In a binomial graph, directed edges corresponding to pairs (k, ℓ) and
(ℓ, k) are drawn independently. Directed BR graphs can be constructed
by considering preferential-attachment probabilities based on in-degrees and
out-degrees to build directed edges.
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