
Decentralized Semi-supervised Learning
over Multitask Graphs

Maha Issa†, Roula Nassif†‡, Elsa Rizk§, Ali H. Sayed§
†American University of Beirut, Lebanon

Email: mgi03@mail.aub.edu
‡University Côte d’Azur, I3S Laboratory, CNRS, France

Email: roula.nassif@unice.fr
§Ecole Polytechnique Fédérale de Lausanne, Switzerland

Email: {elsa.rizk, ali.sayed}@epfl.ch

Abstract—In network semi-supervised learning problems, only
a subset of the network nodes is able to access the data labeling.
This paper formulates a decentralized optimization problem
where agents have individual decision rules to estimate, subject to
the condition that neighboring agents (classifiers) are more likely
to have similar labels. To promote such relationships, we propose
to add to the aggregate sum of individual costs a graph regu-
larization term that allows to penalize the differences between
the labels at neighboring agents. Streaming data is assumed, and
therefore, the stochastic (sub-)gradient method is used to solve the
regularized problem. We provide conditions that guarantee the
stability and convergence of the proposed algorithm. Simulation
results show that collaboration among neighboring agents leads
to better classification results by decreasing the probability of
error and by improving the convergence rate.

Index Terms—Decentralized learning and classification, semi-
supervised learning over graphs, graph regularization.

I. INTRODUCTION

Decentralized inference over graphs has received consider-
able attention over the past two decades. With some excep-
tions, the large majority of these works focuses on consensus
and diffusion optimization by considering variations of the
standard optimization problem [1]–[3]:

wo = argmin
w

NX

k=1

Jk(w), (1)

where N is the total number of nodes in the network and
Jk(w), which depends on an M -dimensional parameter vector
w 2 RM , represents a private cost function at agent k.
Assuming that agents can communicate over a network rep-
resented by a graph G = (V, E), where V = {1, . . . , N}

denotes the set of nodes and E denotes the set of edges, the
agents in a decentralized learning setting seek to estimate wo

in (1) collaboratively by performing local computations and by
exchanging estimates with their neighbors. The neighborhood
of agent k is denoted by Nk; it consists of all agents that are
connected to k by an edge.

Unlike traditional distributed environments, devices (also
referred to as agents or clients) in modern machine learning
applications generate data in a highly heterogeneous and

The work of R. Nassif was supported in part by ANR JCJC grant ANR-
22-CE23-0015-01 (CEDRO project) and AUB URB grant.

distributed manner (since the data on a given device is based
on the usage of the device by a particular client). Such het-
erogeneous statistical networks require more complex models
and flexible algorithms than single-task implementations since
their agents may need to estimate and track distinct, though
related, tasks (or objectives) simultaneously. Previous efforts
in this direction attempted to solve variations of the following
regularized multitask learning formulation [4]:

W? = argmin
W

NX

k=1

Jk(wk) + ⌘R(w1, . . . , wN), (2)

where W = col{w1, . . . , wN} denotes the collection of pa-
rameter vectors from across the network, wk 2 RM is the
parameter vector or the task at agent k, ⌘ > 0 is a regulariza-
tion strength, and R(·) is a regularization function promoting
the relationships between the tasks. Examples of multitask
regularizers include graph Laplacian regularization to promote
graph signal smoothness [5], [6], network Lasso regularizer to
promote graph clustering [7], and `1-norm sparsity-based reg-
ularizers to promote graph piecewise constant transitions [8],
[9].

In this paper, we focus on decentralized learning over
heterogeneous statistical graphs–see Fig. 1. We assume that
at each time instant i, agent k is collecting an Mk ⇥ 1 feature
vector hk,i 2 RMk , which corresponds to a collection of ob-
served attributes in a classification problem. We are interested
in a heterogeneous system setting as in [10], [11] where agents
might have access to different types and numbers of attributes
or features. For instance, in weather sensor networks, some
sensors might observe measurements related to wind speed,
temperature, etc., while others might not have access to wind
speed measurements or might observe another set of features.
Such heterogeneities can lead to “different” learning abilities
across the network. In settings where some agents observe a
large number of (relevant) data while others observe a small
number of (relevant) features, agents with limited learning
abilities can benefit considerably from cooperating with their
neighbors since they are more likely to observe similar labels.
For instance, in weather forecasting applications [5], if it is
raining in a given city on a given day, it is more likely

Agents with
similar color are

observing the
same label

Feature vectors: entries with
similar color correspond to the

same observed feature type

Agents with a black
color are unlabelled

Fig. 1: Illustration of the various sources of heterogeneity in
the data acquisition processes.

that rain is also occurring in adjacent cities on this same
day. However, problem formulation (2) might not lead to a
meaningful cooperation rule since, in the heterogeneous setting
of Fig. 1, instead of promoting the relationships between the
tasks {wk}, we need to promote the relationships between
the labels {�k}. Besides feature types and sizes, we assume
another source of heterogeneity in the data acquisition process.
Particularly, we assume that some agents might have access
to unlabeled data points preventing them from learning their
classification rules at a given time instant. This scenario arises
in applications where labeling at some agents is costly and
requires human assistance, or in applications where some
agents are not willing to use their own labels in the training
process due to privacy concerns.

The problem of labeling a partially labeled graph has
already been considered in the machine learning community,
with the so-called semi-supervised learning on graphs [12]–
[15]. Within this community, the graph represents the similar-
ities between data points or feature vectors, and closer data
points tend to have similar class labels. Several centralized
strategies have been derived under the assumption that all data
are available beforehand. In [12] and [13], graph Laplacian
regularization is used to solve the partially labeled datasets
classification problem, while in [14] a label propagation al-
gorithm is derived. Non-smooth graph-based regularization
is used in [16] to encourage the sparsity of the differences
between the log odd ratios at neighboring nodes. In settings
where agents have access to streaming data and are only
allowed to exchange information with other agents over a
communication graph, new strategies for jointly learning the
agents decision rules and performing label propagation must
be developed.

This paper focuses on decentralized semi-supervised multi-
task learning in streaming and heterogeneous data acquisition
settings (as illustrated in Fig. 1). Each agent k is interested in
estimating its own decision rule wo

k under the prior information
that labels {�k} at neighboring agents are more likely to be
the same. To promote the labels’ relationships, we propose
to add to the cost function Jk(wk) a regularization term

consisting of a weighted sum of `1-norm (or squared `2-norm)
of the differences between the labels. The proposed learning
algorithm is presented in Sec. II and its stability is studied in
Sec. III. The simulation results are presented and discussed in
Sec. IV. The conclusion is presented in Sec. V.

II. DECENTRALIZED SEMI-SUPERVISED MULTITASK
LEARNING

In this work, we assume that each agent k is interested
in solving an online binary classification problem. We first
assume the supervised setting where, at every time instant i,
agent k is observing a feature vector hk,i 2 RMk and the
corresponding class label �k(i) = ±1. The objective at agent k
is to construct a classifier to predict the label �k based on the
knowledge of the feature vector hk. To that end, agent k can
in principle use a logistic regression machine [2], [17]–[19]
that seeks an Mk ⇥ 1 vector wo

k, such that the predicted label
is b�k(i) = sign(h>

k,iw
o
k) and

wo
k , argmin

wk

Jk(wk), (3)

with

Jk(wk) , E ln
⇣
1 + e��k(i)h

>
k,iwk

⌘
+

⇢

2
kwkk

2, (4)

where the expectation is computed over the distribution of
the random data {hk,i,�k(i)} and where ⇢ is a positive
regularization parameter. Note that, while logistic regression
costs are considered to illustrate the semi-supervised multitask
learning problem, the decentralized approach developed in the
section can be applied to a wide class of individual costs. For
generalization purposes, we conduct in Sec. III a mean-square-
error analysis of the proposed approach for general costs
satisfying Assumption 2 further ahead. We let A denote the
N⇥N symmetric adjacency matrix, which describes the graph
structure and the connections. The (k, `)-th entry ak` � 0 of
A reflects the strength of the relation between nodes k and `.
For instance, if node ` is connected to node k (i.e., ` 2 Nk)
and is more likely to observe the same label as node k, then
the weights ak` and a`k are more likely to be large. If there
is no edge connecting nodes k and `, then ak` = 0.

In heterogeneous data acquisition settings (such as the ones
depicted in Fig. 1), agents with a small number of (relevant)
features are probably not able to make decisions on their
own. Additionally, even if the number of observed features is
enough, some agents may be affected by noise, and others
may not have access to their true labels, preventing them from
properly estimating their decision rules. These facts motivate
us to seek a meaningful cooperation rule that allows agents
with limited learning abilities to benefit from the learning
process of their neighbors. To that end, two regularization
functions will be investigated in the following.

Label Lasso regularization: If we let:
b�i = col{b�1(i), . . . , b�N (i)}, (5)

denote the collection of predicted labels from across the
network, we can derive the cooperation rule by formulating

a regularized multitask optimization problem that employs the
total variation of b�i [20]:

TV =
X

(k,`)2E

ak`E|b�k(i)� b�`(i)|, (6)

as a regularizer, where the expectation is computed over
the distribution of the random variables {b�k(i)}. In settings
where neighboring nodes are more likely to be observing
similar labels, a small total variation is expected over the
graph. Intuitively, given that the weights are non-negative,
the total variation (6) is expected to be small if nodes with a
large weight ak` on the edge connecting them have similar
label values {b�k(i), b�`(i)}. The non-smooth regularizer (6)
is suitable for clustered-network applications where agents
are decomposed into clusters, and within each cluster, agents
are observing the same label.

Graph Laplacian regularization: This regularizer is suitable
for applications where the smoothness of the signal w.r.t. the
underlying graph must be promoted. To that end, if we let
L = diag{A1N} � A denote the Laplacian matrix, then the
smoothness of the graph signal b�i can be measured in terms
of the quadratic form of the graph Laplacian [5], [21]:

S = E
h
b�
>
i Lb�i

i
=

1

2

X

(k,`)2E

ak`E (b�k(i)� b�`(i))
2 , (7)

The smaller S is, the smoother b�i on the graph is.

Now given the above possibilities for regularization, and
motivated by the previous discussion, we propose to solve the
following optimization problem at each agent k:

w?
k , argmin

wk

Jk(wk) + rk
�
wk, {w`}

�
, (8)

with

rk
�
wk, {w`}

�
, ⌘

X

`2Nk

ak`Ef(b�k(i)� b�`(i)), (9)

where the expectation is computed over the distribution of
the random variables {b�k(i)} and where ⌘ is a positive
regularization parameter that ensures a tradeoff between fi-
delity to the measurements and the prior information on the
relationships between the labels. The function f : R ! R
can be selected as the absolute value function f(x) = |x| in
sparsity promoting settings such as (6) and as the quadratic
function f(x) = 1

2x
2 in smoothness promoting settings such

as (7). Since the function f(·) can be non-differentiable,
we shall employ the sub-gradient approach [19], [22] to
solve problem (8). When logistic regression is employed, the
predicted label is expressed as b�k(i) = sign(h>

k,iwk). For
mathematical tractability, we shall replace the non-smooth
sign(·) function by a smooth approximation given by the
hyperbolic tangent function tanh(·) [23]. Therefore, instead of
solving (8), agent k solves the following optimization problem:

argmin
wk

Jk(wk) + erk
�
wk, {w`}

�
, (10)

Fig. 2: Sign function and its hyperbolic tangent approxima-
tions.

where:

erk
�
wk, {w`}

�
, ⌘

X

`2Nk

ak`Ef(tanh(ch>
k,iwk)�tanh(ch>

`,iw`)),

(11)
and the constant c controls the slope of the tanh(·) function–
see Fig. 2.

Since the distribution of the random data {hk,i,�k(i)} is
unknown, agent k will need to learn directly from the observed
data by replacing the true gradient (and subgradient) vectors
by their stochastic approximations. By using the gradient (and
sub-gradient) vectors of the loss functions as an approxima-
tion, we arrive at Algorithm 1 for solving (10). Agent k
starts with wk,�1, an initial random guess for wo

k in (3).
The semi-supervised setting is taken into account through the
binary variable ✏k(i) that is equal to 1 if agent k is able
to access its true label at iteration i, and 0 otherwise. At
every iteration i, agent k receives the feature vector hk,i. It
also receives the class label �k(i) when ✏k(i) = 1. Then, it
performs two steps–see Algorithm 1. In the first step (15),
which is referred to as the self-learning step, agent k updates
its estimate wk,i�1 by stepping in the opposite direction of
the stochastic approximation for the gradient of the risk Jk(·)
defined in (4), scaled by a small positive step-size µ [2]. We
employ the following approximation:

\rwkJk(wk) = �
�k(i)hk,i e

��k(i)h
>
k,iwk

1 + e��k(i)h
>
k,iwk

+ ⇢wk. (12)

Note that the variable ✏k(i) is added to this step since the gra-
dient approximation cannot be computed when the label is not
observed (i.e., when ✏k(i) = 0). In the second step (16), which
is referred to as the social learning step, agent k collaborates
with its neighbors ` 2 Nk by stepping in the opposite direction
of the stochastic approximation of the subgradient (or gradient)
vector of the regularizer erk

�
· , { `,i}

�
defined in (11). Note

that, in the sparse case (i.e., when f(x) = |x|), we employ the

Algorithm 1: Logistic semi-supervised learning over mul-
titask graphs

Initialize: wk,�1 for every agent k;
for every iteration i � 0 do

for every agent k do
collect the feature vector hk,i;
set ✏k(i) to 1 if a label �k(i) is available, and to 0

otherwise;
 k,i = wk,i�1 � µ✏k(i)\rwkJk(wk,i�1)

(15)

wk,i = k,i � µ \@wkerk
�
 k,i, { `,i}`2Nk

�

(16)

where in the sparse case:

\@wkerk
�
 k,i, { `,i}`2Nk

�
=

⌘
P

`2Nk

ak`chk,i

�
1� tanh2

�
ch>

k,i k,i

��
⇥

sign
�
tanh

�
ch>

k,i k,i

�
� tanh

�
ch>

`,i `,i

��

(17)

and in the smooth case:

\@wkerk
�
 k,i, { `,i}`2Nk

�
=

⌘
P

`2Nk

ak`chk,i

�
1� tanh2

�
ch>

k,i k,i

��
⇥

�
tanh

�
ch>

k,i k,i

�
� tanh

�
ch>

`,i `,i

��

(18)
end

end

following subgradient approximation [24, p. 42]:

\@wkerk(wk, w`)= ⌘
X

`2Nk

ak`chk,i

✓
1�

⇣
tanh

⇣
ch>

k,iwk

⌘⌘2
◆
⇥

sign
⇣
tanh

�
ch>

k,iwk

�
� tanh

�
ch>

`,iw`

�⌘
,

(13)
which results in the combination step (17) in Alg. 1, and in
the smooth case (i.e., when f(x) = 1

2x
2), we employ the

following gradient approximation:

\@wkerk(wk, w`) = ⌘
X

`2Nk

ak`chk,i

✓
1�

⇣
tanh

⇣
ch>

k,iwk

⌘⌘2
◆
⇥

⇣
tanh

�
ch>

k,iwk

�
� tanh

�
ch>

`,iw`

�⌘
,

(14)
which results in the combination step (18) in Alg. 1. According
to (17) and (18), agent k needs to collect from its neighbors ` 2
Nk the scalar values

�
tanh

�
ch>

`,i `,i

�
to perform step (16).

These values can be interpreted as the intermediate predictions
of the labels at neighboring agents.

Before proceeding, it should be noted that graph regu-
larization was previously considered in [10] to promote the
labels relationships in a decentralized context. The current
work, however, differs from [10] in four ways. First, the graph
Laplacian regularization (7) was applied in [10] to the inner
products {h

>
k,iwk} instead of the predicted labels {b�k(i) ⇡

tanh(ch>
k,iwk)}. Second, the semi-supervised setting was not

considered in [10] where it was assumed that all agents have
access to their true labels during the learning process. Third,
the non-smooth network Lasso regularizer was not considered
in [10]. Finally, instead of using the rule sign(h>

k,iwk,i) for
label prediction, the approach in [10] proposed to set the final
label as the average of the neighborhood predicted labels.

III. STABILITY ANALYSIS

We will now examine the mean-square-error stability of
Alg. 1 under the following assumption on the random variable
✏k(i).

Assumption 1 The (semi-supervised modeling) variable ✏k(i)
is assumed to be Bernoulli randomly distributed, i.e.:

✏k(i) =

(
1, with probability qk,
0, with probability 1� qk,

(19)

with 0 < qk  1. It is also assumed that ✏k(i) is independent
of all the other random mechanisms in the networked system.

For each node k, we define the error vector ewk,i and the
intermediate error vector e k,i as

ewk,i , w�
k �wk,i, e k,i , w�

k � k,i, (20)

respectively. We also define the gradient noise vector sk,i(·) as
the difference between the true gradient and its approximation
at iteration i, namely,

sk,i(w) = rwkJk(w)� \rwkJk(w). (21)

Observe that the gradient approximation can be expressed as:

\rwkJk(wk,i�1) = rwkJk(wk,i�1)� sk,i(wk,i�1). (22)

Now, by using the mean-value theorem for real arguments [2],
we can write:

rwkJk(wk,i�1)�rwkJk(w
�
k) = �Hk,i�1 ewk,i�1, (23)

where

Hk,i�1 ,
Z 1

0
r

2
wk

Jk(w
�
k � tewk,i�1)dt. (24)

By combining (22) and (23), and by subtracting w�
k from both

sides of (15) and (16), we obtain:

e k,i = (IMk � µ✏k(i)Hk,i�1)ewk,i�1 + µ✏k(i)rwkJk(w
�
k)

� µ✏k(i)sk,i(wk,i�1), (25)

ewk,i = e k,i + µ\@wkerk
�
 k,i, { `,i}

�
. (26)

Let ewi = col{ewk,i}
N
k=1 denote the network error vector.

Substituting (25) into (26), we get

ewi = Bi�1 ewi�1 + µEib� µEisi + µri, (27)

where

Hi�1 , diag{Hk,i�1}
N
k=1, (28)

Bi�1 , I � µEiHi�1, (29)
b , col{rwkJk(w

�
k)}

N
k=1, (30)

Ei , diag{✏k(i)IMk}
N
k=1, (31)

si , col{sk,i(wk,i�1)}
N
k=1, (32)

ri , col
n
\@wkerk

�
 k,i, { `,i}

�oN

k=1
. (33)

In the following, and for generalization purposes, we analyze
Alg. 1 for twice differentiable costs {Jk(·)} and gradient
noise processes {sk,i(·)} satisfying the following assumptions,
which are commonly used in the literature [2]. It can be shown
that these assumptions are satisfied by the logistic regression
costs in (4) and by the gradient approximation (12).

Assumption 2 The Hessian matrix function r
2
wk

Jk(wk) is
bounded from below and above as follows:

0 < �k,minIMk  r
2
wk

Jk(wk)  �k,maxIMk , (34)

where �k,min and �k,max are the smallest and largest eigen-
values of the Hessian matrix at agent k, respectively.

Assumption 3 The gradient noise process defined in (21) is
assumed to satisfy the following conditions for 1  k  N :

E[sk,i(wk) | F i�1] = 0, (35)

E[ksk,i(wk)k
2
| F i�1]  �2

kkwkk
2 + �2

s,k, (36)

for some �2
k � 0, �2

s,k � 0, and where F i�1 denotes the
collection of the past iterates {wk,j | 8 k = 1, ..., N and j 

i� 1}.

Theorem 1 Assuming that the components of the feature
vectors hk,i are bounded, and under Assumptions 1, 2, and 3,
if the step-size parameter µ satisfies:

µ <
2min1kN qk�k�

min1kN qk�k

�2
+ �2

q,max

, (37)

where:

�k ,
(
�k,min, if |1� µqk�k,min| � |1� µqk�k,max|

�k,max, otherwise
,

(38)

�2
q,max , max

1kN
qk�

2
k, (39)

with �
2
k = 2�2

k , then in the limit it holds that:

lim sup
i!1

Ekewik
2
 O(µ) +O(µ⌘2) +O(⌘). (40)

That is, for large i, and for a small enough µ, Alg. 1 is stable
and converges in the mean-square-error sense.

Proof. The proof is omitted due to space limitations. The
arguments are along the lines developed in [2], [5], [8], [25]
for multitask [5], [8] and single-task [2], [25] learning with
proper adjustments to handle the semi-supervised scenario.⌅

Fig. 3: Clustered network structure (agents with the same color
observe the same label).

IV. EXPERIMENTAL RESULTS

A. Synthetic data experiments
Two experiments are conducted with the network structure

generated using the Stochastic Block Model [26], and the
graph parameters chosen such that N = 50 nodes, divided
equally into two clusters. The probability of connection be-
tween nodes in the same cluster is set to 0.2, while the proba-
bility of inter-cluster connection is 0.01. The edge weights are
random numbers, where the intra-cluster edge weights follow
a normal distribution N (2, 0.2) while the inter-cluster edge
weights are small random numbers between 0 and 0.001. The
resulting network is illustrated in Fig. 3. At every iteration, the
true labels �k(i) are generated by a random choice between
1 and �1 for agents in the first cluster, and the opposite label
is assigned for agents in the second cluster. Agents observe
different numbers of features with the number of features Mk

at agent k chosen randomly from a discrete set of values
ranging between 1 and 5. The m-th entry of the feature vector
hk,i is generated according to the following equation:

[hk,i]m = �k(i).ek(i) + vk(i), (41)

where ek(i) and vk(i) are randomly generated from the
Gaussian distributions N (m, 0.5) and N (0, 1), respectively.
We set µ, c, and ⇢ equal to 0.01, 10, and 0.05, respectively.

Experiment 1: This experiment is conducted by assuming
that, within each cluster, only one node is observing a label
(i.e., its probability qk is set to 1, while the probability of the
remaining nodes is 0). Every agent k is tested on a separate
validation set of J = 100 samples at every iteration. Figure 4
reports the validation loss calculated according to:

VL(i) =
1

2N

NX

k=1

0

@ 1

J

JX

j=1

|�k(j)� sign(h>
k,jwk,i)|

1

A . (42)

The results are averaged over 20 Monte-Carlo runs. For ⌘ = 0
(non-cooperative case), the validation error remains constant
at approximately 0.48 during the learning process due to the
fact that uninformed nodes are not able to learn on their own

Fig. 4: Experiment 1. (Left) Sparsity promoting regularizer
(f(x) = |x|). (Right) Smooth graph regularizer (f(x) = 1

2x
2).

Fig. 5: Experiment 2. (Left) Sparsity promoting regularizer
(f(x) = |x|). (Right) Smooth graph regularizer (f(x) = 1

2x
2).

since their true labels are not accessible. However, through
cooperation (by setting ⌘ = {0.001, 0.01}), the validation
error decreases considerably in both, `1- and squared `2-norm,
settings.

Experiment 2: This experiment is conducted by assuming
that each agent in the network is observing its true label with
a probability qk = 0.1. The results are shown in Fig. 5.
In a random sampling setting, no significant difference is
observed between the steady-state validation losses of the non-
cooperative (⌘ = 0) and the cooperative (⌘ = {0.001, 0.01})
implementations. Nevertheless, a key observation is that co-
operation improves the convergence rate.

B. Real data experiments

We test Alg. 1 on the weather dataset considered in [5].
The dataset corresponds to a collection of daily measurements
(mean temperature, mean wind speed, rain or snow occurence,
etc.) taken from 2004 to 2017 at 139 weather stations located
around the continental United States. The objective at each
weather station is to predict whether it will rain (or snow)
or not based on five daily collected measurements (mean
temperature, mean dew point, mean visibility, mean wind
speed, and maximum sustained wind speed). We construct
an undirected weighted graph of N = 139 nodes by using
the same approach as in [5]. To model the heterogeneous
setting, the feature vector hk,i at agent k is either composed
of Mk = 5 entries corresponding to the five daily collected
measurements, or composed of Mk = 4 entries corresponding
to four randomly selected measurements out of five. The label
�k(i) is equal to 1 if rain or snow happened at station k and
day i, and �1 otherwise. The dataset is split into a training set

used to learn the decision rule wo
k, and a test set from which

b�k(i) are generated for performance evaluation. The training
set comprises daily weather data recorded at the stations in
the interval 2004 � 2012 (a total number of 3288 days) and
the test set contains data recorded in the interval 2012� 2017
(a total number of J = 1826 days) [5]. The performance of
the network classifiers is measured by evaluating the testing
error defined as:

1

2N

NX

k=1

0

@ 1

J

JX

j=1

|�k(j)� sign(h>
k,jwk,1)|

1

A , (43)

where wk,1 is the average of the last 200 iterates generated
by Alg. 1 at agent k [5]. We set µ, c, and ⇢ equal to 3⇥10�4,
10, and 2⇥ 10�5, respectively.

Experiment 1: This experiment is conducted by assuming
that only 7 nodes out of 139 are observing a label (i.e., their
probability qk is set to 1, while the probability of the remaining
nodes is set to 0) – see Fig. 6 for illustration. We report in
Tables I and II the testing error (43) for several values of
⌘ when the sparsity (Table I) and the smoothness (Table II)
promoting regularizers are used.

Fig. 6: Illustration of the network consisting of 139 weather
stations. Nodes with a black color are unlabelled.

⌘ 0 0.01 0.1 0.4 1 10

Testing
error 0.4899 0.4667 0.4349 0.3919 0.3941 0.3943

TABLE I: Experiment 1: Testing error when the sparsity
promoting regularizer (f(x) = |x|) is used.

⌘ 0 0.01 0.1 0.4 1 10

Testing
error 0.4899 0.394 0.3978 0.3948 0.3941 0.3946

TABLE II: Experiment 1: Testing error when the smooth graph
regularizer (f(x) = 1

2x
2) is used.

The results show that, by promoting cooperation (⌘ > 0),
the testing error decreases. In the sparse case, the smallest
testing error is obtained when ⌘ = 0.4, and in the smooth

case, the smallest testing error is obtained when ⌘ = 0.01.

Experiment 2: In this experiment, each agent observes its
label with a probability qk > 0 8k. The results obtained
using the sparsity promoting regularizer are summarized in
Table III for several values of qk. In this experiment, the
smallest testing error is also obtained in a cooperative setting
(⌘ 6= 0).

⌘ 0 0.01 0.1 0.5 1

Testing error
(qk = 0.1) 0.3867 0.382 0.3778 0.3876 0.3824

Testing error
(qk = 0.4) 0.3799 0.3775 0.3772 0.3805 0.3796

Testing error
(qk = 0.8) 0.3756 0.3689 0.372 0.3767 0.3801

TABLE III: Experiment 2: Testing error when the sparsity
promoting regularizer (f(x) = |x|) is used.

V. CONCLUSION

In this study, we proposed to solve a network semi-
supervised classification problem by adding a graph regu-
larization term to the logistic loss function. This additional
term is represented by the `1- or squared `2-norm of the
differences between the labels to encourage their similarities at
neighboring agents. A stochastic (sub-)gradient approach was
proposed and studied in the mean-square-error sense. Experi-
mental results were presented to illustrate the effectiveness of
the approach.

REFERENCES

[1] D. P. Bertsekas, “A new class of incremental gradient methods for least
squares problems,” SIAM J. Optim., vol. 7, no. 4, 1997.

[2] A. H. Sayed, “Adaptation, learning, and optimization over networks,”
Found. Trends Mach. Learn., vol. 7, no. 4-5, pp. 311–801, 2014.

[3] A. Nedić, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “Distributed
subgradient methods for multi-agent optimization,” IEEE Trans. Au-
tomat. Contr., vol. 54, no. 1, pp. 48–61, 2009.

[4] R. Nassif, S. Vlaski, C. Richard, J. Chen, and A. H. Sayed, “Multitask
learning over graphs: An approach for distributed, streaming machine
learning,” IEEE Signal Process. Mag., vol. 37, no. 3, pp. 14–25, 2020.

[5] R. Nassif, S. Vlaski, C. Richard, and A. H. Sayed, “Learning over
multitask graphs—Part I: Stability analysis,” IEEE Open Journal of
Signal Processing, vol. 1, pp. 28–45, 2020.

[6] J. Chen, C. Richard, and A. H. Sayed, “Multitask diffusion adaptation
over networks,” IEEE Trans. Signal Process., vol. 62, no. 16, pp. 4129–
4144, 2014.

[7] D. Hallac, J. Leskovec, and S. Boyd, “Network LASSO: Clustering and
optimization in large graphs,” in Proc. ACM SIGKDD, Sydney, Australia,
2015, pp. 387–396.

[8] R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed, “Proximal multitask
learning over networks with sparsity-inducing coregularization,” IEEE
Trans. Signal Process., vol. 64, no. 23, pp. 6329–6344, 2016.

[9] Y. Sarcheshmehpour, M. Leinonen, and A. Jung, “Federated learning
from big data over networks,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process, Toronto, Canada, 2021, pp. 3055–3059.

[10] E. Rizk, R. Nassif, and A. H. Sayed, “Network classifiers with output
smoothing,” arXiv:1911.04870, Oct. 2019.

[11] B. Ying, K. Yuan, and A. H. Sayed, “Supervised learning under
distributed features,” IEEE Transactions on Signal Processing, vol. 67,
no. 4, pp. 977–992, Feb. 2019.

[12] M. Belkin, I. Matveeva, and P. Niyogi, “Regularization and semi-
supervised learning on large graphs,” in Proc. Conf. Learning Theory,
Banff, Canada, 2004, pp. 624–638.

[13] R. K. Ando and T. Zhang, “Learning on graph with laplacian regular-
ization,” in Proc. Adv. Neural Inf. Process. Syst., Cambridge, MA, 2006,
pp. 25–32.

[14] X. Zhu and Z. Ghahramani, “Learning from labeled and unlabeled data
with label propagation,” Technical report, Carnegie Mellon University,
2002.

[15] D. Zhou, O. Bousquet, T. Lal, J. Weston, and B. Schölkopf, “Learning
with local and global consistency,” in Proc. Adv. Neural Inf. Process.
Syst., Vancouver, British Columbia, Canada, 2003, pp. 321–328.

[16] H. Ambos, N. Tran, and A. Jung, “Classifying big data over networks
via the logistic network lasso,” in Proc. Asilomar Conf. Signals Syst.
Comput., Pacific Grove, CA, 2018, pp. 855–858.

[17] D. W. Hosmer and S. Lemeshow, Applied Logistic Regression, 2nd ed.
Wiley, NJ, 2000.

[18] S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th ed.
Academic Press, 2008.

[19] A. H. Sayed, Inference and Learning from Data. 3 vols., Cambridge
University Press, 2023.

[20] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Physica D: Nonlinear Phenomena, vol. 60,
no. 1, pp. 259–268, 1992.

[21] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” IEEE Sig. Process. Mag., vol. 30, no. 3, pp. 83–98, 2013.

[22] Y. Nesterov, Introductory lectures on convex optimization: A basic
course. Springer, 2004.

[23] D. Ciulin, “About sign function and some extensions,” in Innovations
and Advanced Techniques in Systems, Computing Sciences and Software
Engineering, E. Khaled, Ed. Springer, Dordrecht, 2008, pp. 148–153.

[24] F. H. Clarke, Optimization and Nonsmooth Analysis. Wiley New York,
1983.

[25] P. Di Lorenzo and A. H. Sayed, “Sparse distributed learning based on
diffusion adaptation,” IEEE Trans. Signal Process., vol. 61, no. 6, pp.
1419–1433, 2013.

[26] E. Abbe, “Community detection and stochastic block models: Recent
developments,” J. Mach. Learn. Res., vol. 18, no. 177, pp. 1–86, 2018.

