
Preface

Learning directly from data is critical to a host of disciplines in engineering
and the physical, social, and life sciences. Modern society is literally driven by an
interconnected web of data exchanges at rates unseen before, and it relies heav-
ily on decisions inferred from patterns in data. There is nothing fundamentally
wrong with this approach, except that the inference and learning methodologies
need to be anchored on solid foundations, be fair and reliable in their conclusions,
and be robust to unwarranted imperfections and malicious interference.

P.1 EMPHASIS ON FOUNDATIONS

Given the explosive interest in data-driven learning methods, it is not uncommon
to encounter claims of superior designs in the literature that are substantiated
mainly by sporadic simulations and the potential for “life-changing” applications
rather than by an approach that is founded on the well-tested scientific prin-
ciple to inquiry. For this reason, one of the main objectives of this text is to
highlight, in a unified and formal manner, the firm mathematical and statistical
pillars that underlie many popular data-driven learning and inference methods.
This is a nontrivial task given the wide scope of techniques that exist, and which
have often been motivated independently of each other. It is nevertheless impor-
tant for practitioners and researchers alike to remain cognizant of the common
foundational threads that run across these methods. It is also imperative that
progress in the domain remains grounded on firm theory. As the aphorism often
attributed to Lewin (1945) states, “there is nothing more practical than a good
theory.” According to Bedeian (2016), this saying has an even older history.

Rigorous data analysis, and conclusions derived from experimentation and
theory, have been driving science since time immemorial. As reported by Heath
(1912), the Greek scientist Archimedes of Syracuse devised the now famous
Archimedes’ Principle about the volume displaced by an immersed object from
observing how the level of water in a tub rose when he sat in it. In the account
by Hall (1970), Gauss’ formulation of the least-squares problem was driven by
his desire to predict the future location of the planetoid Ceres from observa-
tions of its location over 41 prior days. There are numerous similar examples
by notable scientists where experimentation led to hypotheses and from there
to substantiated theories and well-founded design methodologies. Science is also
full of progress in the reverse direction, where theories have been developed first
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to be validated only decades later through experimentation and data analysis.
Einstein (1916) postulated the existence of gravitational waves over 100 years
ago. It took until 2016 to detect them! Regardless of which direction one follows,
experimentation to theory or the reverse, the match between solid theory and
rigorous data analysis has enabled science and humanity to march confidently
towards the immense progress that permeates our modern world today.

For similar reasons, data-driven learning and inference should be developed
with strong theoretical guarantees. Otherwise, the confidence in their reliability
can be shaken if there is over-reliance on “proof by simulation or experience.”
Whenever possible, we explain the underlying models and statistical theories for
a large number of methods covered in this text. A good grasp of these theories will
enable practitioners and researchers to devise variations with greater mastery.
We weave through the foundations in a coherent and cohesive manner, and show
how the various methods blend together techniques that may appear decoupled
but are actually facets of the same common methodology. In this process, we
discover that a good number of techniques are well-grounded and meet proven
performance guarantees, while other methods are driven by ingenious insights
but lack solid justifications and cannot be guaranteed to be “fail-proof.”

Researchers on learning and inference methods are of course aware of the
limitations of some of their approaches, so much so that we encounter today
many studies, for example, on the topic of “explainable machine learning.” The
objective here is to understand why learning algorithms produce certain recom-
mendations. While this is an important area of inquiry, it nevertheless highlights
one interesting shift in paradigm. In the past, the emphasis would have been on
designing inference methods that respond to the input data in certain desirable
and controllable ways. Today, in many instances, the emphasis is to stick to the
available algorithms (often, out of convenience) and try to understand or explain
why they are responding in certain ways to the input!

Writing this text has been a rewarding journey that took me from the early
days of statistical mathematical theory to the modern state of affairs in learn-
ing theory. One can only stand in awe at the wondrous ideas that have been
introduced by notable researchers along this trajectory. At the same time, one
observes with some concern an emerging trend in recent years where solid foun-
dations receive less attention in lieu of “speed publishing” and over-reliance on
“illustration by simulation.” This is of course not the norm and most researchers
in the field stay honest to the scientific approach to inquiry and design. After
concluding this comprehensive text, I stand humbled at the realization of “how
little we know !” There are countless questions that remain open, and even for
many of the questions that have been answered, their answers rely on assump-
tions or (over)simplifications. It is understandable that the complexity of the
problems we face today has increased manifold, and ingenious approximations
become necessary to enable tractable solutions.
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P.2 GLIMPSE OF HISTORY

Reading through the text, the alert reader will quickly realize that the core foun-
dations of modern-day machine learning, data analytics, and inference methods
date back for at least two centuries, with contributions arising from a range of
fields including mathematics, statistics, optimization theory, information theory,
signal processing, communications, control, and computer science. For the ben-
efit of the reader, I reproduce here with permission from IEEE some historical
remarks from the editorial I published in Sayed (2018). I explained there that
these disciplines have generated a string of “big ideas” that are driving today
multi-faceted efforts in the age of “big data” and machine learning. Genera-
tions of students in the statistical sciences and engineering have been trained in
the art of modeling, problem solving, and optimization. Their algorithms power
everything from cell phones, to spacecraft, robotic explorers, imaging devices,
automated systems, computing machines, and also recommender systems. These
students mastered the foundations of their fields and have been well prepared to
contribute to the growth of data analysis and machine learning solutions.

As the list below shows, many well-known engineering and statistical methods
have actually been motivated by data-driven inquiries, even from times remote.
The list is a tour of some older historical contributions, which is of course biased
by my personal preferences and is not intended to be exhaustive. It is only
meant to illustrate how concepts from statistics and the information sciences have
always been at the center of promoting big ideas for data and machine learning.
Readers will encounter these concepts in various chapters in the text. Readers will
also encounter additional historical accounts in the concluding remarks of each
chapter, and in particular comments on newer contributions and contributors.

Let me start with Gauss himself, who in 1795 at the young age of 18, was
fitting lines and hyperplanes to astronomical data and invented the least-squares
criterion for regression analysis — see the collection of his works in Gauss (1903).
He even devised the recursive least-squares solution to address what was a “big”
data problem for him at the time: He had to avoid tedious repeated calculations
by hand as more observational data became available. What a wonderful big idea
for a data-driven problem! Of course, Gauss had many other big ideas.

de Moivre (1733), Laplace (1812), and Lyapunov (1901) worked on the central
limit theorem. The theorem deals with the limiting distribution of averages of
“large” amounts of data. The result is also related to the law of “large” numbers,
which even has the qualification “large” in its name. Again, big ideas motivated
by “large” data problems.

Bayes (ca mid 1750s) and Laplace (1774) appear to have independently discov-
ered the Bayes rule, which updates probabilities conditioned on observations —
see the article by Bayes and Price (1763). The rule forms the backbone of much
of statistical signal analysis, Bayes classifiers, Naïve classifiers, and Bayesian
networks. Again, a big idea for data-driven inference.
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Fourier (1822), whose tools are at the core of disciplines in the information
sciences, developed the phenomenal Fourier representation for signals. It is meant
to transform data from one domain to another to facilitate the extraction and
visualization of information. A big transformative idea for data.

Forward to modern times. The fast Fourier transform (FFT) is another exam-
ple of an algorithm driven by challenges posed by data size. Its modern version
is due to Cooley and Tukey (1965). Their algorithm revolutionized the field of
discrete-time signal processing, and FFT processors have become common com-
ponents in many modern electronic devices. Even Gauss had a role to play here,
having proposed an early version of the algorithm some 160 years before, again
motivated by a data-driven problem while trying to fit astronomical data onto
trigonometric polynomials. A big idea for a data-driven problem.

Closer to the core of statistical mathematical theory, both Kolmogorov (1939)
and Wiener (1942) laid out the foundations of modern statistical signal anal-
ysis and optimal prediction methods. Their theories taught us how to extract
information optimally from data, leading to further refinements by Wiener’s stu-
dent Levinson (1947) and more dramatically by Kalman (1960). The innovations
approach by Kailath (1968) exploited to great effect the concept of orthogonaliza-
tion of the data and recursive constructions. The Kalman filter is applied across
many domains today, including in financial analysis of market data. Kalman’s
work was an outgrowth of the model-based approach to system theory advanced
by Zadeh (1954). The concept of a recursive solution from streaming data was
a novelty in Kalman’s filter; the same concept is commonplace today in online
learning techniques. Again, big ideas for recursive inference from data.

Cauchy (1847) early on, and Robbins and Monro (1951) a century later, de-
veloped the powerful gradient descent method for root finding, which is also
recursive in nature. Their techniques have grown to motivate huge advances
in stochastic approximation theory. Notable contributions that followed include
the work by Rosenblatt (1957) on the Perceptron algorithm for single-layer net-
works, and the impactful delta rule by Widrow and Hoff (1960), widely known
as the LMS algorithm in the signal processing literature. Subsequent work on
multi-layer neural networks grew out of the desire to increase the approximation
power of single-layer networks, culminating with the backpropagation method of
Werbos (1974). Many of these techniques form the backbone of modern learning
algorithms. Again, big ideas for recursive online learning.

Shannon (1948a,b) contributed fundamental insights to data representation,
sampling, coding, and communications. His concepts of entropy and information
measure helped quantify the amount of uncertainty in data and are used, among
other areas, in the design of decision trees for classification purposes and in
deriving learning algorithms for neural networks. Nyquist (1928) contributed to
the understanding of data representations as well. Big ideas for data sampling
and data manipulation.

Bellman (1957a,b), a towering system-theorist, introduced dynamic program-
ming and the notion of the curse of dimensionality, both of which are core un-
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derpinnings of many results in learning theory, reinforcement learning, and the
theory of Markov decision processes. Viterbi’s algorithm (1967) is one notable
example of a dynamic programming solution, which has revolutionized commu-
nications and has also found applications in hidden Markov models widely used
in speech recognition nowadays. Big ideas for conquering complex data problems
by dividing them into simpler problems.

Kernel methods, building on foundational results by Mercer (1909) and Aron-
szajn (1950), have found widespread applications in learning theory since the
mid 1960s with the introduction of the kernel Perceptron algorithm. They have
also been widely used in estimation theory by Parzen (1962), Kailath (1971),
and others. Again, a big idea for learning from data.

Pearson and Fisher launched the modern field of mathematical statistical sig-
nal analysis with the introduction of methods such as principal component anal-
ysis (PCA) by Pearson (1901) and maximum likelihood and linear discriminant
analysis by Fisher (1912,1922,1925). These methods are at the core of statisti-
cal signal processing. Pearson (1894,1896) also had one of the earliest studies of
fitting a mixture of Gaussian models to biological data. Mixture models have
now become an important tool in modern learning algorithms. Big ideas for
data-driven inference.

Markov (1913) introduced the formalism of Markov chains, which is widely
used today as a powerful modeling tool in a variety of fields including word and
speech recognition, handwriting recognition, natural language processing, spam
filtering, gene analysis, and web search. Markov chains are also used in Google’s
PageRank algorithm. Markov’s motivation was to study letter patterns in texts.
He laboriously went through the first 20,000 letters of a classical Russian novel
and counted pairs of vowels, consonants, vowels followed by a consonant, and
consonants followed by a vowel. A “big” data problem for his time. Great ideas
(and great patience) for data-driven inquiries.

And the list goes on, with many modern day and ongoing contributions by
statisticians, engineers, and computer scientists to network science, distributed
processing, compressed sensing, randomized algorithms, optimization, multi-agent
systems, intelligent systems, computational imaging, speech processing, foren-
sics, computer visions, privacy and security, and so forth. We provide additional
historical accounts about these contributions and contributors at the end of the
chapters.

P.3 ORGANIZATION OF THE TEXT

The text is organized into three volumes, with a sizable number of problems
and solved examples. The table of contents provides details on what is covered
in each volume. Here we provide a condensed summary listing the three main
themes:
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1. (Volume I: Foundations). The first volume covers the foundations needed
for a solid grasp of inference and learning methods. Many important topics
are covered in this part, in a manner that prepares readers for the study
of inference and learning methods in the second and third volumes. Top-
ics include: matrix theory, linear algebra, random variables, Gaussian and
exponential distributions, entropy and divergence, Lipschitz conditions, con-
vexity, convex optimization, proximal operators, gradient-descent, mirror-
descent, conjugate-gradient, subgradient methods, stochastic optimization,
adaptive gradient methods, variance-reduced methods, distributed optimiza-
tion, and nonconvex optimization. Interestingly enough, the following con-
cepts occur time and again in all three volumes and the reader is well-
advised to develop familiarity with them: convexity, sample mean and law of
large numbers, Gaussianity, Bayes rule, entropy, Kullback-Leibler divergence,
gradient-descent, least squares, regularization, and maximum-likelihood. The
last three concepts are discussed in the initial chapters of the second volume.

2. (Volume II: Inference). The second volume covers inference methods. By “in-
ference” we mean techniques that infer some unknown variable or quantity
from observations. The difference we make between “inference” and “learn-
ing” in our treatment is that inference methods will target situations where
some prior information is known about the underlying signal models or signal
distributions (such as their joint probability density functions or generative
models). The performance by many of these inference methods will be the
ultimate goal that learning algorithms, studied in the third volume, will at-
tempt to emulate. Topics covered here include: mean-square-error inference,
Bayesian inference, maximum-likelihood estimation, expectation maximiza-
tion, expectation propagation, Kalman filters, particle filters, posterior mod-
eling and prediction, Markov Chain Monte Carlo methods, sampling meth-
ods, variational inference, latent Dirichlet allocation, hidden Markov models,
independent component analysis, Bayesian networks, inference over directed
and undirected graphs, Markov decision processes, dynamic programming,
and reinforcement learning.

3. (Volume III: Learning). The third volume covers learning methods. Here,
again, we are interested in inferring some unknown variable or quantity
from observations. The difference, however, is that the inference will now
be solely data-driven, i.e., based on available data and not on any assumed
knowledge about signal distributions or models. The designer is only given
a collection of observations that arise from the underlying (unknown) dis-
tribution. New phenomena arise related to generalization power, overfitting,
and underfitting depending on how representative the data is and how com-
plex or simple the approximate models are. The target is to use the data to
learn about the quantity of interest (its value or evolution). Topics covered
here include: least-squares methods, regularization, nearest-neighbor rule,
self-organizing maps, decision trees, naïve Bayes classifier, linear discrimi-
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nant analysis, principal component analysis, dictionary learning, Perceptron,
support vector machines, bagging and boosting, kernel methods, Gaussian
processes, generalization theory, feedforward neural networks, deep belief
networks, convolutional networks, generative networks, recurrent networks,
explainable learning, adversarial attacks, and meta learning.

Figure P.1 shows how various topics are grouped together in the text; the num-
bers in the boxes indicate the chapters where these subjects are covered. The
figure can be read as follows. For example, instructors wishing to cover:

Matrix theory
Linear algebra
Vector differentiation

Random variables
Gaussian distribution
Exponential distributions
Entropy and divergence
Random processes

Convex functions
Convex optimization
Lipschitz conditions
Proximal operator

Gradient descent
Conjugate gradient method
Subgradient method
Proximal and mirror descent

Stochastic optimization
Adaptive gradient methods
Gradient noise
Variance-reduced methods

Convergence analysis
Nonconvex optimization

Decentralized optimization

1, 2

3--7

8--11

12--15

16--18, 22, 23

19--21, 24

25--26

Mean-square-error inference
Bayesian inference
Linear regression
Kalman filter

Maximum-likelihood
Expectation-maximization

Predictive modeling
Expectation propagation
Particle filters
Variational inference
Latent Dirichlet allocation

Hidden Markov models
Decoding HMMs
Independent component analysis

Bayesian networks
Inference over graphs
Undirected graphs

Markov decision processes
Value and policy iterations
Temporal difference learning
Q-learning
Value function approximation
Policy gradient methods

27--30

31--32

33--37

38--40

41--43

44--49

Nearest-neighbor rule
Self-organizing maps
Decision trees
Naïve Bayes classifier

Linear discriminant analysis
Principal component analysis
Dictionary learning

Logistic regression
The Perceptron
Support vector machines
Bagging and boosting
Kernel methods
Generalization theory

Feedforward neural networks
Deep belief networks
Convolutional networks
Generative networks
Recurrent networks

  50--51 
Least-squares problems 
Regularization

52--55

56--58

59--64

65--69

      70--72 
Explainable learning 
Adversarial attacks 
Meta learning

Volume 1: Foundations Volume 2: Inference Volume 3: Learning

Figure P.1 Organization of the text.

(a) Background material on linear algebra and matrix theory: they can use
Chapters 1 and 2.

(b) Background material on random variables and probability theory: they can
select from Chapters 3 through 7.

(c) Background material on convex functions and convex optimization: they can
use Chapters 8 through 11.
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The three groupings (a)–(c) contain introductory core concepts that are needed
for subsequent chapters. For instance, instructors wishing to cover gradient de-
scent and iterative optimization techniques, would then proceed to Chapters 12
through 15, while instructors wishing to cover stochastic optimization methods
would use Chapters 16-24 and so forth. Figure P.2 provides a representation of
the estimated dependencies among the chapters in the text. The chapters are
color-coded depending on the volume they appear in. An arrow from Chapter a
towards Chapter b implies that the material in the latter chapter benefits from
the material in the earlier chapter. In principle, we should have added arrows
from Chapter 1, which covers background material on matrix and linear algebra,
into all other chapters. We ignored obvious links of this type to avoid crowding
the figure.

P.4 HOW TO USE THE TEXT

Each chapter in the text consists of several blocks: (1) the main text where theory
and results are presented, (2) a couple of solved examples to illustrate the main
ideas and also to extend them, (3) comments at the end of the chapter providing
a historical perspective and linking the references through a motivated timeline,
(4) a list of problems of varying complexity, (5) appendices when necessary to
cover some derivations or additional topics, and (6) references. In total, there are
close to 470 solved examples and 1350 problems in the text. A solutions manual
is available to instructors.

In the comments at the end of each chapter I list in boldface the life span
of some influential scientists whose contributions have impacted the results dis-
cussed in the chapter. The dates of birth and death rely on several sources,
including the MacTutor History of Mathematics Archive, Encyclopedia Britan-
nica, Wikipedia, Porter and Ogilvie (2000), and Daintith (2008).

Several of the solved examples in the text involve computer simulations on
datasets to illustrate the conclusions. The simulations, and several of the cor-
responding figures, were generated using the software program Matlab©, which
is a registered trademark of MathWorks Inc., 24 Prime Park Way, Natick, MA
01760-1500, www.mathworks.com. The computer codes used to generate the fig-
ures are provided “as is” and without any guarantees. While these codes are
useful for the instructional purposes of the book, they are not intended to be
examples of full-blown or optimized designs; practitioners should use them at
their own risk. We have made no attempts to optimize the codes, perfect them,
or even check them for absolute accuracy. On the contrary, in order to keep the
codes at a level that is easy to follow by students, we have often decided to sac-
rifice performance or even programming elegance in lieu of simplicity. Students
can use the computer codes to run variations of the examples shown in the text.

In principle, each volume could serve as the basis for a master-level graduate

www.mathworks.com
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course, such as courses on Foundations of Data Science (volume I), Inference
from Data (volume II), and Learning from Data (volume III). Once students
master the foundational concepts covered in volume I (especially in Chapters 1-
17), they will be able to grasp the topics from volumes II and III more confidently.
Instructors need not cover volumes II and III in this sequence; the order can be
switched depending on whether they desire to emphasize data-based learning
over model-based inference or the reverse. Depending on the duration of each
course, one can also consider covering subsets of each volume by focusing on
particular subjects. The following grouping explains how chapters from the three
volumes cover specific topics and could be used as reference material for several
potential course offerings:

1. (Core foundations, Chapters 1–11, Vol. I): matrix theory, linear algebra,
random variables, Gaussian and exponential distributions, entropy and di-
vergence, Lipschitz conditions, convexity, convex optimization, and proximal
operators. These chapters can serve as the basis for an introductory course
on foundational concepts for mastering data science.

2. (Stochastic optimization, Chapters 12–26, Vol. I): gradient-descent, mirror-
descent, conjugate-gradient, subgradient methods, stochastic optimization,
adaptive gradient methods, variance-reduced methods, convergence analy-
ses, distributed optimization, and nonconvex optimization. These chapters
can serve as the basis for a course on stochastic optimization for both con-
vex and non-convex environments, with attention to performance and con-
vergence analyses. Stochastic optimization is at the core of most modern
learning techniques, and students will benefit greatly from a solid grasp of
this topic.

3. (Statistical or Bayesian inference, Chapters 27–37, 40, Vol. II): mean-
square-error inference, Bayesian inference, maximum-likelihood estimation,
expectation maximization, expectation propagation, Kalman filters, particle
filters, posterior modeling and prediction, Markov Chain Monte Carlo meth-
ods, sampling methods, variational inference, latent Dirichlet allocation, and
independent component analysis. These chapters introduce students to op-
timal methods to extract information from data, under the assumption that
the underlying probability distributions or models are known. In a sense,
these chapters reveal limits of performance that future data-based learn-
ing methods, covered in subsequent chapters, will try to emulate when the
models are not known.

4. (Probabilistic graphical models, Chapters 38, 39, 41–43, Vol. II): hidden
Markov models, Bayesian networks, inference over directed and undirected
graphs, factor graphs, message passing, belief propagation, and graph learn-
ing. These chapters can serve as the basis for a course on Bayesian inference
over graphs. Several methods and techniques are discussed along with sup-
porting examples and algorithms.
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5. (Reinforcement learning, Chapters 44–49, Vol. II): Markov decision pro-
cesses, dynamic programming, value and policy iterations, temporal differ-
ence learning, Q−learning, value function approximation, and policy gradi-
ent methods. These chapters can serve as the basis for a course on reinforce-
ment learning. They cover many relevant techniques, illustrated by means
of examples, and include performance and convergence analyses.

6. (Data-driven and online learning, Chapters 50–64, Vol. III): least-squares
methods, regularization, nearest-neighbor rule, self-organizing maps, deci-
sion trees, naïve Bayes classifier, linear discriminant analysis, principal com-
ponent analysis, dictionary learning, Perceptron, support vector machines,
bagging and boosting, kernel methods, Gaussian processes, and generaliza-
tion theory. These chapters cover a variety of methods for learning directly
from data, including various methods for online learning from sequential
data. The chapters also cover performance guarantees from statistical learn-
ing theory.

7. (Neural networks, Chapters 65–72, Vol. III): feedforward neural networks,
deep belief networks, convolutional networks, generative networks, recurrent
networks, explainable learning, adversarial attacks, and meta learning. These
chapters cover various architectures for neural networks and the respective
algorithms for training them. The chapters also cover topics related to ex-
plainability and adversarial behavior over these networks.

The above groupings assume that students have been introduced to back-
ground material on matrix theory, random variables, entropy, convexity, and
gradient-descent methods. One can, however, rearrange the groupings by design-
ing stand-alone courses where the background material is included along with
the other relevant chapters. By doing so, it is possible to devise various course
offerings, covering themes such as stochastic optimization, online or sequential
learning, probabilistic graphical models, reinforcement learning, neural networks,
Bayesian machine learning, kernel methods, decentralized optimization, and so
forth. Figure P.3 shows several suggested selections of topics from across the text,
and the respective chapters, which can be used to construct courses with partic-
ular emphasis. Other selections are of course possible, depending on individual
preferences and on the intended breadth and depth for the courses.

P.5 SIMULATION DATASETS

In several examples in this work we run simulations that rely on publicly available
datasets. The sources for these datasets are acknowledged in the appropriate
locations in the text. Here we provide an aggregate summary for ease of reference:
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(1) Iris dataset. This classical dataset contains information about the sepal
length and width for three types of iris flowers: virginica, setosa, and versi-
color. It was originally used by Fisher (1936) and is available at the UCI Ma-
chine Learning Repository at https://archive.ics.uci.edu/ml/datasets/
iris. Actually, three of the datasets in our list are available from this useful
repository — see Dua and Graff (2019).

(2) MNIST dataset. This is a second popular dataset, which is useful for clas-
sifying handwritten digits. It was used in the work by LeCun et al. (1998)
on document recognition. The data contains 60,000 labeled training exam-
ples and 10,000 labeled test examples for the digits 0 through 9. It can be
downloaded from http://yann.lecun.com/exdb/mnist/.

(3) CIFAR-10 dataset. This dataset consists of color images that can belong
to one of 10 classes: airplanes, automobiles, birds, cats, deer, dogs, frogs,
horses, ships, and trucks. It is described by Krizhevsky (2009) and can be
downloaded from www.cs.toronto.edu/~kriz/cifar.html.

(4) FBI crime dataset. This dataset contains statistics showing the burglary
rates per 100,000 inhabitants during 1997–2016. The source of the data is the
US Criminal Justice Information Services Division at https://ucr.fbi.
gov/crime-in-the-u.s/2016/crime-in-the-u.s.-2016/tables/table-1.

(5) Sea level and global temperature changes dataset. The sea level dataset
measures the change in sea level relative to the start of 1993. There are 952
data points consisting of fractional year values. The source of the data is
the NASA Goddard Space Flight Center at https://climate.nasa.gov/
vital-signs/sea-level/. For information on how the data was gener-
ated, the reader may consult Beckley et al. (2017) and the report GSFC
(2017). The temperature dataset measures changes in the global surface
temperature relative to the average over the period 1951–1980. There are
139 measurements between the years 1880 and 2018. The source of the
data is the NASA Goddard Institute for Space Studies (GISS) at https:
//climate.nasa.gov/vital-signs/global-temperature/.

(6) Breast cancer Wisconsin dataset. This dataset consists of 569 samples, with
each sample corresponding to a benign or malignant cancer classification. It
can be downloaded from the UCI Machine Learning Repository at https://
archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%
29. For information on how the data was generated, the reader may consult
Mangasarian, Street, and Wolberg (1995).

(7) Heart-disease Cleveland dataset. The dataset consists of 297 samples that
belong to patients with and without heart disease. It is available on the
UCI Machine Learning Repository and can be downloaded from https:
//archive.ics.uci.edu/ml/datasets/heart+Disease. The investigators
responsible for the collection of the data are the four leading co-authors of
the article by Detrano et al. (1989).

https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/iris
http://yann.lecun.com/exdb/mnist/
www.cs.toronto.edu/~kriz/cifar.html
https://ucr.fbi.gov/crime-in-the-u.s/2016/crime-in-the-u.s.-2016/tables/table-1
https://ucr.fbi.gov/crime-in-the-u.s/2016/crime-in-the-u.s.-2016/tables/table-1
https://climate.nasa.gov/vital-signs/sea-level/
https://climate.nasa.gov/vital-signs/sea-level/
https://climate.nasa.gov/vital-signs/global-temperature/
https://climate.nasa.gov/vital-signs/global-temperature/
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
https://archive.ics.uci.edu/ml/datasets/heart+Disease
https://archive.ics.uci.edu/ml/datasets/heart+Disease
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