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ABSTRACT

Most available studies on distributed GAN architectures focus
on implementations with a fusion center. In this work, we
propose a fully decentralized scheme by employing a diffusion
strategy to train a network of GANs. We interpret the training
procedure as a team competition problem and use the paradigm
of competing adaptive networks to solve it. We explain that the
local discriminators and generators will cluster around their
respective centroids. We present simulation results to illustrate
that the proposed strategy allows local agents to match the
performance of the centralized GAN. More importantly, we
also illustrate that local GANs are able to generate different
types of images from a dataset, even when they are locally
trained with a subset that does not contain all image types.

Index Terms— Generative adversarial networks, compet-
ing diffusion, decentralized training, distributed optimization

1. INTRODUCTION

Generative adversarial networks (GANs) are a powerful type
of generative models whose training can be understood as
an adversarial game [1]. Widely used in fake image genera-
tion tasks, GANs consist of two distinct network components
known as the generator and discriminator. These components
compete against each other, with the generator trying to drive
the discriminator away from its objective. In practice, GANs
can be employed in several different ways. Distributed ap-
proaches, in which a local GAN is assigned to every agent
in a network, are of particular interest. Since only training
parameters are shared—either between neighbors or with a
central aggregator—the training of local generators can be
improved while enhancing the privacy of local datasets.

Most existing studies proposing distributed GAN architec-
tures focus on centralized settings with fusion centers. Recent
literature has dealt with the centralized scenario where every
agent is only equipped with a local discriminator, except for a
central agent that is equipped with a generator [2, 3]. In this
case, since discriminator agents do not have generators, they
are incapable of generating fake samples by themselves. In a
different, but still centralized approach, the work [4] extends
GAN applications to federated learning. So far, however, only
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a few studies have investigated the training of a distributed
GAN architecture in a decentralized manner. Although gos-
siping GANs [5] make use of a decentralized training scheme,
they require each agent to be able to communicate with any
other agent. Due to such requirement, this training approach
is actually equivalent to centralized training.

In this paper, we propose a fully decentralized training
algorithm for a network of GANs. The idea of this training
approach is to allow each local GAN in the network to be able
to generate all types of images from a dataset, even when these
local GANs are only trained with a subset of the data that does
not contain all image types. For example, consider the MNIST
dataset [6] and assume each GAN in the network is trained with
images of only two types of digits, e.g., one agent is trained
with images of the digits 7 and 8, while a second agent is
trained with images of the digits 1 and 3, and so forth. Can
we devise a decentralized algorithm that allows the agents to
generate fake images of digits for which the local GAN has not
seen any samples during training? The procedure we devise
here, as we proceed to explain, allows for this possibility. We
will employ a diffusion strategy [7, 8] to solve an aggregated
min-max problem considering that each agent is equipped with
both a local discriminator and a local generator.

The paper is organized as follows. In Section 2, we for-
mulate the network of GANs problem starting from a single
agent case. In Section 3, we derive the diffusion training al-
gorithm and, in Section 4, we present a brief convergence
analysis based on network centroid representations. In Sec-
tion 5, we provide simulation results for both homogeneous
and non-homogeneous datasets. In Section 6, we present the
conclusions of this work.

2. PROBLEM FORMULATION

2.1. Single agent case

The training of a single GAN involves solving a min-max
problem of the form [1]:

min
wG

max
wD

J(wD, wG) (1)

where wD and wG are the parameters of the discriminator and
generator, respectively. The objective function is given by:

J(wD, wG) ≜ Ez∼pz(z) Ex∼px(x) Q(wD, wG;x, z) (2)
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where x and z denote the training data for the discriminator
and the input noise for the generator, respectively, with distri-
butions px(x) and pz(z). Traditionally, the gain/loss function
Q(wD, wG;x, z) takes the form [1]:

Q(wD, wG;x, z) = logD(wD;x) + log(1−D(wD;G(wG; z)))

(3)
where D(·; ·) and G(·; ·) represent the outputs of the discrimi-
nator and generator, respectively.

2.2. Network of GANs

We consider the decentralized network setting shown in Fig. 1,
in which K agents, each equipped with an individual GAN
and distinct datasets, are allowed to share information and
coordinate on a common task. Each agent k of the network
seeks to solve a local min-max problem of the form:

min
wG

k

max
wD

k

Jk(w
D
k , w

G
k ) (4)

where wD
k and wG

k are the discriminator and generator parame-
ters for agent k, whose local objective is defined as:

Jk(w
D
k , w

G
k ) ≜ Ezk∼pz(z) Exk∼pxk

(xk) Q(wD
k , w

G
k ;xk, zk).

(5)
Here, xk represents the local training data at agent k, drawn
from a sample space Xk and with distribution pxk

(xk). Assum-
ing that all GANs in the network have the same architecture,
the gain/loss function on the right-hand side of (5) becomes
the same for all agents.
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Fig. 1. A network of GANs where each node represents a local
GAN. Agents interact over a graph topology.

Within the network, agents are connected by a graph with
combination matrix A = [aℓk] ∈ RK×K . The objective of the
network is to solve:

min
wG

max
wD

J(wD, wG) (6)

where the global objective is a weighted aggregate of the local
costs:

J(wD, wG) =

K∑
k=1

pkJk(w
D, wG), (7)

and pk are positive weights normalized to add up to one. These
weights are specified further ahead.

For convenience, we define separate local objective func-
tions for the discriminators and generators as follows:

JD
k (w

D, wG) ≜ −Jk(w
D, wG), (8a)

JG
k (w

D, wG) ≜ Jk(w
D, wG). (8b)

Definitions (8a)–(8b) allow us to interpret the local min-max
problem (4) at the kth agent as equivalent to a minimization
of both JD

k (w
D
k , w

G
k ) over wD

k and JG
k (w

D
k , w

G
k ) over wG

k .

3. DIFFUSION TRAINING

The training of the network of GANs can be understood as
a particular case of the decentralized competing networks
framework proposed in [9]. Based on this framework, we will
first derive the training algorithm from the perspective of the
discriminators, initially assuming that the generator parameter
wG is fixed and known. Considering (7) and (8a), the global
problem (6) reduces to:

min
wD

K∑
k=1

pkJ
D
k (w

D, wG). (9)

This corresponds to a traditional decentralized optimization
problem for the discriminators, whose solutions can be pur-
sued by a number of algorithms for decentralized stochastic
optimization [7]. We adopt the adapt-then-combine (ATC)
diffusion strategy given by:

ϕD
k,i = wD

k,i−1 − µ∇̂JD
k (w

D
k,i−1, w

G) (10a)

wD
k,i =

∑
ℓ∈Nk

aℓkϕ
D
ℓ,i (10b)

where µ is a small step size, ∇̂JD
k (·, ·) denotes an estimate for

the gradient of the local objective at the kth agent with respect
to the discriminator parameters, and Nk is the set including
the kth agent and agents connected to it with nonzero weights.
After diffusion is run over the discriminators at all agents,
we tackle the optimization problem for generators using a
similar strategy. We additionally consider that, at the kth agent,
the generator and discriminator have complete access to each
other’s parameters. In order to balance out the competition, at
a given iteration we will allow for the repetition of diffusion nd

times over the discriminators and ng times over the generators.
Then, in a manner similar to [9], we obtain the construction of
Algorithm 1.

4. CONVERGENCE ANALYSIS

Next, we comment briefly on the convergence of the Diffusion
GAN algorithm. Our goal is twofold. First, to show that, after



Algorithm 1 Diffusion GAN
Initialize for each agent k: wD

k ← wD
k,0 and wG

k ← wG
k,0

1: while not done do
2: for n = 1, . . . , nd do
3: for each agent k do

4: ϕD
k ← wD

k − µ∇̂JD
k (w

D
k ,w

G
k )

5: wD
k ←

∑
ℓ∈Nk

aℓkϕ
D
ℓ

6: end for
7: end for
8: for n = 1, . . . , ng do
9: for each agent k do

10: ϕG
k ← wG

k − µ∇̂JG
k (w

D
k ,w

G
k )

11: wG
k ←

∑
ℓ∈Nk

aℓkϕ
G
ℓ

12: end for
13: end for
14: end while

sufficient iterations, all local discriminators and generators
will cluster around their respective average parameters, i.e.,
centroids. This part of the analysis is based on results from [8,
10, 11]. Our second goal is to relate the min-max problem over
the centroids with the problem of training a single GAN with
samples from all local datasets. This will allow us to conclude
that, when an agent does not have access to a particular type
of data, it may still be able to generate it by learning from its
neighbors.

4.1. Analysis Assumptions

Assumption 1 (Connectivity). The combination matrix A
is primitive and doubly-stochastic. Thus, from the Perron-
Frobenius theorem [10], matrix A has a single eigenvalue at
one associated with a Perron eigenvector p = 1/K, whose
entries determine the scalars in (7). Also, we have:

λ2 ≜ ρ

(
A− 1

K
11

T

)
< 1 (11)

where ρ(·) denotes the spectral radius of its matrix argument.

We choose the Metropolis rule [7, 12] as our combination
policy, whose combination matrix satisfies Assumption 1.

Assumption 2 (Smoothness). For each k = 1, . . . ,K, the gra-
dients of discriminator and generator objectives are Lipschitz,
i.e., for all α1, α2, β1, β2 they satisfy:

∥∇JD
k (α1, β)−∇JD

k (α2, β)∥ ≤ LD∥α1 − α2∥ (12a)
∥∇JG

k (α, β1)−∇JG
k (α, β2)∥ ≤ LG∥β1 − β2∥ (12b)

for some LD, LG ≥ 0.

Assumption 3 (Bounded gradients). For each agent k =
1, . . . ,K, the gradients of the discriminator and generator
objectives are bounded, i.e., for all α, β:

∥∇JD
k (α, β)∥ ≤ BD and ∥∇JG

k (α, β)∥ ≤ BG (13)

for some BD, BG ≥ 0.

Assumption 4 (Gradient noise processes). We define the
gradient noise for the discriminator and generator objectives
as the difference between the true and approximate gradient
vectors:

sD
k,i(w

D
k,i−1,w

G
k,i−1)

≜ ∇̂JD
k (w

D
k,i−1,w

G
k,i−1)−∇JD

k (w
D
k,i−1,w

G
k,i−1), (14a)

sG
k,i(w

D
k,i−1,w

G
k,i−1)

≜ ∇̂JG
k (w

D
k,i−1,w

G
k,i−1)−∇JG

k (w
D
k,i−1,w

G
k,i−1). (14b)

We assume these noises are unbiased and have bounded second-
order moments:

E{sD
k,i(w

D
k,i−1,w

G
k,i−1)|Fi−1} = 0 (15a)

E{sG
k,i(w

D
k,i−1,w

G
k,i−1)|Fi−1} = 0 (15b)

E{∥sD
k,i(w

D
k,i−1,w

G
k,i−1)∥2|Fi−1} ≤ σ2

D (15c)

E{∥sG
k,i(w

D
k,i−1,w

G
k,i−1)∥2|Fi−1} ≤ σ2

G (15d)

where Fi denotes the filtration generated by the random pro-
cesses wD

k,j and wG
k,j for all k = 1, . . . ,K and j ≤ i.

4.2. Single Training Round for Discriminators

Holding the generators fixed, we apply diffusion over the
discriminators according to (10a)–(10b). To analyze the dif-
fusion recursions, we introduce the discriminator network
centroid, which averages the discriminator parameter vectors
from across the network at a given time i:

wD
c,i ≜

1

K

K∑
k=1

wD
k,i. (16)

Theorem 1 (Network disagreement). Under Assumptions
1–4, the network disagreement between the discriminator cen-
troid and local discriminators is bounded after sufficient itera-
tions:

1

K

K∑
k=1

E ∥wD
k,i −wD

c,i∥2 ≤ µ2λ2
2(B

2
D + σ2

D)

(1− λ2)2
+O(µ3) (17)

for i ≥ (3 logµ/ log λ2) +O(1).

Proof. Omitted due to space limitations but similar to argu-
ments used in [8].



After sufficient iterations, we can replace the local models
wD

k,i, for k = 1, . . . ,K, by the discriminator network centroid
wD

c,i since, due to Theorem 1, all the local agents would have
approximately approached this same discriminator.

Theorem 2 (Stationary point). Suppose that the global
objective of the discriminators is bounded from below, i.e.,
JD(wD, wG) ≜ −J(wD, wG) ≥ J ′

D. Then, the centroid wD
c,i

will reach an O(µ)-mean-square-stationary point in at most
O(1/µ2) iterations. Specifically for some time i⋆, we have

E ∥∇JD(wD
c,i⋆ , w

G)∥2 ≤ 2µ
c2
c1

(18)

where

c1 ≜
1− 2µLD

2
= O(1), c2 ≜

LDσ
2
D

2
+O(µ) = O(1),

(19)
and

i⋆ ≤
JD(wD

c,0, w
G)− J ′

D

µ2c2
. (20)

Proof. Omitted due to space limitations but similar to argu-
ments used in [8].

4.3. Single Training Round for Generators

After the discriminators converge to wD
c , we can consider

substituting the discriminator centroid into (6). Taking (7)
and (8b) into account, we obtain the following problem for the
generators:

min
wG

K∑
k=1

pkJ
G
k (w

D
c , w

G). (21)

Since the assumptions that the generator objectives satisfy are
similar to the assumptions for the discriminator objectives, we
can again verify that all generators will approach a centroid
when running enough iterations, in an analogous manner to
Theorem 1. In order to analyze the training process in this
situation, it is also reasonable to replace the local generator
models wG

k,i, for k = 1, . . . ,K, by wG
c,i.

4.4. Convergence of the Generator Centroid

Considering that both discriminator and generator parameters
have converged to their corresponding centroid vectors, we
can express the global min-max problem (6) as:

min
wG

c

max
wD

c

J(wD
c , w

G
c ). (22)

4.4.1. Homogeneous Datasets

If all agents sample training data independently and from the
same sample space with equal distributions, i.e., Xk = X
and pxk

(·) = px(·) for all k = 1, . . . ,K, then the local data
samples {x1, . . . ,xK} can be regarded as independent and

identically distributed (iid) random vectors. From (5), we
obtain for the kth agent the objective function:

Jk(w
D
c , w

G
c ) = Ezk∼pz(z) Exk∼px(x) Q(wD

c , w
G
c ;xk, zk)

(23)
which does not depend on k. Then, the global objective (7)
reduces to:

J(wD
c , w

G
c ) = Jk(w

D
c , w

G
c )

K∑
k=1

pk
(a)
= Jk(w

D
c , w

G
c ) (24)

where (a) is due to Assumption 1. We note that this objective
is equal to the objective (2) of a single GAN evaluated on
the discriminator and generator centroids. Therefore, prob-
lems (22) and (1) are equivalent and the centroids are expected
to converge to the solution for a single GAN trained with data
from all local datasets.

4.4.2. Non-homogeneous Datasets

Next, we consider a more challenging situation that is closer
to real applications. We suppose a worst-case scenario in
which the agents have non-homogeneous and disjoint datasets.
Specifically, we assume that the sample spaces Xk, for k =
1, . . . ,K, form a finite partition of a sample space X , i.e.,

K⋃
k=1

Xk = X (25)

and Xk ∩ Xj = ∅ for all k, j = 1, . . . ,K with k ̸= j.
The training data distributions can be expressed as pxk

(·) =
px|yk

(·|yk), where yk represents the labels contained in the
dataset of the kth local agent and their respective probabilities.
From (5), the objective function for the kth agent results in:

Jk(w
D
c , w

G
c ) = Ezk∼pz(z) Exk∼px|yk

(x|yk) Q(wD
c , w

G
c ;xk, zk).

(26)
For simplicity, we assume that each agent sees the same num-
ber of distinct classes of equiprobable data. Then, the prior
probability for all k = 1, . . . , N is given by pyk

(yk) = 1/K.
From Assumption 1, we note that this probability is equal to
the Perron eigenvector entry pk. Considering this after substi-
tuting (26) into (7), it follows from the law of total expectation
that the global objective evaluated at the centroids becomes:

J(wD
c , w

G
c ) = Ezk∼pz(z) Exk∼px(x) Q(wD

c , w
G
c ;xk, zk).

(27)
Once again, the min-max problem of the centroids takes the
same form as the training problem of a single GAN with
objective (2).

As a final remark, notice that the discriminator centroid
is optimized to approximate the Jensen-Shannon divergence
between the data distribution px(·) and the generated distri-
bution pG(·) resulting from the centroid parameters [1]. Due
to the convexity of the Jensen-Shannon divergence [13] on
pG(·), this distribution can converge to px(·) through careful
optimization.



5. SIMULATION RESULTS

The experiments are based on a network of GANs with K = 5
agents, using MNIST [6] and Fashion-MNIST [14] as training
datasets. Each of these datasets has different instances of 10
classes of images.

In the case of homogeneous datasets, we divide the data
randomly, and each agent has access to 12 000 training images
comprising all classes of samples. We compare the perfor-
mance of Algorithm 1 (Diffusion GAN) with non-cooperative
(i.e., agents do not communicate) and centralized training
(equivalent to single GAN with all the training data). In the
case of non-homogeneous datasets, each agent has access to
12 000 training images composed of only two classes of sam-
ples.

The topology of the simulated network of GANs is shown
in Fig. 2. For each agent, we use a deep convolutional GAN
structure similar to [15]. We consider stochastic gradient de-
scent as the optimizer with µ = 0.05, nd = 5 and ng = 1. We
use the Fréchet inception distance (FID) [16] to compare, in a
quantitative manner, the similarity between the generated data
distribution pG(·) and real data distribution px(·). Lower val-
ues of the FID score should indicate greater similarity between
distributions.

(a) Homogeneous datasets. (b) Non-homogeneous datasets.

Fig. 2. Topology and training data example (MNIST) for the
simulated network of GANs.

5.1. Homogeneous Datasets

Figure 3 shows the FID score for different training approaches
on MNIST and Fashion-MNIST datasets. We note that training
through diffusion outperforms non-cooperative GANs. Also,
the FID score for diffusion and centralized training are very
close, which indicates that the Diffusion GAN algorithm al-
lows agents with limited training data to achieve performance
similar to a centralized agent with access to all training data.
Samples generated through different approaches with homo-
geneous datasets are shown in Figs. 4 and 5. In these figures,
each square corresponds to 100 fake images generated by a
given agent.
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(a) MNIST.
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(b) Fashion-MNIST.

Fig. 3. FID scores in the case of homogeneous datasets.

(a) Non-cooperative. (b) Centralized. (c) Diffusion.

Fig. 4. Generated fake images: homogeneous MNIST datasets.

(a) Non-cooperative. (b) Centralized. (c) Diffusion.

Fig. 5. Generated fake images: homogeneous Fashion-MNIST
datasets.

5.2. Non-Homogeneous Datasets

In this scenario, each agent has access to only two classes of
samples. Without cooperation, agents would only be able to
generate digits of the same class as the training samples con-
tained in their own datasets. However, by using the Diffusion
GAN algorithm, agents are now able to generate all types of
digits. For the MNIST dataset, fake samples generated by
an agent with access to images of only 0s and 1s are shown
in Fig. 6(a). For the Fashion-MNIST dataset, fake samples
generated by an agent with access to images of only T-shirts
and trousers are shown in Fig. 6(b).

6. CONCLUSION

In this work, we proposed a diffusion-based, fully decentral-
ized algorithm for training a network of GANs. We explained
that all local discriminators and generators will cluster around



(a) Agent sees only 0s and 1s. (b) Agent sees only T-shirts and
trousers.

Fig. 6. Generated fake images: same agent, non-homogeneous
datasets.

their respective centroids after sufficient iterations. We also
showed that the discriminator centroid will reach a stationary
point, which will consist of an approximation for the Jensen-
Shannon divergence between the distributions of training and
generated data. Then, by writing the min-max problem over
the network centroids, we are able to reduce it to the problem
of training a single GAN with samples from all local datasets.
Notably, this allows us to show that, although an agent might
not have access to a particular type of data, it may still be
able to generate it due to the sharing of information with its
neighbors.

Through numerical simulations, we validated the proposed
algorithm for different training settings and obtained encourag-
ing results. For homogeneous datasets, the algorithm allowed
local agents to match the performance of the centralized GAN.
In the non-homogeneous case, the diffusion training was able
to successfully allow agents with limited types of training data
to generate all classes of fake samples.
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