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Abstract—We consider a distributed binary hypothesis testing
setup where multiple nodes send quantized information to a
central processor, which is oblivious to the nodes’ statistics. We
study the regime where the missed detection (type-II error)
probability decays exponentially and the false alarm (type-I
error) probability vanishes. For memoryless quantization, we
characterize a tradeoff curve that yields a lower bound for
the feasible region of type-II error exponents and the average
number of bits sent under the null hypothesis. Moreover, we
show that the tradeoff curve is approached at high rates with
lattice quantization.

I. INTRODUCTION

Modern designs allow the construction of complex systems
consisting of many smaller devices and/or sensors. For in-
stance, consider an autonomous vehicle with multiple sensors
sharing information with a central processor. The latter assists
with critical decisions such as collision avoidance. This is one
example of a distributed detection or distributed hypothesis
testing problem. In such scenarios, the sensors usually cannot
communicate at arbitrarily high rates; this may be due to
the medium they communicate over, or due to the processing
capabilities of the devices. Hence, it is reasonable to impose
communication constraints on a distributed hypothesis testing
problem.

Building upon the formulation in [1], communication con-
strained hypothesis testing has been studied from an informa-
tion theoretic perspective by several authors — a useful survey
appears in [2]. In its simple form, the problem proposed in [1]
is as follows. We have independent and identically distributed
(i.i.d.) random variables (Xi, Yi) with Xn := (X1, . . . , Xn)
observed at a remote sensor. An nR-bit description fn(Xn)
is provided to a decision maker who also possesses Y n, and
performs a binary hypothesis test about the joint distribution
PXY . The aim in [1] was to characterize the best type-
II error exponent with vanishing type-I error. Extensions of
this problem were studied in later work, e.g., including the
compression of Y n [3], operating at zero-rate [3], [4], or
communicating over noisy channels [5], [6]. Note that the
communication constraint imposed in [1], [3] is ‘hard’, i.e., for
any n, fn can take at most 2nR possible values. Recently, there
has been some work centered around relaxed communication
constraints, e.g., restricting the average number of bits sent
for the task of independence testing [7], [8].

The signal detection community approaches the distributed
hypothesis testing setup under communication constraints
from a different perspective. They focus on scalar quantization
of signals at peripheral nodes, i.e., quantization of X instead
of Xn, and assume that a central processor (usually called
a fusion center) combines the data conveyed from peripheral
nodes, without side information. Deviating from block quan-
tization procedures allows memory-efficiency and low-latency

at the peripheral nodes. This perspective requires the individual
quantization procedures to be well-performing, if not optimal.
For instance, in [9], the authors give an iterative procedure
to find locally optimal quantizers for a class of performance
metrics. The quantization scheme they assume is also ‘hard’ in
the sense that the signal is quantized into N bins. Subsequent
work also approached the problem by trying to find optimal
truncation of log-likelihood ratios (LLRs) together with an
optimal fusion rule [10], or by studying the point densities
of optimal quantizers at high rates [11]. One can also find
examples of studies on sparsifying the communication [12],
[13] and including quantization to tackle noisy transmissions
to the fusion center [14].

This work contains flavors from both approaches: (i) By
adopting an information-theoretic perspective, we study the
tradeoff between communication constraints and type-II ex-
ponents by formulating a problem amenable to rate-distortion
methods; and (ii) we show that the limits can be approached
closely (up to 1.047 bits of difference) at high communication
rates by scalar lattice quantization, for which efficient encod-
ing and decoding algorithms exist [15]. Unlike previous work,
we provide impossibility results for memoryless quantization
under an average communication constrained scheme. The
detailed problem formulation and assumptions are given in
Section III.

Notation: Random variables are denoted with uppercase
letters whereas their realizations are denoted with lowercase
letters (e.g., Xt and xt). Sets and events are denoted with
script-style letters (e.g., A). |A| denotes the cardinality of set
A. Vectors and sequences are denoted by boldface letters (e.g.,
xt). B(R) denotes the Borel σ-algebra of R. All the logarithms
are assumed natural logarithms unless we explicitly state its
base.

II. PROBLEM FORMULATION

Consider a binary hypothesis testing problem where m
nodes communicate with a fusion center. At time t, under
the null hypothesis H0, node i observes data coming from
distribution P (i) and under the hypothesis H1 observes data
coming from distribution Q(i), with both distributions being
time invariant. Assume P (i) and Q(i) admit density functions
p(i), q(i). Furthermore, assume P (i) is absolutely continuous
with respect to Q(i). Unlike the previous information theoretic
approaches, we assume that each node is only aware of its own
set of distributions, i.e., node i only knows P (i) and Q(i).
Similarly, the fusion center neither has any knowledge about
the nodes’ distributions nor a helper information. The fusion
center performs a test based on the information conveyed by
the nodes and outputs a prediction Ĥ.



We assume independent observations across the nodes and
across time under each hypothesis. Namely, at time t and
under H0, the joint density of the observations is given
by p(x

(1)
t , . . . , x

(m)
t ) =

∏m
i=1 p

(i)(x
(i)
t ), where x

(i)
t is the

observation of node i. Since the samples are independent
across time, p(x1, . . . ,xt) =

∏t
τ=1 p(x

(1)
τ , . . . , x

(m)
τ ), where

xt := (x
(1)
t , . . . , x

(m)
t ) is a length-m vector. All of the above

holds under H1 by replacing p’s with q’s as well.
Being oblivious to nodes’ statistics, the fusion center as-

sumes each node sends a “score”. For example, each node may
send its LLR, L(i)

t := log
p(i)(X

(i)
t )

q(i)(X
(i)
t )

, and an optimal test can
be performed at the fusion center using the sufficient statistic∑t
τ=1

∑m
i=1 L

(i)
τ . It is therefore reasonable to assume that

the central processor trusts the nodes and sums the scores
it receives. Formally, we denote the score sent by node i

at time t by S
(i)
t . The center then performs a test based on

S̄t := 1
t

∑t
τ=1

∑m
i=1 S

(i)
τ and outputs

Ĥ =

{
H0, S̄t ≥ ηt
H1, else

(1)

for a threshold ηt. The nodes take into account that the
central processor performs its test based on S̄t. In other
words, they know a priori that the scores sent by them will
be averaged in the end. As we mentioned before, had there
not been communication constraints, the nodes would have
sent their LLRs; the central processor would have received a
sufficient statistic and performed an optimal test. However,
since P (i), Q(i) are continuous, the LLRs are continuous
random variables in general and must be subject to some
quantization or compression before being conveyed. Moreover,
the communication rate between the nodes and the processor
might be limited. Among many possible ways of restricting
communication, we limit the average number of bits sent by
each node under H0.

Remark 1. The communication constraint is not symmetric,
i.e., there is no constraint under H1. This fits in with many
real-world scenarios when H1 represents a high-risk situation
in which the system is allowed to violate communication
constraints in order to identify the risk — responding to
an emergency takes priority over communication constraints
— recall the collision avoidance example at the beginning
of this manuscript. This view of H1 also implies that the
type-II error must be very rare. In fact, in many hypothesis
testing problems, it is desired that the type-II error decays
exponentially. This is indeed the approach we will follow for
the rest of this work.

�

Let us focus on one of the nodes. We drop the node’s
superscript (i) for brevity. At time t, after observing the data
Xt and calculating its LLR Lt, the node sends its compressed
score St := ft(Lt) with a simple function ft : R→ R, i.e., ft
is measurable and takes finitely many values [16, Chapter 1].
Taking into account that St’s are discrete random variables, it
is possible to generate a lossless code whose average length `

in terms of bits is bounded as [17], [18]

HP (St) log2 e− log2(HP (St) log2 e+ 1)

− log2 e ≤ ` ≤ HP (St) log2 e (2)

where HP (St) is the entropy of St under P .1 Thus, we define
the communication constraint as

1

t

t∑
τ=1

HP (Sτ ) ≤ R (3)

which ensures that S1, . . . , St can be conveyed losslessly with
an average number of bits less than R under H0.

Remark 2. The memoryless quantization procedures we con-
sider are practically appealing since the peripheral devices
can be designed in a memory-efficient manner. Moreover, the
assumption that each node only knows their own P ’s and Q’s
allows independent design of the peripheral nodes, as opposed
to the joint design of all sensors which may be impractical.
Note that without independence across the nodes, joint design
might be necessary. We assume that the network subject to
this study is designed such that the peripheral nodes have
a spatial configuration that yields, or at least approximates,
independence across nodes.

�

III. PERFORMANCE TRADEOFFS UNDER MEMORYLESS
QUANTIZATION

We continue to focus on one of the nodes, omitting its super-
script (i) for notational simplicity. In the previous section, we
defined the scores as St = ft(Lt). We analyze the performance
of this scheme. Let the type-I and type-II errors be

αt := P (S̄t < ηt)

βt := Q(S̄t ≥ ηt)
(4)

respectively. For the rest of the analysis we set the decision
threshold to

ηt =
1

t

t∑
τ=1

EP [St]− ε (5)

with ε > 0, and where EP [.] denotes expectation under P .
Although we previously assumed that the center does not
know the statistics of the node, this threshold adjustment is
without loss of generality. The node sends St − EP [St] and
by setting ηt = −ε, the performance remains the same and the
test does not require knowledge of P or Q. Moreover, since
centering of St does not change HP (St), the communication
constraints are not violated. Therefore, for simplicity let us
allow the center to set its threshold as in (5).

In light of Remark 1, we aim to keep αt vanishing while
guaranteeing exponential decay of βt.

Definition 1. Given P and Q, (R, θ) is an achievable pair if
there exists a sequence {ft} of simple functions and thresholds
{ηt} such that
(a) 1

t

∑t
τ=1HP (Sτ ) ≤ R for all t

(b) limt→∞ αt = 0
(c) lim inft→∞

1
t log 1

βt
≥ θ

1We adopt the definition of entropy from [19], which makes it necessary
that S is discrete for HP (S) to be finite.



where St, αt, βt are defined in the beginning of this section.

We characterize the decay of βt in the following theorem
given in two parts.

Theorem 1. Let θ∗(R) := sup{θ : (R, θ) achievable} and
define

θt(R) := sup
{f1,...,ft}∈Ft(R)

1

t

t∑
τ=1

(
EP [Sτ ]− logEP [eSτ−Lτ ]

)
(6)

where Ft(R) is the set of all simple real-valued functions
f1, . . . , ft on (R,B(R)) such that 1

t

∑t
τ=1HP (Sτ ) ≤ R.

Then,
(i) limt→∞ θt(R) equals to the upper concave envelope
θ̆1(R) of

θ1(R) = sup
f1∈F1(R)

EP [S1]− logEP [eS1−L1 ] (7)

(ii) θ∗(R) = lim
t→∞

θt(R) = θ̆1(R).

In words, for any scheme under the communication constraint
in (3), and with vanishing type-I error; the worst-case type-
II error decay θ — defined in Definition 1 (c) — cannot be
greater than θ∗(R).

Proof: See Appendix A in [20].
Even though (7) is a single letter expression, the opti-

mization domain is non-convex. Consequently, computation
of θ∗(R) does not appear to be easy. We now propose the
following single-letter optimization problem, which turns out
to be (i) tractable, (ii) yield an upper bound to θ∗(R), (iii) be
a good approximation to θ∗(R) for high R:

θU (R) := sup
pV |U

EP [V ]− logEP [exp(V − U)]

s.t. IP (U ;V ) ≤ R
(8)

where U has the same distribution as Lt = log p(Xt)
q(Xt)

,
IP (U ;V ) is the mutual information under P , and the transition
kernel pV |U : B(R) × R → [0, 1] relates to the (possibly
randomized) quantization procedure V = f(U). This suggests
that the tradeoff may be studied with methods of rate-distortion
theory. Observe that (i) the set of feasible pV |U ’s is larger
than the set of simple functions, and (ii) the communication
constraint is relaxed as IP (V ;U) ≤ HP (V ). Hence, θU (R) ≥
θ1(R).

It is immediate that θU (R) is non-decreasing. It turns out
that it is also concave and thus continuous, as we will see
shortly. Considering the extremes, (i) if R→∞, one can set
V = U and θU (R) → D(P ||Q) and (ii) if R = 0, one does
no better than choosing V as a constant and θU (R) = 0.

A. Concavity of θU (R)

The following lemma gives another characterization of
θU (R), from which we conclude that it is concave.

Lemma 1. Let

θ̃U (R) := sup
pV |U

EP [V ]− EP [exp(V − U)] + 1

s.t. IP (U ;V ) ≤ R.
(9)

Then, θU (R) = θ̃U (R).

Proof: See Appendix B in [20].
Note the equivalence between −θ̃U (R) and the distortion-

rate curve D(R) for the distortion function d(u, v) = −v +
ev−u − 1 [21, Chapter 10]. Since the distortion-rate curve is
known to be convex, θ̃U (R) = θU (R) is concave.

Corollary 1. θU (R) ≥ θ̆1(R) = θ∗(R).

Proof: θU (R) is a concave function that dominates θ1(R).
Hence it also dominates θ̆1(R).

Although the formulations (8) and (9) are the same, for any
candidate pV |U , (8) gives a tighter bound to θ∗(U). Hence, we
primarily study the formulation (8) for the rest of this work.

B. The gap function δU (R)

Starting from this section, we assume all expectations
(including the mutual information) are taken under P , which
we omit from subscripts. Recall that θU (R) can at most be
D(P ||Q) = E[U ]. Hence, the tradeoff can also be studied by
the gap to the optimal; δU (R) := D(P ||Q)− θU (R). Thus,

δU (R) = inf
pV |U

logE[exp(V − U)]− E[V − U ]

s.t. I(U ;V ) ≤ R
(10)

which is also equivalent, by defining Z := V − U , to

δU (R) = inf
pZ|U

logE[exp(Z)]− E[Z]

s.t. I(U ;U + Z) ≤ R.
(11)

Note that δU (R) is convex and non-increasing for R > 0,
therefore its generalized inverse RU (δ) exhibits the same
properties for δ > 0 as well.

IV. CALCULATION OF δU (R)

Recall the definition of δU (R) given in (11). First, we obtain
a simple upper bound for δU (R) as follows. Choose a Gaussian
Z with variance σ2 and independent of U . Then,

δ = logEP [eZ ]− EP [Z] = σ2/2 (12)

and
R = I(U ;U + Z) = h(U + Z)− h(Z)

≤ 1

2
log(1 + Var(U)/σ2).

(13)

where h(.) denotes the differential entropy. Thus,

RU (δ) ≤ 1

2
log

(
1 +

Var(U)

2δ

)
. (14)

Observe that (14) is not tight for low rates, i.e., it approaches 0
only when δ →∞, whereas the actual RU (δ) curve is known
to be 0 at δ = D(P ||Q). Since any (δ,R) pair is achievable by
time-sharing, any convex combination of (D(P ||Q), 0) with
the upper bound curve is achievable. Taking such combina-
tions, one can tighten the upper bound, see Figure 1 for an
example.

If we attempt to calculate the exact curve, at first glance one
might argue that the problem is a concave minimization, hence
it might not be amenable to convex optimization methods.
However, we exploit the property of the mutual information



I(X;X+Z) being invariant under any shift of Z. Thus, adding
the constraint E[Z] = 0 does not change the feasible region.
After adding the constraint, we formulate the problem as

δU (R) = inf
pZ|U

logE[exp(Z)]

s.t. I(U ;U + Z) ≤ R
E[Z] = 0

(15)

and any infimizer pZ|U of the above problem infimizes the
same problem with objective function E[exp(Z)] as the log-
arithm is a strictly increasing function.

From now on, consider the following linear optimization on
a convex domain:

∆U (R) := inf
pZ|U

E[exp(Z)]

s.t. I(U ;U + Z) ≤ R
E[Z] = 0

(16)

Observe that ∆U (R) is non-increasing, convex, hence contin-
uous and limR→∞∆U (R) = 1. Suppose U is a continuous
random variable. Since 1 is only attained when Z is chosen
identically equal to 0, and since this cannot happen at a finite
R, this shows that the function is also strictly decreasing. Also
note that log ∆U (R) = δU (R), which shows that δU (R) is also
strictly decreasing. The boundary to the feasible (∆, R) pairs
can also be found by the curve

RU (∆) := inf
pZ|U

I(U ;U + Z)

s.t. E[exp(Z)] ≤ ∆

E[Z] = 0.

(17)

This formulation is useful to find a lower bound for feasible
(∆, R) pairs. We follow a method that is similar to the one
that yields a lower bound for the rate distortion problem under
mean square distortion.

Lemma 2. Define the parametric curve

RU (α) = h(U)− log(Γ(α)) + αψ(α)− α,
δ(α) = log(α)− ψ(α), α > 0,

(18)

where Γ(.), ψ(.) are gamma and digamma functions respec-
tively. Then RU (δ) ≤ RU (δ).

Proof: See Appendix C in [20].
Recall that we have RU (δ) ≤ 1

2 log(1 + Var(U)
2δ ) from

(14). Now we obtain another upper bound for U with a
differentiable probability density function pU (u) to show that
the lower bound is approached at high rates with additive
Gaussian noise. Note that h(U + Z) in (13) is a function of
σ. We expand h(U + Z) around σ = 0. From De Brujin’s
identity [21] and Taylor’s theorem it is known that

h(U + Z) ≤ h(U) +
σ

2
J(U) (19)

where J(U) := E
[(

d
du log pU (U)

)2]
is the Fisher information

of U , [21]. The bound above makes sense only for finite J(U).
Assuming finite J(U), we obtain

RU (δ) ≤ h(U) +

√
δ

2
J(U)− 1

2
log(4πeδ). (20)

Fig. 1. The solid curve RU corresponds to the lower bound (18), the dashed
curve corresponds to the upper bound in (14) of a Gaussian LLR U and the
dotted line segment (TS) corresponds to boundary of the pairs achievable with
time sharing. No point in the shaded region is achievable. The mean of U is
E[U ] = D(P ||Q) = 10, Var(U) = 2E[U ] = 20 and h(U) ≈ 2.9.

Now we approximate (18) for large α. From [22], we use
the inequalities log(α) − 1

2α ≥ ψ(α) ≥ log(α) − 1
2α −

1
12α2

and Stirling’s approximation log(Γ(α)) ≤ α log(α) − α −
1
2 log(α) + 1

2 log(2π) +O(1/α) to obtain

RU (δ) ≥ h(U)− 1

2
log(4πeδ)−O(2δ), (21)

which asymptotically matches the upper bound given in (20).
This is consistent with the behavior of the curves in high-rate
regime in Figure 1.

V. HIGH-RATE COMPRESSION REGIME

In this section, we evaluate the performance of lattice
quantization and show that at high rates the lower bound (18)
can be approached within a small gap. We refer to [23] for
a detailed definition of lattice quantization procedures. Again,
assume U has the same distribution as the LLR Lt, which
admits a v-regular probability density.

Definition 2 (v-regular density, [23]). Given v : R → R, a
continuous and differentiable density function p is called v-
regular if

∣∣ d
dup(u)

∣∣ ≤ v(u)p(u).

It is shown in [23] that when U has a v-regular density,
the entropy of the lattice-quantized U — denoted by V to be
consistent with the previous section — is upper bounded by

H(V ) ≤ h(U)− log r + rCU (r) (22)

where r is the length of quantization intervals and CU (r)
is a function of r depending on the density of U and v(u).
Moreover, if v(u) is Lipschitz-continuous almost everywhere
and if E[v(U)] is finite, then CU (r) can be shown to be
bounded for bounded r, see Appendix-D in [20].



Given a lattice quantization scheme, we want to relate δ and
r in order to upper bound (22) in terms of δ. Observe that

δ = log(E[eV−U ])− E[V − U ]

≤ E[eV−U ]− E[V − U ]− 1

= E[eZ − Z − 1]

(23)

and since |Z| ≤ r/2 surely, eZ − Z − 1 ≤ er/2 − r/2 − 1.
Consequently, δ ≤ er/2 − r/2 − 1. Now, we can obtain an
achievability bound in parametric form based on the lattice
quantizer described above. Using (22), we have

RU (r) := h(U)− log r + rCU

δ(r) := er/2 − r/2− 1
(24)

and the (δ,RU ) pairs lie above the curve RU (δ). Now observe
that for low δ, i.e. for small radius r, δ(r) = r2

8 + O(r3). In
fact, δ(r) ≤ r2

4 (k2e1/k − k − k2) for r < 2/k, which allows
us to conclude that all (δ,RU ) pairs lie under

RU (δ) := h(U)− 1

2
log(4πeδ)

+
1

2
log(πe(k2e1/k − k − k2)) + o(1) (25)

which for instance at k = 10 gives at most ≈ 0.743 nats
≈ 1.072 bits of difference from the lower bound RU (δ) in
(21). As k →∞, the lower bound in (21) is approached with
a difference of 1

2 log(πe/2) ≈ 0.726 nats ≈ 1.047 bits; this is
the gap we mentioned in Section I. Recall that all achievable
(δ,R) pairs must lie above the RU curve described in (21).
Equation (25) shows the existence of (δ,R) pairs that live
close to the RU curve, and these pairs are achieved with a
lattice quantization scheme.

Fig. 2. Plot of the required number of bits (R) versus δ in logarithmic scale
at high rate regime for the same Gaussian U and with same RU (δ) given in
Fig. 1. The dashed curve is the upper bound RU (δ) in (24) obtained with a
lattice quantization scheme. No point in the shaded region is achievable. The
difference of 1.047 bits is visible for low δ.

Remark 3. Although we have not imposed any communica-
tion constraints under H1, the average number of bits sent is

not arbitrarily large under certain circumstances. Suppose we
generate a standard binary entropy code on S, which assigns
a length dlog2

1
PS(s)

e to symbol s ∈ S. Then the expected
length of the code under Q will be less than (HQ(S) +
D(QS ||PS)) log2 e+ 1 ≤ (HQ(S) +D(Q||P )) log2 e+ 1 bits
per symbol, with QS and PS denoting the distribution of S
under H1 and H0 respectively. The last inequality is a result
of data processing inequality. We therefore conclude that if
HQ(S) and D(Q||P ) are finite, the expected number of bits
can be kept finite under H1 as well.

�

VI. MULTIPLE-NODE CASE

The study until this point can be extended to multiple nodes.
Suppose m nodes communicate with the center, where at time
t each node i observes X(i)

t , computes the LLR L
(i)
t ; and

is subject to a rate constraint Ri. We give an extension of
Definition 1 to multiple nodes.

Definition 3. Given {P (i)}mi=1 and {Q(i)}mi=1,
(R1, . . . , Rm, θ) is an achievable pair if there exists m

sequences {f (1)t }, . . . , {f
(m)
t } of simple functions and

thresholds {ηt} such that
(a) 1

t

∑t
τ=1HP (S

(i)
τ ) ≤ Ri for all t and for all i

(b) limt→∞ αt = 0
(c) lim inft→∞

1
t log 1

βt
≥ θ

where S
(i)
t = f

(i)
t (L

(i)
t ), and αt, βt are type-I and type-II

errors respectively, defined in the beginning of Section III.

Define θt(R1, . . . , Rm) :=
∑m
i=1 θ

(i)
t (Ri), where θ(i)t (Ri)

is defined similarly as in Theorem 1, but with respect to node i.
Since we assume independence across nodes and if we follow
the same steps we did in the proof of Theorem 1, we get

θ∗(R1, . . . , Rm) := sup{θ : (R1, . . . , Rm, θ) achievable}
= lim
t→∞

θt(R1, . . . , Rm)

=

m∑
i=1

θ̆
(i)
1 (Ri)

≤
m∑
i=1

D(P (i)||Q(i))− δL(i)(Ri),

(26)

where δL(i)(Ri) are defined as in Section III-B. This is
intuitive because there is independence across the nodes and
the decay rate should be the sum of individual decay rates.
Also the upper bound can be reached closely with lattice
quantization followed by lossless coding at each node, inde-
pendently, as we have shown in Section V.

VII. CONCLUSION AND DISCUSSION

In this work, we have studied a distributed binary hypothesis
testing problem where the agents quantize and forward each
observation to a central processor. We have proved that for all
schemes that send R bits on average under the null hypothesis
and have a vanishing type-I error, the exponential decay rate
of type-II error, which is defined as θ in Definition 1, cannot
be greater than θ∗(R). It turns out that θ∗(R) is difficult
to calculate. Therefore, we derived the lower bounds (18),
(21) in closed form for the achievable (δ,R) pairs, where



δ := D(P ||Q) − θ quantifies the gap to the optimal decay
rate D(P ||Q). Lastly, we have shown that if each node (i)
calculates the log-likelihood ratio of its observation and (ii)
performs lattice quantization on the log-likelihood ratio, the
lower bound in (21) is approached closely up to a 1.047 bits
of difference.

One may ask what would the curves look like if we
allowed quantization of multiple data, i.e., fkt(x1, . . . , xk)
for a finite k. We have preliminary results suggesting that
the curves may be as follows. Let R(k)

U (δ) be the curve
defined similarly for data consisting of k elements. Then
R

(k)
U (δ) = 1

kRU1+···+Uk(kδ). Proceeding in a similar way to
obtain (6), we observe that

R
(k)
U (δ) ≤ 1

2k
log

(
1 +

Var(U)

2δ

)
. (27)

This suggests that the average number of bits sent under H0

can be made arbitrarily small for large k.
The argument above may therefore recover the case that at

zero rate one may not do worse than the optimal test. This is
easily seen for the 1-node case. Suppose the node performs
its own Neyman-Pearson test and sends its decision at time t,
represented by one bit. Therefore the rate is 1/t→ 0 and the
center performs optimally. Observe that this scheme ensures
zero-rate communication under both H0 and H1. Also for
multiple-node case, there is a simple fusion rule that attains
the optimal exponent which is based on each node performing
their own tests: Decide H1 if at least one node decides H1.
Whether to give such autonomy to every single node is a
question of design, e.g., a faulty node with full autonomy may
significantly increase the type-I error.

The individual gap functions δL(i)(Ri) for each node i can
be used if the communication constraints are redefined such
that subsets of nodes are restricted to communicate, e.g., node
1, 2 and 3 can together send at most R(1,2,3) bits in total. Then
one can minimize the sum of gap functions of node 1, 2, and
3, i.e., δL(1)(R1) + δL(2)(R2) + δL(3)(R3), over the sum rate
constraint R1+R2+R3 ≤ R(1,2,3) with an aim to find a lower
bound to the achievable exponents. An extension of this work
could be to study a similar setting in decentralized hypothesis
testing problem, where a fusion center does not exist and the
nodes rely on peer-to-peer communication.
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