
ADAPTIVE DIFFUSION WITH COMPRESSED COMMUNICATION

Marco Carpentiero? Vincenzo Matta? Ali H. Sayed†

? DIEM, University of Salerno, Fisciano (SA), Italy
† EPFL, School of Engineering, CH-1015 Lausanne, Switzerland

ABSTRACT

We consider multi-agent networks that aim at solving, cooperatively
and online, distributed optimization problems under communica-
tion constraints. We propose the ACTC (Adapt-Compress-Then-
Combine) diffusion strategy, which leverages differential random-
ized compression to infuse the classical ATC strategy with the abil-
ity to handle compressed data. We consider the flexible setting of
directed graphs and left-stochastic policies, and require strong con-
vexity only at a network level (i.e., some agents might even have
non-convex risks). We prove that each agent is able to learn the
optimal solution up to a small error on the order of the step-size,
achieving remarkable savings in terms of bits exchanged between
neighboring agents.

Index Terms— Distributed optimization, adaptation and learn-
ing, randomized quantizers, differential quantization.

1. INTRODUCTION AND RELATED WORK

The continuous advances in the fields of statistical learning and
network science have made distributed optimization over networks
a steadily growing research area [1–10]. Distributed strategies of-
fer several advantages, such as scalability, possibility of working
with reduced-size and spatially dispersed datasets, and robustness
to failures. In addition, distributed cooperation allows the agents
to overcome their individual limitations, and to deliver superior
performance w.r.t. single-agent strategies [11, 12]. Since cooper-
ation requires exchange of information across spatially separated
agents, and since the transmitted information usually needs to be
compressed to meet communication constraints, data compression
becomes a critical part in the design of distributed strategies.

One critical difficulty in data compression for inferential prob-
lems is the lack of knowledge about the data distributions, since the
latter depend on the same unknown parameters that the agents are
trying to learn. This fact complicates the quantizer design. A break-
through in this problem is randomized quantization, whose foun-
dations can be traced back to the seminal works [13, 14], while its
potential for distributed inference was exploited in [15–17]. More
recently, the idea was applied to distributed optimization by means
of stochastic gradient algorithms in [18].

However, quantization errors can accumulate over successive it-
erations and impair the convergence of distributed strategies. By
calling upon the theory of differential/predictive quantization (e.g.,
the Σ∆ modulation scheme adopted in PCM [19]), the impact of
quantization errors can be reduced by leveraging the memory of re-
cursive implementations such as gradient descent [20–23]. Differ-
ential quantization aims at reducing the error variance by compress-
ing only the difference (i.e., the innovation) between subsequent it-
erates. This is advantageous under a fixed budget of quantization

bits since the innovation typically exhibits a reduced range as com-
pared to the entire sample. Moreover, in view of the correlation that
exists between consecutive samples, quantizing the entire sample
would waste resources by transmitting redundant information. Some
information-theoretic bounds on the performance of non-stochastic
gradient descent under differential quantization appear in [24].

All the aforementioned works dealing with data compression for
distributed optimization focus on the case where agents communi-
cate with a fusion center, which carries out centralized gradient up-
date steps. In this work, we focus instead on adaptive networks,
namely, on fully decentralized architectures where each agent i) is
responsible for its own inference obtained through local interactions
with its neighbors; and ii) collects noisy streaming data to evalu-
ate stochastic instantaneous approximations of the actual gradients,
and must respond in real time to drifts in the underlying conditions.
Without compression constraints, typical adaptive strategies are con-
sensus or diffusion implementations [11]. Extending these strategies
to handle compressed data is nontrivial, since without proper de-
sign of the quantizers, significant bias would be introduced into the
learning algorithms. One early characterization of adaptive diffu-
sion under communication constraints was provided in [25], where
the errors arising from compression are modeled as noise over the
communication links.

Recent studies took into account the explicit encoder structure.
In particular, consensus strategies based on differential random-
ized quantization were proposed in [26], albeit with focus on the
diminishing step-size regime, which is not suited to the adaptive
setting [11]. Results about the regime of constant step-sizes are
available in [27], with reference to a primal-dual consensus strategy,
undirected graphs with symmetric and doubly-stochastic combina-
tion policies, and strongly-convex cost functions for all agents.

We can now list the main contributions offered in this work.
Our results (summarized in Theorem 1 further ahead) allow a thor-
ough characterization of the learning dynamics of adaptive diffusion
over communication-constrained networks. The analysis is carried
out under flexible assumptions, such as directed graphs and left-
stochastic combination policies, and a strong convexity assumptions
requested only at a network level, namely, the cost functions of the
individual agents need not be convex, provided that a suitable global
cost function is strongly convex.

Notation. Boldface letters denote random variables and normal
font letters their realizations. All vectors are column vectors. The
symbol 1L is the L × 1 vector with entries equal to 1, and IL is
the identity matrix of size L. For two square matrices X and Y , the
notation X ≥ Y signifies that X − Y is positive semidefinite. The
symbol E denotes the expectation operator. For a nonnegative func-
tion f(µ), the notation f(µ) = O(µ) signifies that ∃C > 0, µ0 > 0
such that f(µ) ≤ Cµ for all µ ≤ µ0.



2. MODEL AND ASSUMPTIONS

We consider a network of N agents solving a distributed optimiza-
tion problem. Each agent k = 1, 2, . . . , N, is assigned a local cost
function Jk(w) : RM → R, satisfying the following condition.

Assumption 1 (Smoothness). For all w ∈ RM , each cost function
Jk(w) is twice-differentiable and its Hessian matrix satisfies the Lip-
schitz condition∇2Jk(w) ≤ ηk IM , for some constant ηk > 0. �

One popular distributed optimization mechanism is the Adapt-
Then-Combine (ATC) diffusion strategy [4, 11]:

ψk,i = wk,i−1 − µk∇̂Jk(wk,i−1) [Adapt]

wk,i =

N∑
`=1

a`kψ`,i [Combine]
(1)

In (1), agents k = 1, 2, . . . , N , evolve over time i = 1, 2, . . . ,
by producing a sequence of iterates wk,i ∈ RM . The adaptation
step is a self-learning step, where each agent k at time i computes
a stochastic instantaneous approximation ∇̂Jk(wk,i−1) of the (un-
available) true gradient. Such approximation is scaled by a small
step-size µk > 0 to update wk,i−1 following the (stochastic) gradi-
ent descent. The maximum step-size and the scaled step-sizes will
be denoted by, respectively:

µ , max
k=1,2,...,N

µk, αk , µk/µ. (2)

The combination step is a social learning step, where agent k com-
bines the updated states received from its neighbors. In particular,
we model the links between agents through a directed graph. The
graph edges (i.e., links) are characterized by weights collected into
the combination matrix A = [a`k]. The combination process is a lo-
cal process where only neighboring agents interact, with the neigh-
borhood of agent k beingNk = {` = 1, 2, . . . , N : a`k > 0}.

Assumption 2 (Strongly-Connected Network). Given any pair of
nodes (`, k), paths with nonzero weights exist in both directions (i.e.,
from ` to k and vice versa), and at least one agent k in the entire
network has a self-loop (akk > 0). �

Assumption 3 (Left-Stochastic Policy). The entries of the combina-
tion matrix A fulfill the following conditions, for k = 1, 2, . . . , N :

a`k ≥ 0,

N∑
`∈Nk

a`k = 1, a`k = 0 for ` /∈ Nk. (3)

�

Under Assumptions 2 and 3, matrix A is primitive. In view of
the Perron-Frobenius theorem, this implies the existence of the Per-
ron eigenvector π = [π1, π2, . . . , πN ]>, having strictly positive en-
tries and satisfying the equalities Aπ = π and 1>Nπ = 1.

The ATC strategy was characterized in great detail in previous
works [4–6, 11]. In particular, it was shown that, for sufficiently
small µ, the ATC iterates of all agents converge to a small neigh-
borhood of the value w? that minimizes the following global cost
function:

J(w) =

N∑
k=1

pkJk(w), (4)

where pk = αkπk. With doubly-stochastic policies and equal step-
sizes (i.e., with pk = 1/N for all k), minimizing J(w) amounts to

minimizing the plain sum of the local cost functions. On the other
hand, left-stochastic policies and non-identical step-sizes open sev-
eral additional possibilities as regards to tuning the weights {pk},
which can be useful, e.g., to explore different Pareto solutions to
suitable multi-objective problems [28]. Remarkably, the ATC analy-
sis carried out in [5,6,11] does not assume convexity of all local cost
functions Jk(w), relying only on the following global condition.

Assumption 4 (Global Strong Convexity). The aggregate cost func-
tion J(w) in (4) is ν-strongly convex, namely, a positive constant ν
exists such that

∑N
k=1 pk∇

2Jk(w) ≥ ν IM . �

For example, global strong convexity can be satisfied even when
only a single agent has a strongly-convex cost function, with the
other agents having possibly non-convex functions.

3. ACTC DIFFUSION STRATEGY

The ATC strategy assumes that perfectly reliable information is ex-
changed between agents (i.e., no compression). We now introduce
the ACTC diffusion strategy, which incorporates data compression.
The ACTC time-evolution can be described through three time-
varying variables: an intermediate update ψk,i, a differentially-
quantized update qk,i, and the current minimizer wk,i. At time
i = 0, each agent k is initialized with an arbitrary state qk,0. Then,
agent k receives {q`,0} from its neighbors ` ∈ Nk (such initial
sharing is performed with infinite precision, which is immaterial to
our analysis since it happens only once), and computes an initial
minimizer wk,0 =

∑
`∈Nk

a`kq`,0. Then, for every i > 0, each
agent k performs the operations:

ψk,i = wk,i−1 − µk∇̂Jk(wk,i−1)

q`,i = q`,i−1 + ζQ`(ψ`,i − q`,i−1) ∀` ∈ Nk

wk,i =
∑
`∈Nk

a`kq`,i
(5)

Comparing (5) against (1), we see the appearance of an intermediate
compression step, where agent k receives from its neighbors ` ∈ Nk

the compressed values Q`(ψ`,i − q`,i−1). The bold font used for
Q`(·) highlights that random compression operators are permitted.
The compression step shows clearly the usage of differential quanti-
zation, since we see that the operator Q`(·) encodes only the inno-
vation, namely, the difference between the update ψ`,i and the old
state q`,i−1. Similar forms of error compensation are not unique to
schemes with compressed data. One useful example is exact diffu-
sion [29, 30] (without compression), where the true gradient is ex-
actly available, and compensation is used to let the mean-square de-
viation vanish even with constant step-size. Since the quantization
operation is applied to differences, the states q`,i must be updated
by adding the compressed difference to the previous value1 q`,i−1.
Such update is performed through a weighting parameter ζ ∈ (0, 1),
which is useful to control the stability of the algorithm. Finally,
agent k combines linearly the updated quantized states received from
its neighbors, scaled by the convex combination weights a`k.

3.1. Compression operators

Assumption 5 (Randomized Compression Operators). Given an in-
put value x ∈ RM , the randomized operator Q : RM → RM

1For all ` ∈ Nk , the value q`,i−1 is known to agent k, since the initial
value q`,0 is known, and the subsequent values up to q`,i−1 can be itera-
tively constructed by storing only the most recent quantized difference.



satisfies the following properties, for a certain ω > 0:

E
[
Q(x)

]
= x [unbiasedness] (6)

E ‖Q(x)− x‖2 ≤ ω ‖x‖2 [non blow-up property] (7)

�
When we say that the operator is randomized we mean that, for

a deterministic input x, the output Q(x) is a random variable. The
expectations in (6)-(7) are accordingly evaluated w.r.t. the random-
ness inherent toQ(·). Whenever we apply the operator to a random
input x, we assume that the random mechanism governing Q(·) is
independent of x. Since we allow each agent k to employ a differ-
ent compression operatorQk(x), we can have different compression
parameters ωk, with their maximum value being denoted by:

Ω , max
k=1,2,...,N

ωk. (8)

Examples of operators belonging to the class in Assumption 5 are
the sparsifying compression operator [22] and the randomized quan-
tizer [18]. Let us focus on the latter operator, which can be briefly de-
scribed as follows. Given an analog value x ∈ RM , its norm ‖x‖ is
assumed to be transmitted as virtually unquantized (i.e., represented
with machine precision). Then, each entry xm of x is compressed as
follows. One bit is spent to represent the sign of xm, whereas r bits
are employed to represent |xm| by randomly rounding it to one of
the endpoints of the quantization interval it belongs to. We refer the
reader to [18] for a detailed illustration of the pertinent algorithm.
In summary, assuming, e.g., machine precision at 32 bits, the ran-
domized quantizer in [18] requires 32 + M × (r + 1) bits for each
vector to compress. Given imax iterations, the expense of each agent
is then: (

32 +M × (r + 1)
)
imax. (9)

Moreover, it was shown that, as the bit-rate r increases, the compres-
sion factor ω of the randomized quantizer in [18] scales as:

ω ≈ 2−2r. (10)

4. ACTC LEARNING DYNAMICS

We are now ready to illustrate the main result of this work, namely,
that the the ACTC mean-square deviation approaches O(µ), i.e., for
small µ each agent learns well even in the presence of quantization
errors and gradient noise. The derivations can be found in [31].
They are demanding due to the nonlinear and coupled nature of the
network dynamics, and are omitted for space constraints. To state
Theorem 1 further ahead, we need to introduce a technical assump-
tion on the gradient noise process∇Jk(wk,i−1)− ∇̂Jk(wk,i−1).

Assumption 6 (Gradient Noise). For all i > 0, conditionally on the
previous-step quantized iterates {q`,i−1}N`=1, the gradient noise has
zero mean and obeys the bound, for some constants βk and σk:

E
[
‖∇Jk(wk,i−1)−∇̂Jk(wk,i−1)‖2

∣∣{q`,i−1}N`=1

]
≤ β2

k‖wk,i−1 − w?‖2 + σ2
k, (11)

where we recall that w? is the minimizer of the cost function in (4)
and thatwk,i−1 =

∑
`∈Nk

a`kq`,i−1. �

We continue by introducing the Jordan decomposition of the
transposed combination matrix,

A> , V −1JtotV, Jtot = diag{J1, J2, . . . , JB}. (12)

In (12), Jn = λnILn +ULn is the n-th Jordan block associated with
eigenvalue λn, where ULn is a square matrix of size Ln that has all
zero entries, but for the superdiagonal, which has entries equal to
1. In view of Assumptions 2 and 3, matrix A has a unique largest
magnitude eigenvalue equal to 1, and we sort the remaining eigen-
values as |λ2| ≥ |λ3| ≥ . . . ≥ |λB |. It is convenient to introduce
the block-diagonal matrices:

Λ , diag{λ2IL2 , λ3IL3 , . . . , λBILB}, (13)

U , diag{UL2 , UL3 , . . . , ULB}. (14)

Let also
∆ = ‖V −1‖2 max

`=2,3,...,N
k=1,2,...,N

|v`k|2 ωk, (15)

where v`k is the (`, k)-entry of V , and introduce the matrix

E = E0 + 16 ζ2 ∆1N−11
>
N−1, (16)

with

E0 =

(
(1− ζ)IN−1 + ζ

ΛΛ∗

|λ2|

)
+

2ζ

1− |λ2|
U. (17)

The spectral radius of E will be denoted by ρ(E). Finally, let

an ,
2|λ2|

1− |λ2|
1

|λ2| − |λn|2
, (18)

and

γ(A) ,
B∑

n=2

|λ2|
|λ2| − |λn|2

(
aLn+1
n − 1

(an − 1)2
+
Ln + 1

an − 1

)
. (19)

Theorem 1 (ACTC Learning Behavior). Let

ρcen , (1− µ ζ ν)2, ρnet = ρ(E) + ε < 1, (20)

for some ε > 0. If ζ < (16∆γ(A))−1, for sufficiently small step-
size µ the evolution of the mean-square deviation of each agent k
can be cast in the form, for all i > 0:

E‖wk,i − w?‖2

≤ O(1) ρinet︸ ︷︷ ︸
network convergence to
a coordinated evolution

+O(1) ρicen︸ ︷︷ ︸
coordinated
evolution

+ O(µ) ρi/4cen︸ ︷︷ ︸
higher-order correction

relative to the transient phase

+

steady-state error︷ ︸︸ ︷
µ ζ

∑N
`=1 π` α

2
`σ

2
`

2ν︸ ︷︷ ︸
uncompressed ACTC

+ cq Ω (1 + Ω)︸ ︷︷ ︸
compression loss

+ O(µ3/2),

(21)

where cq > 0 is a suitable constant independent of µ and i. �

Result (21) leads to a sharp description of adaptive diffusion
with compressed communication, in terms of: i) two main transient
terms that vanish as i→∞ with different rates; and ii) two steady-
state terms, one corresponding to data shared with infinite precision,
the other embodying the effect of compression.

— Transient Phases. The rate ρnet depends only on the parame-
ter ζ, and on the network connectivity properties through the eigen-
spectrum of the combination matrix A. As a result, for sufficiently
small µ we have that ρcen > ρnet and the associated transient (rel-
ative to the convergence of the agents to a coordinated evolution)



dies out fast (Phase I). After this initial transient, a second transient
dominates (Phase II), which is relative to the slower process of the
agents’ convergence to the steady-state. Remarkably, these two dis-
tinct phases have been shown to coexist also in adaptive learning
over networks without communication constraints [5, 6, 11].

— Compression Loss. After transient Phase II, the following
upper bound on the steady-state mean-square deviation holds:

MSDACTC = µ ζ

(∑N
`=1 π` α

2
`σ

2
`

2ν
+ cq Ω (1 + Ω)

)
+O(µ3/2).

(22)
First of all, the product µ ζ stays fixed once we set a convergence
rate ρcen. Then, for a given ρcen, the mean-square deviation is com-
posed of two main terms: i) the error, independent of the amount
of compression, proportional to an average over the Perron weights
{π`} of the gradient noise powers {σ2

`}; ii) the compression loss,
which is an increasing function of the compression factor Ω.

— Comparison Against Classical ATC. From (1) and (5), we see
that the uncompressed ACTC (i.e., whenQ`(x) = x) coincides with
the classical ATC when ζ = 1. Accordingly, by setting ζ = 1 and
Ω = 0 in (22), we get an upper bound on the mean-square deviation
of the ATC diffusion strategy:

MSDATC = µ

∑N
`=1 π` α

2
`σ

2
`

2ν
+O(µ3/2). (23)

To compare (23) against (22), we need to set the same convergence
rate, which is tantamount to setting the step-size µ in (23) and the
product µ ζ in (22) equal to the same value, yielding the following
scaling law w.r.t. the compression loss factor Ω:

MSDACTC −MSDATC ∼ Ω (1 + Ω). (24)

For example, for the randomized quantizer described in Sec. 3.1, us-
ing (10) and (24), we conclude that, for sufficiently small step-sizes
we have MSDACTC − MSDATC ∼ 2−2rmin (where rmin is the
smallest resolution across the agents), which leads to the following
insightful conclusion. The inference (i.e., estimation) error on the
desired parameterw? decouples into two terms: a constant inference
error that corresponds to the performance achievable without com-
pression plus a reproduction error that arises from data compression
and vanishes exponentially fast with the bit-rate.

5. ILLUSTRATIVE EXAMPLE

As an application of the ACTC diffusion strategy, we consider the
scenario where N agents aim at solving a regression problem in a
distributed way. Each agent k observes a flow of streaming data
dk,i ∈ R and regressors uk,i ∈ RM , which obey the model:

dk,i = u>k,iw
? + vk,i k = 1, 2, . . . , N, (25)

where w? ∈ RM is an unknown (deterministic) parameter vector
and vk,i ∈ R acts as noise. The goal is to to estimate the unknown
w?, which corresponds to the optimization problem:

min
w∈RM

E

[
N∑

k=1

pk
(
dk,i − u>k,iw

)2]
. (26)

Processes {uk,i} and {vk,i} are independent over time and across
agents. The noise variables are zero-mean Gaussian with variances
different across agents, and chosen uniformly at random in the inter-
val (0.1, 0.5). The entries ofu1,i are independent standard Gaussian

Fig. 1. Mean-square deviation of agents 3, 4, 5, 6, 7 as a function of
time, for different bit-rates. The simulation setting is described in
Sec. 5. All errors are estimated by means of 102 Monte Carlo runs.

variables, while for agents k = 2, 3, . . . , N the firstM−1 entries of
uk,i are independent standard Gaussian variables, and the last two
entries are equal. As a result, the regressor covariance matrices of
these agents are singular, ensuring only convexity of their individual
cost functions. The global cost function in (4) is strongly convex
since the regressor covariance matrix of agent 1 is invertible.

In Fig. 1, we examine the learning performance of the ACTC
diffusion strategy as a function of the iteration i, for different quan-
tizers’ resolutions. The regression problem has dimensionalityM =
50. The network is made of N = 10 agents that interact over the
topology displayed in the top-right panel, employing a left-stochastic
policy defined according to the averaging rule [11]. We set ζ = 0.15,
and equal step-sizes µk = µ = 6×10−2. All agents employ the ran-
domized quantizers described in Sec. 3.1 and use the same number
of bits r, ranging from 1 to 4.

The behavior observed in Fig. 1 matches the results in Theo-
rem 1: i) for all bit-rates, there is a transient governed by the pre-
dicted rate ρcen; ii) higher-order discrepancies are absorbed into an
initial, much faster, transient; iii) the ACTC errors converge to dif-
ferent steady-state values that, yet for relatively low bit-rates, ap-
proach the performance of the ATC diffusion strategy. The magenta
curve refers to the case where all agents are singular (here we used
classical ATC to give them an advantage), and shows that the agents
deliver poor performance. In contrast, when N − 1 singular agents
cooperate with a farsighted agent, the distributed information shar-
ing drives them to the correct vector w?, even with compressed data.

It is useful to evaluate the savings achieved with the ACTC strat-
egy. With reference to Fig. 1, for the time needed to enter reliably
the steady state (imax ≈ 3000), and using r = 2 bits, we get:

rACTC = (32 + 50× 3)× 3000 = 546 kbit. (27)

For the plain ATC strategy, where each entry of the vector to be
quantized is represented by 32 bits, we get:

rATC = 32× 50× 3000 = 4.8 Mbit, (28)

implying a remarkable gain of about one order of magnitude. This
gain should be evaluated in relation to the loss in mean-square de-
viation. We see that we lose ≈ 4 dB, which is definitely tolerable,
especially in the light of the remarkable bit-rate savings.
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