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ABSTRACT
This paper investigates the effect of combination policies on
the performance of adaptive social learning in non-stationary
environments. By analyzing the relation between the error
probability and the underlying graph topology, we prove that
in the slow adaptation regime, combination policies with a
uniform Perron eigenvector will provide the smallest steady-
state error probability. This result indicates that in terms
of learning accuracy, doubly-stochastic combination poli-
cies yield optimal performance. Moreover, we estimate the
adaptation time of adaptive social learning in the small signal-
to-noise regime and show that in this regime, the influence of
combination policies on the adaptation time is insignificant.

Index Terms— Social learning, combination policy, large
deviations, adaptation time.

1. INTRODUCTION

Social learning is an inference process over multi-agent net-
works where agents work collaboratively to identify the true
state from a set of admissible hypotheses. In each step, agents
update their belief by combining the new local observations
with the information from their neighboring agents using a
given combination policy.

In recent years, variations of social learning strategies
have been proposed, which provably enable truth learning for
all agents. Representative algorithms include the linear social
learning algorithms [1–3], log-linear social learning algo-
rithms [4–7] and some newly proposed algorithms [8, 9]. All
these variants provide almost-sure convergence guarantees
for the learning process. As pointed out in [10], a remarkable
learning performance, however, comes at the cost of reduced
adaptation capabilities. Agents behave stubbornly when faced
with state changes, which is detrimental for social learning in
non-stationary environments.

To address this difficulty, the work [10] introduced an
adaptive social learning (ASL) algorithm, which greatly im-
proves the agents’ adaptation ability for tracking drifts in the
statistical properties of the data. This was achieved by intro-
ducing a new parameter δ to control the amount of weighting
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given to recent observations in relation to past observations.
The parameter δ was shown to control a fundamental trade-
off between steady-state learning performance and adaptation
ability. In particular, it was shown that in the small-δ regime,
the error probability decays exponentially with 1/δ. More-
over, the decaying rate is affected by the statistical properties
of the data and the centrality measure of each agent.

The centrality of each agent is a function of the graph
topology and the combination policy (left or doubly-stochastic)
used by the social learning algorithm. In this work, we inves-
tigate the influence of combination policies on the learning
performance. A similar problem has been considered in pre-
vious studies on learning methods, e.g., [7, 11]. However,
since the error probability converges to zero almost surely
in the non-adaptive scenario, the purpose of optimizing the
combination policy in [7, 11] was only meant to accelerate
the convergence rate of the learning process.

In the context of adaptive social learning, the steady-state
error probability is non-zero, but decays exponentially with
1/δ. We thus formulate the optimization of the combina-
tion policy as finding the centrality vector (Perron eigenvec-
tor) that results in the largest error exponent of the steady-
state error probability. Based on the large deviation anal-
ysis from [10], we prove that the uniform Perron eigenvec-
tor is an optimal solution. A direct implication of this result
is that doubly-stochastic combination policies enable better
steady-state accuracy for small step-sizes. In addition, we
also discuss the effect of combination policies on the tran-
sient process of adaptive social learning. The adaptation time
of the ASL strategy, which is an important index of learning
behavior, is estimated and compared for different combina-
tion policies. Our results show that in the small signal-to-
noise ratio (SNR) regime, combination policies play a minor
role in influencing the adaptation time, and that it is sufficient
to rely on doubly stochastic matrices. This conclusion is in
contrast to the analogous result in non-adaptive social learn-
ing [7,11], where a positive relation between the informative-
ness of agents and the centrality of agents is highlighted for
improving the learning performance.

2. PROBLEM SETTING

We consider a collection of N agents working collectively to
agree on a hypothesis that best explains the streaming, dis-



tributed observations in the network. At each time instant i,
each agent k observes a private signal ξk,i (boldface notation
for random variables) belonging to a certain space Xk. The
private signals at every agent, which are assumed to be sta-
tistically independent over time and space after conditioning
on the true state, are realizations of a random variable fol-
lowing an unknown distribution Lk. The family of the dis-
tribution Lk is parameterized by H hypothesis θ ∈ Θ =
{θ0, θ1, . . . , θH−1}. The likelihood of the signal ξk,i con-
ditioned on hypothesis θ is denoted by

Lk(ξk,i|θ), ξk,i ∈ Xk. (1)

To infer the true model using adaptive social learning [10],
each agent k holds a local belief vector µk,i, which represents
a probability mass function over the set of hypotheses Θ. The
ASL algorithm [10] is described by:

ψk,i(θ) =
µ1−δ
k,i−1(θ)Lδk(ξk,i|θ)∑

θ′∈Θ µ
1−δ
k,i−1(θ′)Lδk(ξk,i|θ′)

(2a)

µk,i(θ) =
exp
{∑

`∈Nk a`k logψ`,i(θ)
}∑

θ′∈Θ exp
{∑

`∈Nk a`k logψ`,i(θ′)
} (2b)

where Nk is the set of neighbors of agent k, and a`k is the
combination weight that agent k places on the information re-
ceived from the neighboring agent `. The combination matrix
A = [a`k] satisfies

A>1 = 1, a`k > 0, ∀` ∈ Nk (3)

and a`k = 0 for ` /∈ Nk, where 1 denotes the N -dimensional
vector of all ones. In addition, we assume that the communi-
cation network is strongly connected, which ensures that the
Perron eigenvector π of matrix A = [a`k] will have strictly
positive entries [12, 13]. That is,

Aπ = π, 1
>π = 1, π` > 0, ∀` = 1, 2, . . . , N. (4)

We further impose the following three assumptions [1, 5, 8,
10].

Assumption 1 (Finiteness of Kullback-Leibler (KL) diver-
gence). The KL divergence between Lk(·|θ) and Lk(·|θ′) is
finite for each pair of distinct hypotheses (θ, θ′) and for each
agent. �

Assumption 2 (Global identifiability). For each wrong hy-
pothesis θ 6= θ0, there is at least one agent k for which the KL
divergence between Lk(·|θ0) and Lk(·|θ) is positive. �

Assumption 3 (Positive initial belief). For each hypothesis
θ ∈ Θ and each agent k = 1, 2, . . . , N , the initial belief
µk,0(θ) is positive. �

For the analysis in the sequel, we introduce the following
normalized variables representing the log-likelihood ratio
xk,i(θ) and the log-belief ratio λk,i(θ) for all θ:

xk,i(θ) , log
Lk(ξk,i|θ0)

Lk(ξk,i|θ)
, λk,i(θ) , log

µk,i(θ0)

µk,i(θ)
. (5)

Using these variables, the ASL algorithm (2) can be rewritten
as the two-step recursion{

νk,i(θ) = (1− δ)λk,i−1(θ) + δxk,i(θ)

λk,i(θ) =
∑
`∈Nk a`kν`,i(θ)

(6)

which has the form of a standard diffusion learning rule [12,
13]. We also introduce the weighted network average of log-
likelihood ratios for all θ,

xave,i(θ) =
∑N
`=1 π`x`,i(θ). (7)

The expectations and variances of xk,i(θ) and xave,i(θ) rela-
tive to the distribution

∏N
k=1 Lk(·|θ0) are denoted by dk(θ),

mave(θ), ρk(θ) and cave(θ). For agent k, the instantaneous er-
ror probability of social learning at time instant i is expressed
as

pk,i = P
[

arg max
θ∈Θ

µk,i(θ) 6= θ0

]
= P

[
∃θ 6= θ0 : λk,i(θ) ≤ 0

]
.

(8)

As i approaches infinity, we obtain the steady-state error prob-
ability pk for agent k, i.e.,

pk = lim
i→∞

pk,i, (9)

which was proven to exist in [10].

3. MINIMIZING PROBABILITY OF ERROR

Let Λk(t; θ) and Λave(t; θ) denote the Logarithmic Moment
Generating Function (LMGF) of the log-likelihood ratio
xk,i(θ) and the average log-likelihood ratio xave,i(θ):

Λk(t; θ) = logE
[
etxk,i(θ)

]
, (10)

Λave(t; θ) = logE
[
etxave,i(θ)

]
(7)
=

N∑
`=1

Λ`(π`t; θ). (11)

Using the Gartner-Ellis Theorem [14], it was proven in [10]
that the steady-state error probability (9) obeys a Large De-
viation Principle (LDP) with a rate function determined by
the LMGFs. We report here Theorem 4 from [10] for ease of
reference.

Lemma 1 (Theorem 4 in [10]). Assume that the LMGF of
xk,i(θ) exists everywhere, namely, Λk(t; θ) < +∞,∀t ∈ R
for all k = 1, 2, . . . , N and θ 6= θ0. Let

φ(t; θ) =

∫ t

0

Λave(τ ; θ)

τ
dτ, (12)

Φ(θ) = −inf
t∈R

φ(t; θ). (13)

Then, under Assumptions 1–3, the error probability pk obeys
the LDP:

pk ' e−Φ/δ (14)

with the error exponent Φ = minθ 6=θ0 Φ(θ), where the nota-
tion ' denotes equality to the leading order in the exponent
as δ goes to zero. �



According to (12) and (13), the error exponent Φ is deter-
mined by the LMGF of xave,i(θ), which as seen in (7), de-
pends on the Perron eigenvector of the combination matrix.
To find the best Perron eigenvector that provides the largest
Φ, we formulate the following optimization problem:

max
π

Φ (15)

s.t. 1
>π = 1, (16)
π` > 0, ∀` = 1, 2, . . . , N. (17)

We show next that the uniform Perron eigenvector is an opti-
mal solution.

Theorem 1 (Optimal Perron eigenvector). The maxi-
mum error exponent of the steady-state error probability
is achieved when the Perron eigenvector is uniform, i.e.,

1

N
1 ∈ arg max

π
Φ s.t. (16) and (17). (18)

Proof. The proof relies on the strict convexity of the LMGF
Λ`(t; θ) and the rate functions φ(t; θ), as well as the property
that Λ`(t; θ) = 0 for t = 0 and −1. From (12), we have

φ(t; θ) =

∫ t

0

Λave(τ ; θ)

τ
dτ =

∑
`

∫ π`t

0

Λ`(τ ; θ)

τ
dτ

=
∑
`

∫ −1

0

Λ`(τ ; θ)

τ
dτ +

∑
`:π`t<−1

∫ π`t

−1

Λ`(τ ; θ)

τ︸ ︷︷ ︸
≤0

dτ

+
∑

`:π`t>−1

∫ π`t

−1

Λ`(τ ; θ)

τ︸ ︷︷ ︸
≥0

dτ

≥
∑
`

∫ −1

0

Λ`(τ ; θ)

τ
dτ, (19)

where the equality holds if π`t = −1 for all `. Due to the
constraints (16) and (17), we deduce that π? = 1

N 1 and t? =
−N is an optimal solution to (15). �

Since the error exponent determines the leading-order decay
rate in (14), we conclude from Theorem 1 that in the small-
δ regime, any doubly-stochastic combination policy will be
preferable for reducing the steady-state error probability of
adaptive social learning.

4. MINIMIZING ADAPTATION TIME IN THE
SMALL SNR REGIME

The adaptation time is defined as the critical time instant i af-
ter which the instantaneous error probability is decaying with
an error exponent (1− ε)Φ for some small ε > 0:

pk,i ≤ e−
1
δ [(1−ε)Φ+O(δ)] (20)

where the notation O(δ) signifies that the ratio O(δ)/δ stays
bounded as δ → 0.

We examine the learning task in the small SNR regime
where the error probabilities need not be too small [15] and
Λave(t; θ) can be approximated by a second-order polyno-
mial for t ∈ [t?θ, 0]. Here, t?θ < 0 is the unique solution to
Λave(t

?
θ; θ) = 0. Then,

Λave(t; θ) =

∞∑
n=1

κnt
n

n!
≈ κ1(θ)t+

κ2(θ)

2
t2 (21)

with the cumulants κ1(θ) = mave(θ) and κ2(θ) = cave(θ).
Since the parabolic approximation is actually a Gaussian ap-
proximation, (21) is accurate only if xave,i(θ) obeys a Gaus-
sian distribution (e.g., in the canonical shift-in-mean Gaus-
sian problems [15]). For non-Gaussian cases, (21) will be
valid only in the small SNR regime [15]. The exact defini-
tion of the small SNR regime depends on the specific learn-
ing task, but it generally includes the scenarios where the hy-
potheses are close to each other and which makes the learning
task difficult. As indicated by [16], this regime is related to
detecting weak signals in the framework of locally optimum
detection [17,18]. In the small SNR regime, we can derive an
explicit approximation result for the adaptation time.

Theorem 2 (Adaptation time for the small SNR regime).
Consider the uniform initial belief condition and the small
SNR regime, then the adaptation time Tadap can be approxi-
mated as

Tadap ≈
log
(
1−
√

1− ε
)

log(1− δ)
(22)

for any combination policy.

Sketch of Proof. According to (6), we can write

λk,i(θ)
d
= δ

i−1∑
m=0

N∑
`=1

(1− δ)m[Am+1]`kx`,m+1(θ) , λ̃k,i(θ),

(23)
where d

= denotes equality in distribution. The key step in the
proof is to upper bound the instantaneous error probability
by using Markov’s inequality and approximating the LMGF
of λ̃k,i(θ) via Λave(t; θ). Applying Markov’s inequality, we
have

P [λk,i(θ) ≤ 0]
(23)
= P

[
t?θ
δ
λ̃k,i(θ) ≥ 0

]
≤ E

[
exp

(
t?θ
δ
λ̃k,i(θ)

)]
.

(24)

Denoting the LMGF of λ̃k,i(θ) by Λk,i(t; θ)and using Eqs.
(85) and (86) from [16], we can derive

Λk,i

(
t?θ
δ

; θ

)
=

1

δ

[∫ t?θ

(1−δ)it?θ

Λave(τ ; θ)

τ
dτ +O(δ)

]
. (25)

Replacing the parabolic approximation (21) for the small
SNR regime into (25), we are able to prove that

Λk,i

(
t?θ
δ

; θ

)
≤ −1

δ
[(1− ε)Φ(θ) +O(δ)] (26)
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Fig. 1. Steady-state error probability.
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Fig. 2. Instantaneous error probability.
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Fig. 3. Adaptation time

for i ≥ Tadap. Using Boole’s inequality, the instantaneous
error probability is upper bounded by

pk,i
(8)
= P

[ ⋃
θ 6=θ0

{
λ̃k,i(θ) ≤ 0

}]
≤
∑
θ 6=θ0

P
[
λ̃k,i(θ) ≤ 0

]
(26)
≤
∑
θ 6=θ0

e−
1
δ

[
(1−ε)Φ(θ)+O(δ)

]
' e−

1
δ

[
(1−ε)Φ+O(δ)

]
for i ≥ Tadap, which shows that Tadap provides a reasonable
estimate for the adaptation time in the small SNR regime. �

Theorem 2 indicates that when the hypotheses are hard to dis-
tinguish, the influence of different combination policies on
the adaptation time is insignificant. Instead, it is the step-size
δ that plays the dominant role in the adaptation time [10].
This fact ensures that choosing a doubly-stochastic combina-
tion policy, as suggested by optimizing steady-state perfor-
mance in Theorem 1, does not negatively impact the transient
learning performance in the small SNR regime.

5. NUMERICAL SIMULATIONS

In this section, we present simulation results on an Erdös-
Rényi random graph with connection probability 0.5. We also
assume that each agent has a self-loop and will perform a so-
cial learning protocol with three hypotheses {θ0, θ1, θ2}. The
learning rule for each agent k is presented in Algorithm 1. We
consider a family of Laplace likelihood functions with scale
parameter one, i.e., fn(ξ) , L(ξ|θn) = 1

2 exp{−|ξ − 0.1n|}
for n ∈ {0, 1, 2}. The local likelihoods of the three hypothe-
ses θ0, θ1, θ2 are respectively f0, f0, f1 for agents 1–3, and
f0, f2, f2 for agents 4–7, and f0, f2, f0 for the rest of agents.

Algorithm 1 ASL rule for each agent k
1: Initialization: µk,0(θ) = 1

3
, ∀θ ∈ Θ.

2: for i = 1, 2, . . . do
3: receives a new observation ξk,i;
4: updates the intermediate belief ψk,i according to (2a);
5: obtains ψ`,i from its neighbors ` ∈ Nk;
6: updates µk,i according to (2b).
7: end for

First, we study the effect of the combination policies on
the error exponent. A stationary environment where the true
hypothesis is selected as θ0 is considered. For comparison,
we employ 5 left-stochastic and 5 doubly-stochastic combi-
nation matrices with positive Perron eigenvectors. In Fig. 1,
the average steady-state error probabilities under 10 combi-
nation matrices and different step-sizes are presented. For
each step-size, we select the terminal time as 103 and run 106

Monte Carlo simulations to obtain the average results. It can
be observed that all doubly-stochastic combination matrices
lead to a lower error probability than the left-stochastic ones.

Next, we investigate the effect of combination policies
on the adaptation time. Here, we consider a non-stationary
environment where the true state changes from θ0 to θ1 at
i = 1000 and from θ1 to θ2 at i = 2000. Under a small step-
size δ = 0.01, the transient dynamics of average error prob-
ability over i ∈ [0, 3000] is depicted in Fig. 2. It is observed
that even in the non-stationary environment, the adaptation
time related to different combination matrices is very close to
each other. To derive a quantitative comparison, we calculate
the simulated adaptation time when the true state is θ0 (i.e.,
i ∈ [0, 1000]). By the definition of adaptation time, we record
the time instant i0 after which the error probability satisfies
log pk,i ≤ (1 − ε) log pk, i ≥ i0. The simulated adaptation
time under different values of ε is presented in Fig. 3. It is
clear that the difference in adaptation time for all considered
combination matrices is almost negligible irrespective of ε.

6. CONCLUSION

In this work, we discussed the effect of combination policies
on two key performance metrics of adaptive social learning:
the error exponent (i.e., steady-state learning ability) and the
adaptation time (i.e., transient behavior). Our results show
that in the small-δ regime, the best error exponent is achieved
by doubly-stochastic combination policies. Moreover, the dif-
ference of the adaptation time among different combination
policies is almost negligible if the SNR between hypotheses
is small. Importantly, these results are in contrast to analo-
gous results in the context of distributed optimization [12,13,
19, 20] when agents have access to data of varying quality.
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