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ABSTRACT

This work proposes a multi-agent filtering algorithm over
graphs for finite-state hidden Markov models (HMMs), which
can be used for sequential state estimation or for tracking
opinion formation over dynamic social networks. We show
that the difference from the optimal centralized Bayesian so-
lution is asymptotically bounded for geometrically ergodic
transition models. Experiments illustrate the theoretical find-
ings and in particular, demonstrate the superior performance
of the proposed algorithm compared to a state-of-the-art so-
cial learning algorithm.

Index Terms— Hidden Markov models, distributed hy-
pothesis testing, social learning, sequential state estimation

1. INTRODUCTION AND RELATED WORK

We consider a network of agents observing data that are emit-
ted by some (hidden or) latent state of a dynamic Markov
system. The goal is to cooperatively infer and track the time-
varying state. The state can be any quantity of interest, e.g.,
location of a moving object, concentration of air pollutants,
or whether it is a sunny or rainy day. The model is general
enough and can be used for many applications such as source
localization, environmental monitoring, target tracking, navi-
gation, and analyzing opinion formation in social networks.

There exist several works addressing the decentralized
multi-agent state estimation problem. One body of work con-
siders distributed Kalman filters [1, 2, 3, 4]. These papers
assume linear state dynamics and observations, whereas this
work does not make these assumptions. For non-linear system
models, some works use a Bayesian framework [5, 6, 7, 8],
which we also adopt. It is based on calculating beliefs, which
are distributions over the set of states. Typically, this involves
temporal recursions that consist of computing the new beliefs
from the previous beliefs by taking the observed data into ac-
count. The Bayesian framework is advantageous in the sense
that it uses the complete information of a distribution rather
than only some statistics of it such as the mean. Moreover,
it enjoys optimality in the minimum mean-square-error and
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the maximum a-posteriori sense for the single agent mode of
operation [9].

Among works that examine distributed Bayesian state es-
timation, the articles [5, 6] require multiple rounds of commu-
nication between agents for every state change. This might be
impractical especially when the state changes rapidly. We will
show that it is sufficient to communicate once per iteration
to attain a bounded difference from the optimal estimator by
means of our proposed solution. The works [5, 7] also con-
sider observation likelihood functions that belong to the ex-
ponential family of distributions in order to have numerically
tractable solutions. In our work, we consider finite dimen-
sional HMMs where the true state/hypothesis can take only
a finite set of values. Therefore, we do not need to restrict
the distributions to analytically well-behaved families of dis-
tributions. Likewise, sub-optimal filters like particle filters
[10, 11] are not necessary in this case. On the other hand, the
work [8] proposes a distributed Bayesian filtering algorithm
that does not require multiple consensus steps at every iter-
ation. However, the agents are assumed to use an effective
likelihood in place of their own likelihood function. Calculat-
ing the effective likelihood includes combining the neighbors’
effective likelihoods from the previous time instant with their
likelihood from that time instant. As the assumptions in the
convergence analysis suggest, this would be beneficial only if
the likelihood functions are changing slowly over time. This
limits the maximum rate of state transition the algorithm can
track. In comparison, our algorithm combines the likelihoods
with time-adjusted priors, in which the neighbors’ beliefs at
the previous time instant are combined to compute the pri-
ors. Consequently, we get bounds (Theorem 1) that hold for
a large class of transition models, namely, geometrically er-
godic models, which includes rapidly mixing Markov chains.

Combining the neighbors’ beliefs is also useful for model-
ing opinion formation over social networks. In these models,
agents’ beliefs/opinions over the set of states/hypotheses
are formed based on their local observations and their
interactions with the other agents [12, 13, 14, 15]. A line of
social learning algorithms comprises of two iterative steps.
First, each agent revises its belief via a Bayesian update
based on new private data. Second, agents aggregate their
neighbors’ information into their beliefs with a distributed
learning algorithm like consensus [14, 16, 17, 18] or diffusion



[15, 19, 20]. A common assumption in these works is that
the state of nature is fixed. In many practical applications,
however, the state is time-varying. Linear transition models
are considered in [21, 22, 23]. However, to tackle the possible
drifts in the state of nature, an adaptive social learning (ASL)
strategy was proposed in [24]. This algorithm enables the
agents to respond to the changes faster. Nevertheless, it does
not take the transition model into account. In many scenarios,
the current true state will make some states more likely to
occur than others in the future. By exploiting knowledge
about the system dynamics, the true state can be tracked
better. Indeed, we confirm this statement experimentally by
comparing ASL against our proposed algorithm in Section 4.

Contributions. We propose a distributed Bayesian HMM fil-
tering algorithm for detecting a time-varying state in Section
2.2. The algorithm requires only one round of communica-
tion per state change and takes advantage of prior information
about state dynamics, which allow tracking rapidly changing
states. We examine how close this distributed strategy gets to
the optimal centralized solution in Section 3. More specifi-
cally, an asymptotic bound on the expected Kullback-Leibler
(KL) divergence between the centralized belief and the agent-
specific beliefs is established in Theorem 1 for geometrically
ergodic transition models. Corollary 1 relates this bound to
belief values evaluated at the true hypothesis. Simulation re-
sults in Section 4 support the theoretical results and compare
the proposed algorithm with a state-of-the-art algorithm, ASL
[24].

2. ALGORITHM DESCRIPTION

A network of K communicating agents are exchanging be-
liefs with each other in order to keep track of the underlying
state of nature, which is allowed to evolve over time. The be-
lief of agent k ∈ N , at time i, is denoted by µk,i and it is a
probability simplex. The value of µk,i(θ) represents the prob-
ability that agent k believes the hypothesis θ ∈ Θ is the true
hypothesis at time i. The true hypothesis at that same time
instant is denoted by θ◦i ∈ Θ, and it is assumed to belong
to a finite set of H hypotheses, Θ = {0, 1, ..,H − 1}. Note
that we are using boldface letters to refer to random variables.
The transition model T , which is assumed to be known to the
agents, is a Markov chain and we use the notation:

T (θi|θi−1) ≜ P(θ◦i = θi|θ◦i−1 = θi−1) (1)

At instant i, each agent k observes a private observation ξk,i
distributed according to the agent-specific likelihood function
Lk(ξk,i|θ◦i ), which is known to agent k. The likelihoods
can be probability mass or density functions depending on
whether observations are discrete or continuous.

Assumption 1. [5, 23] The observations are assumed to
be independent across agents given the state. Denoting the

joint observations by ξi ≜ {ξk,i}Kk=1 and its distribution by
L⋆(ξi|θ◦i ), we have for all ξi ≜ {ξk,i}Kk=1 and θi ∈ Θ:

L⋆(ξi|θi) =
K∏

k=1

Lk(ξk,i|θi) (2)

Agents can communicate with each other once per itera-
tion. We have the following assumption on the communica-
tion topology.

Assumption 2. The communication topology underlying the
network is a strongly-connected graph [25]. This means that
the combination matrix A ≜ [aℓk] is a primitive matrix. The
coefficient aℓk weights the information sent by agent ℓ to k
and is nonzero if, and only if, ℓ ∈ Nk (i.e., for every agent ℓ
in the neighborhood of k). The matrix A is doubly-stochastic
and symmetric, i.e., it satisfies:

A1K = 1K , A = AT (3)

We also assume a regularity condition on the likelihood func-
tions.

Assumption 3. For each agent k, log-likelihoods are
bounded in absolute value, namely:

| logLk(·|·)| ≤ α (4)

For instance, this assumption is satisfied for truncated Gaus-
sian likelihoods.

2.1. Optimal Centralized Belief Recursion

Given the observation history of all agents F i ≜ {ξj}ij=1,
the posterior distribution of the true hypothesis at time i is
denoted by:

µ⋆
i (θi) ≜ P(θ◦i = θi|F i) (5)

This posterior satisfies the optimal Bayesian filtering recur-
sion [9]:

µ⋆
i (θi) =

L⋆(ξi|θi)η⋆
i (θi)∑

θ′
i
L⋆(ξi|θ′i)η⋆

i (θ
′
i)

(6)

where η⋆
i (θi) is the time-adjusted prior at time instant i and

given by:

η⋆
i (θi) ≜

∑
θi−1

T (θi|θi−1)µ
⋆
i−1(θi−1) (7)

In the sequel, we study how close the beliefs generated by the
proposed distributed algorithm get to the above centralized
posterior (6).



2.2. Diffusion HMM Strategy

Agents across the network need to update their beliefs based
on their local streaming observations, as well as exchange
their beliefs with each other in order to track the true state
in the face of stochastic and dynamic conditions. To do so,
we propose a social HMM filtering algorithm that is based on
the diffusion strategy for cooperation over networks [25]. At
every time instant i, agents first revise their belief at i− 1 via
the Chapman-Kolmogorov equation [9]:

ηk,i(θi) =
∑
θi−1

T (θi|θi−1)µk,i−1(θi−1) (Evolve) (8)

Then, each agent k forms an intermediate belief locally by a
γ-scaled Bayesian update based on the received data:

ψk,i(θi) =
(Lk(ξk,i|θi))γηk,i(θi)∑
θ′
i
(Lk(ξk,i|θ′i))γηk,i(θ′i)

(Adapt) (9)

where γ > 0 is a step-size that scales the newly arrived data
against prior information. Finally, agents combine the inter-
mediate beliefs of their neighbors into their updated belief:

µk,i(θi) =
exp{

∑
ℓ∈Nk

aℓk logψℓ,i(θi)}∑
θ′
i

exp{
∑

ℓ∈Nk
aℓk logψℓ,i(θ′i)}

(Combine)

(10)

Repeatedly exchanging and fusing beliefs will allow the local
information to diffuse throughout the network.

Note that the proposed algorithm recovers standard log-
linear social learning algorithms [16, 17, 19, 20] when agents
perform local Bayesian updates with γ = 1 and the true hy-
pothesis is fixed:

T (θi|θi−1) =

{
1, θi = θi−1

0, θi ̸= θi−1

Moreover, the agents’ beliefs will match the optimal central-
ized belief if aℓk = 1/K ∀ℓ, k ∈ N (i.e., when the network
is fully-connected), all priors are equal (µ⋆

0 = µk,0 ∀k ∈ N )
and γ = K. These two special cases motivate us to use a
general step-size γ > 0.

3. MAIN RESULTS

To avoid discarding any hypothesis in the beginning, we have
an assumption on the initial values of the beliefs.

Assumption 4. [8, 16] We assume that all initial beliefs are
strictly positive at every hypothesis, i.e., for each hypothesis
θ ∈ Θ and for each agent k, µk,0(θ) > 0, µ⋆

0(θ) > 0.

We can assess the performance of the algorithm (8)–(10)
relative to the optimal centralized solution (6) by considering
time-varying risks of the form:

Ji(µk,i) ≜ EFi
DKL(µ

⋆
i ||µk,i) (11)

and

J̃i(ηk,i) ≜ EFi−1
DKL(η

⋆
i ||ηk,i) (12)

for each agent k, where DKL(·||·) represents the KL diver-
gence, and EFi

denotes the expectation over Fi with respect
to P. The risk in (11) measures the disagreement between
agent k and the centralized belief for the true state at time in-
stant i after the observations are emitted from that state. In
comparison, the risk in (12) is the disagreement before the
observations are emitted. In other words, Ji is the posterior
divergence while J̃i is the divergence of time-adjusted priors.

The effect of the transition model will arise via the Do-
brushin coefficient κ(T ) ∈ [0, 1] defined as follows [26, 27,
9]:

κ(T ) = sup
θ,θ′∈Θ

DTV

(
T (·|θ), T (·|θ′)

)
(13)

where DTV(·, ·) represents the total variation distance. For
instance, for a binary symmetric channel:

T (θi|θi−1) =

{
1− δ, θi = θi−1

δ, θi ̸= θi−1

we have κ(T ) = |1−2δ|. In general, the closer the Dobrushin
coefficient is to zero, the faster the forgetting of the initial
conditions will be.

For ease of notation, we define the column vector consist-
ing of marginal likelihoods over hypotheses and agents of a
joint observation ξj as:

Lξj ≜ col
{

col
{
logLℓ(ξℓ,j |θj)

}H

θj=1

}K

ℓ=1
(14)

We first establish that the risk functions are asymptotically
bounded for each agent k.

Theorem 1. Under Assumptions 1, 2, 3, 4 and geometrically
ergodic state transition models [9], i.e., κ(T ) < 1, for each
agent k the risks are asymptotically bounded, namely:

lim sup
i→∞

Ji(µk,i) ≤
2Kγλ

1− κ(T )
sup
t>0

Eξt∥Lξt∥∞ (15)

and

lim sup
i→∞

J̃i(ηk,i) ≤
2κ(T )Kγλ

1− κ(T )
sup
t>0

Eξt∥Lξt∥∞ (16)

where λ ≜ max{|1− K
γ |, ρ2}, and ρ2 is the absolute value of

the second largest magnitude eigenvalue of A.

Proof. Omitted due to space limitations.

Note that if the transition Markov chain is stationary, we
have, for any t′ > 0:

sup
t>0

Eξt∥Lξt∥∞ = Eξt′∥Lξt′∥∞ (17)



The bounds are tight in the sense that they are equal to zero
as expected when the centralized solution is matched with
aℓk = 1/K ∀ℓ, k ∈ N (ρ2 = 0), equal priors (µ⋆

0 = µk,0

∀k ∈ N ), and γ = K . In fact, the bounds (15) and (16) do
not depend on the initial beliefs as long as they satisfy As-
sumption 4. Geometric ergodicity is sufficient to forget the
initial conditions. Specifically, for ρ2 = 0 and γ = K, the
asymptotic risk is zero which means that the filter is stable.

Furthermore, for γ → K, the risks are proportional to the
mixing rate of the graph, ρ2. This factor underlines the benefit
of cooperation. More connected graphs, with smaller ρ2, will
track the centralized solution better whereas sparse networks
or non-cooperative agents will have higher deviation from the
optimal. The bounds are also proportional to the network size.
The disagreement between the agents and the optimal central-
ized solution, which has access to all data of agents, increases
with the number of agents.

Observe that if the transition Markov chain is mixing very
fast such that κ(T ) = 0, the bound in (16) goes to zero. This
is expected because the transition model, in equations (7) and
(8), will output the same distributions and the divergence be-
tween them will vanish. Therefore, (16) captures the effect of
ergodicity accurately. However, the bounds are still not tight
enough in the sense that the effect of observations is not suf-
ficiently reflected. For instance, if the state of nature is fixed,
we have κ(T ) = 1, which is not a geometrically ergodic
model. However, from the standard social learning litera-
ture [14, 15, 16, 17], we know that true state can be learned.
Bounds that address both ergodicity and informativeness of
the measurements is an interesting future work.

Now assume that the risks are asymptotically bounded
with lim supi→∞ Ji(µk,i) ≤ B , as suggested by Theorem
1. Next, we relate this upper bound to belief values at the true
hypothesis.

Corollary 1. Define the variance:

Var
(
log

µ⋆
i (θ

◦
i )

µk,i(θ◦i )

)
≜ EFi,θ◦

i

∣∣∣ log µ⋆
i (θ

◦
i )

µk,i(θ◦i )
− EFi,θ◦

i

[
log

µ⋆
i (θ

◦
i )

µk,i(θ◦i )

]∣∣∣2 (18)

Then, with probability at least:

p ≜ 1−
Var

(
log

µ⋆
i (θ

◦
i )

µk,i(θ◦
i )

)
ϵ2

(19)

where ϵ is an arbitrary positive constant such that p ∈ (0, 1],
the agent and centralized beliefs evaluated at the true hypoth-
esis θ◦i satisfy the following relation as i → ∞:

µk,i(θ
◦
i ) ≥ µ⋆

i (θ
◦
i ) exp

{
− ϵ−B

}
(20)

Proof. Omitted due to space limitations.

This is a guarantee on the beliefs evaluated at the true hy-
pothesis. For small risks (11) and variances (18), agents will
assign a belief value which is close to the value assigned by
the optimal belief.

4. SIMULATION RESULTS

We consider first a 10−agent network whose topology is dis-
played in Fig. 1. The combination matrix is given by the
Metropolis rule [28, 25], resulting in a doubly-stochastic and
symmetric matrix with ρ2 = 0.86.
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Fig. 1. Network diagram.

The network would like to track the true state of nature
from a set of two hypotheses, Θ = {0, 1}. We assume that all
agents possess the same family of truncated Gaussian likeli-
hoods :

Lk(ξ|θ) =


1

Zθ

1√
2π

exp

{
− (ξ − (θ + 1))2

2

}
, −1 ≤ ξ ≤ 2

0, otherwise

for all k = 1, 2, . . . ,K, where Zθ is the normalization con-
stant:

Zθ ≜
∫ 2

−1

1√
2π

exp

{
− (ξ − (θ + 1))2

2

}
dξ (21)

Notice that, in this case, Assumption 3 is satisfied. The hidden
state is assumed to be a Markovian random variable, whose
transition matrix is given by:

T (θi|θi−1) =

{
0.9, θi = θi−1

0.1, θi ̸= θi−1

which corresponds to the Dobrushin coefficient κ(T ) = 0.8.
We first compare the performance of the proposed diffu-

sion HMM filter (dHMM) with the centralized HMM filter
(cHMM) for a particular realization of hidden states θ◦i . This
comparison is seen in the middle panel of Fig. 2. Notice that
both dHMM, with choice γ = K, and cHMM behave sim-
ilarly, which supports Corollary 1. They show a remarkable
capacity of tracking the abrupt changes in the hidden state.
In the same figure, we have also included the behavior of the
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Fig. 2. Top panel: Evolution of the hidden state. Middle
panel: Evolution of beliefs over time for different methods
(centralized HMM, diffusion HMM, and ASL). Bottom panel:
Evolution of beliefs over time for the diffusion HMM filter.

ASL algorithm with a choice of step size δ = 0.1 . ASL does
not utilize the transition model knowledge. Hence, it is slower
to respond to changes compared to cHMM and dHMM.

In the bottom panel of Fig. 2, we explore different choices
of γ and observe the evolution of beliefs for the distributed
HMM filter. We can see that as γ approaches K = 10, the
tracking performance of the algorithm increases, approaching
the centralized performance.

In Fig. 3, we observe the evolution of the risk Ji(µk,i)
over time for three different graph topologies: i) a very sparse
topology with ρ2 = 0.97, ii) the topology seen in Fig. 1 with
ρ2 = 0.86, and iii) a fully connected network with ρ2 = 0.
The risk was approximated by averaging 1000 Monte Carlo
simulations with the choice of γ = K. Fig. 3 shows that as
the second larger eigenvalue ρ2 decreases, the risk approaches

0 20 40 60 80 100

i

0.0

0.5

1.0

J
i(
µ
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ρ2 = 0.97 ρ2 = 0.86 ρ2 = 0.00

Fig. 3. Evolution of the risk over time, computed with 1000
Monte Carlo experiments for three different network topolo-
gies.

Table 1. Number of agents and average risks over networks

K 1
K

∑K
k=1 J∞(µk,∞) ρ2

10 0.53 0.86

20 0.83 0.83

30 1.17 0.81

40 1.77 0.80

70 2.69 0.77

zero. This observation is expected in view of Theorem 1.
Having observed that the filter performance increases with

step-size chosen around the number of agents, i.e., γ → K,
and more graph connectivity, i.e. ρ2 → 0, we finally com-
pare the effect of the network size on the risk function. In
Table 1, the average risk function over the network with re-
spect to different numbers of agents can be found. For all
cases, we set γ = K. It is hard to get network configurations
with exactly the same ρ2’s for different sizes. Therefore, for
a fair comparison, we increase the connectivity of the larger
graphs, i.e., higher K’s are associated with smaller ρ2’s. De-
spite this fact, the average risk increases with increasing num-
ber of agents, which supports Theorem 1. This means that the
deviation from the optimal centralized algorithm is higher for
larger networks, for fixed graph mixing rates.
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