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Abstract—Social learning algorithms provide models for the
formation of opinions over social networks resulting from local
reasoning and peer-to-peer exchanges. Interactions occur over
an underlying graph topology, which describes the flow of
information and relative influence between pairs of agents. For
a given graph topology, these algorithms allow for the prediction
of formed opinions. In this work, we study the inverse problem.
Given a social learning model and observations of the evolution
of beliefs over time, we aim at identifying the underlying graph
topology. The learned graph allows for the inference of pairwise
influence between agents, the overall influence agents have over
the behavior of the network, as well as the flow of information
through the social network. The proposed algorithm is online
in nature and can adapt dynamically to changes in the graph
topology or the true hypothesis.

Index Terms—Graph learning, inverse modeling, online learn-
ing, social learning.

I. INTRODUCTION

Graphs provide a useful tool to model and exploit relations
in high-dimensional data, such as social networks [1], [2],
roadway networks [3], [4], and molecular data [5], [6], among
others. A common observation in all these settings is the fact
that the graph topology impacts data distribution and evolution.
Hence, knowledge of the graph has the potential to improve
the performance of inference tasks. However, the underlying
graph structure is unknown in many applications and needs
to be estimated through observations. A number of solutions
for graph learning [7]–[18] have already been proposed in
the literature, where algorithms for graph inference have been
developed for particular models, describing the relationship
between observations and graphs.

For instance, graph learning for the heat diffusion process is
studied in [9], [11], [12], [19], while learning under structural
constraints, such as connectivity [8] and sparsity, appears
in [8], [13], [18], and approaches based on examining the
precision matrix appear in [20], [21]. Most of these works
consider static graphical models. This is in contrast to graphs
with dynamic properties [9] where the connectivity among
agents can change over time.

In this work, we develop an algorithm for graph learning
in the social learning setting where agents react to streaming
data and also to information shared with their neighbors. Our
study focuses on the social learning paradigm studied in earlier
works [22]–[31]. The combination weights are unknown and
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need to be inferred through observations acquired during the
agents’ learning process.

Social learning refers to the problem of distributed hypoth-
esis testing, where each agent aims at learning an underlying
true hypothesis (or state) through its own observations and
from information shared by its neighbors. Social learning
studies can be categorized into Bayesian [30], [31] and non-
Bayesian [22]–[29]. Non-Bayesian approaches have gained
increased interest due to their appealing scalability traits. In
these approaches, at every time instant, agents follow a two-
stage process. First, every agent updates its belief (which is
a probability distribution over the possible hypotheses) based
on its current received observation. Then, it fuses the shared
beliefs from its neighbors. The main focus of these studies is
to prove that agents’ beliefs across the network converge to
the true hypothesis after sufficient repeated interactions.

In this work, we are interested in revealing the underlying
influence pattern. More specifically, we formulate the inverse
problem, where given the evolution of beliefs, the objective
is to identify the relative influence between pairs of agents,
captured by the graph topology. We are interested in studying
a dynamic setting where both the graph topology and the true
hypothesis can change over time. Therefore, we consider that
the agents follow the adaptive social learning protocol [26].

We describe the system model in Section II, while Sec-
tion III describes the algorithm and examines the steady-state
performance of the graph learning process. In Section IV, we
provide experiments and illustrate the robustness of the pro-
posed method against dynamic changes on the graph topology.

II. SOCIAL LEARNING MODEL

We consider a set N of agents connected by a graph G =
〈N , E〉, where E represents the links between agents. Two
agents that are linked can exchange information directly with
each other. The set of neighbors of an agent k ∈ N including
itself, is denoted by Nk.

All agents aim at learning the true hypothesis θ?, belonging
to a set of all possible hypotheses denoted by Θ (whose
cardinality is at least two). To this end, each agent k has
access to observations ζk,i ∈ Zk at every time i ≥ 1. Agent k
also has access to the likelihood functions Lk(ζk,i|θ), for all
θ ∈ Θ. The signals ζk,i are independent over both time and
space, and are also identically distributed (i.i.d.) over time. We
will use the notation Lk(θ) instead of Lk(ζk,i|θ) for brevity.
At each time i, agent k keeps a belief vector µk,i, which is
a probability distribution over the possible states. The belief



component µk,i(θ) quantifies the confidence of agent k that θ
is the true state. Therefore, at time i, each agent’s true state
estimator is as follows:

θ̂
◦
k,i = arg max

θ∈Θ
µk,i(θ). (1)

To avoid technicalities, where agents discard a particular state
a priori, we impose the following assumption on initial beliefs.

Assumption 1. (Positive initial beliefs). For all hypotheses
θ ∈ Θ, all agents k ∈ N start with positive initial belief
µk,0(θ) > 0. �

At every time instant i, every agent k updates its belief by
using a two-stage process. First, it incorporates information
from the received observation ζk,i and then it fuses the
information from its neighbors. More specificially, in this work
we consider the adaptive social learning rule [26], which
has been shown to have favorable transient and steady-state
performance in terms of convergence rate and probability of
error. Under this protocol, agents update their beliefs in the
following manner:

ψk,i(θ) =
Lδk(ζk,i|θ)µ1−δ

k,i−1(θ)∑
θ′∈Θ L

δ
k(ζk,i|θ′)µ1−δ

k,i−1(θ′)
, k ∈ N (2)

µk,i(θ) =

∏
`∈Nk

ψa`k`,i (θ)∑
θ′∈Θ

∏
`∈Nk

ψa`k`,i (θ′)
, k ∈ N (3)

where a`k denotes the combination weight assigned by agent k
to neighboring agent `, satisfying 0 < a`k ≤ 1, for all ` ∈ Nk,
a`k = 0 for all ` /∈ Nk, and

∑
`∈Nk

a`k = 1. The algorithm
is called “adaptive” due to the step-size parameter δ ∈ (0, 1),
which allows it to track changes in the true hypothesis θ?.
Observe that the numerator in (3) is the weighted geometric
mean of the priors ψ`,i(θ) at time i with weights given by the
scalars {a`k}.

Let A? denote the left-stochastic combination matrix con-
sisting of all combination weights a`k. Regarding the network
topology, we impose the following assumption [23], [26],
[32], which allows information to flow throughout the whole
network.

Assumption 2. (Strongly-connected network). The commu-
nication graph is strongly connected (i.e., there exists a path
with positive weights linking any two agents, and at least one
agent in the graph has a self-loop, meaning that there is at
least one agent k ∈ N with akk > 0). �

Finally, we impose assumptions on the agents’ observation
models. We assume that the agents can collectively identify
the underlying true hypothesis [26], [32].

Assumption 3. (Identifiability assumption). For each wrong
hypothesis θ 6= θ?, there is at least one agent k ∈ N that has
strictly positive KL-divergence DKL (Lk (θ) ||Lk (θ?)) > 0.

�

We also assume the boundedness of the likelihood func-

tions [27].

Assumption 4. (Bounded likelihoods). There is a finite
constant b > 0 such that, for all k ∈ N :∣∣∣∣∣ log

Lk(ζ|θ)
Lk(ζ|θ′)

∣∣∣∣∣ ≤ b (4)

for all θ, θ′ ∈ Θ, and ζ ∈ Zk. �

III. INVERSE MODELING PROBLEM

A. Problem Statement

In our study, we assume that the graph is completely hidden.
The assumption is motivated by the fact that in real-world
settings, the pattern of interactions among agents is usually
unknown to an external observer. In addition, in the social
learning strategy, it is common [28], [32] to assume that
for each time i ≥ 1, each agent local observation ζk,i is
private and external observers do not have access to it. On the
other hand, beliefs (i.e., ψk,i(θ)) are public and exchanged
across the network. For this reason, our goal is to infer the
graph topology by observing the exchanged beliefs among the
agents.

Formally, we assume that at each time step i ≥ 1 we observe
the beliefs of the agents in the network, collected into the set:

Di =
{
ψk,i(θ), k ∈ N

}
(5)

The problem of interest is to recover the combination matrix
A? based on knowledge of {Di}i≥1.

B. Likelihood and Beliefs Ratios

We define the matrices Λi and Li of size |N | × (|Θ| − 1),
where each element is a relative measure of log beliefs and
likelihood ratios as follows:

[Λi]k,j , log
ψk,i(θ0)

ψk,i(θj)
(6)

[Li]k,j , log
Lk(ζk,i|θ0)

Lk(ζk,i|θj)
, (7)

In these expressions, we have chosen some θ0 ∈ Θ as a
reference state, while θj 6= θ0. Due to Assumption 4, Li

has finite entries. Since we initially start from positive beliefs
µk,0(θ), and the likelihoods remain positive with probability
one, it follows from the update rules (2)-(3) that Λi <∞.

Observe that both matrices vary with the time index i. Based
on the definitions (6)-(7), some algebra will show that we can
transform (2)-(3) into an update relating these matrices:

Λi = (1− δ)AT
?Λi−1 + δLi. (8)

At every iteration i, the quantities {Λi,Λi−1} are known
based on knowledge of the beliefs Di from (5). On the other
hand, the quantity Li is not known because the observations
{ζk,i} are private. We wish to devise a scheme that allows
us to estimate A? in (8) from knowledge of {Λi,Λi−1} and
from a suitable approximation for Li. Before discussing the



learning algorithm, however, we establish the following useful
property. For simplicity of notation, we will write

E[·] , Eζk,t∼Lk(θ?),k∈N ,t≤i[·] (9)

where the expectation is relative to the randomness in all local
observations up to time i.

Lemma 1 (Mean likelihood matrix). Random variables Li

are i.i.d. over time and space, and their mean matrix L̄ = ELi

is independent of time and finite with each entry equal to:

[L̄]k,j = DKL (Lk (θ?) ||Lk (θj))

−DKL (Lk (θ?) ||Lk (θ0)) . (10)

Proof. Proof is omitted due to space limitations. �

C. Algorithm Development

The linear nature of the update for Λi in (8) motivates the
following instantaneous quadratic loss function for finding A?:

Q′(A;Λi,Λi−1) =
1

2
‖Λi − (1− δ)ATΛi−1 − δLi‖2F, (11)

where ‖ · ‖F denotes Frobenius norm. Computation of Li

requires knowledge of ζk,i, k ∈ N , which is assumed to be
private for each agent, therefore hidden from the observer. For
this reason, we will assume only knowledge of L̄, which is
in principle requires knowledge of the true hypothesis θ? due
to Lemma 1. We explain in the sequel how to circumvent this
requirement.

Typically, at each time step i ≥ 1, every agent k ∈ N
estimates the true state using (1). It can be shown [26,
Theorem 2]) that the probability of error P(θ̂

◦
k,i 6= θ?) → 0

as i → ∞ and δ → 0. It can be verified that the same
conclusion continues to hold if we estimate the underlying
hypothesis based on the intermediate belief vectors (which are
the quantities that are assumed to be observable):

θ̂k,i = arg max
θ∈Θ

ψk,i(θ). (12)

In order to have agreement on the θ? among the agents, we
will estimate a common θ̂i by using a majority vote rule. Then,
the following conclusion holds.

Lemma 2 (True state learning error: majority vote).

lim
δ→0

P
(

lim
i→∞

θ̂i 6= θ?
)

= 0. (13)

Proof. Proof is omitted due to space limitations. �

Therefore, we replace (11) by the following loss function:

Q(A;Λi,Λi−1, L̄i) =
1

2
‖Λi − (1− δ)ATΛi−1 − δL̄i‖2F.

(14)

with L̄i = Eθ̂i
Li, and Eθ̂i

means that the expectation is
computed assuming that the private data ζk,i is generated

according to θ̂i : ζk,i ∼ Lk(ζk,i|θ̂i). Our minimization
problem over a horizon of N observations then becomes:

min
A
J(A) ,

1

N

N∑
i=1

Ji(A), (15)

Ji(A) , EQ(A;Λi,Λi−1, L̄i) (16)

where the statistical properties of Λi vary with time. This
explains why we are averaging over a time-horizon in (15).
We apply stochastic approximation to solve (15), namely, a
recursion of the form:

AT
i = AT

i−1 + µ(1− δ)

×
(
Λi − (1− δ)AT

i−1Λi−1 − δL̄i

)
ΛT
i−1 (17)

In order to examine the steady-state performance of the
algorithm, we introduce an independence assumption that is
common in the study of adaptive systems [33].

Assumption 5. (Separation principle) Let Ãi = A? − Ai

denote the estimation error. Assume the step-size µ is suffi-
ciently small, so that in the limit, ‖Ãi‖2F reaches a steady
state distribution, and Ãi is independent of Λi. �

Using this condition, we can establish the following steady-
state performance for the Online Graph Learning (OGL)
algorithm.

Theorem 1 (Steady-state performance). Under Assumptions
1-5, after large enough number of social learning iterations
with δ → 0 and for sufficiently small µ, the mean squared
deviation converges exponentially fast with:

lim sup
i→∞

E‖Ãi‖2F ≤
µ2γ

1− α
= O(µ), (18)

where

α = 1− 2µν +O(µ2)

γ = δ2κ|N |λmax(RL)

ν = (1− δ)2λmin (RΛ)

κ = (1− δ)2λmax (RΛ) (19)

and RL , E(Li− L̄)(Li− L̄)T is independent of i, whereas
RΛ , limi→∞ EΛiΛ

T
i is finite.

Proof. Proof is omitted due to space limitations. �

IV. COMPUTER SIMULATIONS

The experiments that follow help illustrate the ability of
the proposed algorithm to identify edges and to adapt to
situations where the graph topology is dynamic, as well as
the hypothesis.

A. Setup

We consider a network of 30 agents with |Θ| = 4 states,
where the adjacency matrix is generated according to the
Erdos-Renyi model with edge probability p = 0.2. We set
Zk to be a discrete sample space with |Zk| = 4 for k ∈ N .



The step-size of the model is set to δ = 0.05. We define the
likelihood functions Lk(θ), k ∈ N , θ ∈ Θ as follows:

Lk(ζ|θ) =
∑
z∈Zk

I[ζ = z]βk,z(θ),

βk,z(θ) ≥ 0, z ∈ Zk∑
z∈Zk

βk,z(θ) = 1, (20)

where the parameters βk,z(θ) are generated randomly. During
the graph learning procedure, we use µ = 0.01.

B. Graph learning

We provide a comparison between the true combination
matrix and the estimated combination matrix. We plot the
combination matrices in Fig. 1. The experiment shows the
ability of the algorithm to identify the graph: the recovered
combination weights are close to the actual weights. In no-
edge places, we observe reasonably small weights on the
recovered matrix. These can be removed in post-processing
by simple thresholding or more elaborate schemes, such as
the k-means algorithm [34].

Additionally, in Fig. 2, we plot how the deviation from
the true matrix A? evolves. The deviation is computed as the
following quantity:

‖Ãi‖2F = ‖A? −Ai‖2F. (21)

We provide the error rates for both algorithm variants with
known true state θ? and estimated true state θ̂i. We see that
there is a negligible gap between the learning performances.

The proposed algorithm is robust to changes in the true
state and graph topology. In Fig. 3, we regenerate edges at
time 15000. The algorithm adapts and converges to the new
combination matrix at a linear rate. Thus, we have experi-
mentally illustrated that the algorithm is stable to dynamic
network changes, which is a natural setting to consider in
practice. These properties hold because the algorithm is online
and processes data one by one with a constant learning rate
µ > 0.

V. CONCLUSIONS

In this paper, the problem of graph learning through observ-
ing social interactions is investigated. We develop an online
algorithm that learns the agents’ influence pattern via observ-
ing agents’ beliefs over time. We prove that the proposed algo-
rithm successfully learns the underlying combination weights
matrix and demonstrate its performance through analysis and
computer simulations. In this way, we are able to discover the
pattern of information flow in the network. A distinct feature
of the proposed algorithm is the fact that it can track changes
in the graph topology as well as in the true hypothesis.

As future work, we aim to investigate partial information
setting, where the algorithm has access only to the beliefs of
a subset of the network agents.

(a) True graph.

(b) Learned graph.

Fig. 1: True combination matrix and the learned matrix using
the Online Graph Learning (OGL) algorithm.
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Fig. 2: Error evolution of two algorithm variants: known true
state and estimated true state.



0 20000 40000 60000 80000 100000
0

1

2

3

4

5

6
Er
ro
r

error
graph change

Fig. 3: Error evolution when the graph edges are regenerated.
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