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Abstract—Federated learning involves a central processor that
interacts with multiple agents to determine a global model. The
process consists of repeatedly exchanging estimates, which may
end up divulging some private information from the local agents.
This scheme can be inconvenient when dealing with sensitive
data, and therefore, there is a need for the privatization of the
algorithm. Furthermore, the current architecture of a server
connected to multiple clients is highly sensitive to communication
failures and computational overload at the server. In this work,
we develop a private multi-server federated learning scheme,
which we call graph federated learning. We use cryptographic
and differential privacy concepts to privatize the federated
learning algorithm over a graph structure. We further show
under convexity and Lipschitz conditions, that the privatized
process matches the performance of the non-private algorithm.

Index Terms—federated learning, distributed learning, differ-
ential privacy, secure aggregation, network

I. INTRODUCTION

Federated learning (FL) [1] is a useful distributed learning
algorithm that aims at finding a global model to fit local data.
The FL algorithm consists of two steps: an update step done
locally at each client, and an aggregation step done at a central
server. During these two steps, communication occurs between
the clients and the one server. Unfortunately, such a structure
is not robust, since it relies on one server to carry out all the
communications and aggregation. One solution was suggested
in [2] introducing hierarchical federated learning; the archi-
tecture consists of one cloud server connected to a number
of edge servers that, in turn, are connected to multiple clients,
thus forming a tree structure. In this work, we consider a more
general framework and introduce graph federated learning
(GFL), which consists of several servers each connected to
their own subset of clients. The servers in turn are connected
by a graph topology. Such an architecture is more suitable,
for example, when considering cellular networks that consist
of multiple cellphone towers, each open for communication
with numerous cellular devices. However, it is not without its
challenges. Introducing multiple servers and requiring them to
collaborate adds some more communication/synchronization
effort.

In addition, when multiple servers are used, it becomes
essential to focus on the privacy of the federated learning
algorithm. It is not sufficient that the raw local data is not
explicitly communicated for the algorithm to be private. The
model and gradient updates shared by each client can convey
information about the data [3]–[6]. For example, if we consider
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a logistic risk function, the gradient can be expressed as a
constant multiplying the feature vector. Therefore, there is
a need to privatize the federated algorithm in order to stop
information leakage.

Multiple solutions exist to privatize distributed learning
algorithms. They can be split into two frameworks: differential
privacy [7]–[15] and cryptography [16]–[20]. No framework
prevails over the other. While differential privacy is easy to
implement, it adds a bias to the solution. On the other hand,
cryptographic methods such as secure multi-party computation
(SMC) are harder to implement and impose hard limitations on
the number of participating parties. Thus, in this work we wish
to benefit from the two approaches. We develop a protocol
based on the works in [21] and [16]. The former reference
[21] utilizes differential privacy to privatize a distributed
learning algorithm on a graph. Unlike standard differential
privacy schemes, the perturbations are not independent but
are choosen to satisfy a nullspae condition determined by the
graph structure. While reference [16] encorporates multiple
SMC tools into the federated learning architecture. Their
scheme coresponds to adding local perturbations, which will
be canceled out at the server.

In this work, we first study the effect of privatization on
the performance of the learning algorithm. We study general
private algorithms whose privatization schemes can be mod-
elled as added noise, whether it be using differential privacy
or SMC. We then present the protocol we adopt and specialize
the results.

II. PROBLEM FORMULATION

The graph federated learning architecture consists of P
servers, each connected to a set of K clients, as depicted in
Figure 1. The graph connecting the servers is represented by
a combination matrix A ∈ RP×P whose elements are denoted
by amp. The goal is to minimize the average empirical risk:

wo
∆
= argmin

w∈RM

1

P

P∑
p=1

1

K

K∑
k=1

Pp,k(w), (1)

where each individual cost is a sample average of a local loss
function:

Pp,k(w)
∆
=

1

Np,k

Np,k∑
n=1

Qp,k(w;xp,k,n), (2)

We introduce the subscript p to denote the server, while the
subscript k refers to the client and n to the data. To solve
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Fig. 1: Graph federated architecture.

problem (1), each server with its clients runs the federated av-
eraging (FedAvg) algorithm [1], and then the servers amongst
themselves run a consensus or diffusion-type algorithm. In our
previous works [22] and [23], we have shown that when each
agent runs a different number of epochs before sending their
final update to the server, the resulting incremental error is on
the order of O(µ2) and is dominated by gradient noise. Let
Lp,i denote the L sampled clients at iteration i by server p.
To simplify the presentation, we assume in this work that the
L sampled clients run one stochastic gradient descent (SGD)
step during each iteration. More formaly, at iteration i, each
agent k ∈ Lp,i updates the model at the server wp,i−1 to
wp,k,i, which they then send to server p:

wp,k,i = wp,i−1 − µ
1

Bp,k

∑
b∈Bp,k,i

∇wTQp,k(wp,i−1;xp,k,b),

(3)
where Bp,k,i is the mini-batch sampled by client k, connected
to server p, at iteration i and of size Bp,k. Next, neighbouring
servers communicate amongst each other the recieved updates:

ψp,i =
1

L

∑
k∈Lp,i

wp,k,i, (4)

to finally get:

wp,i =
∑
m∈Np

ampψm,i. (5)

Next, to introduce privacy, updates sent during each communi-
cation round can be perturbed by some noise. Thus, at iteration
i, let gmp,i be the noise added by server m to the update sent
to server p, and gp,k,i be the noise added by agent k to the
update sent to server p. Then, the algorithm can be described
by a client update step (6), a server aggregation step (7), and

a server combination step (8).

wp,k,i = wp,i−1 − µ
1

Bp,k

∑
b∈Bp,k,i

∇wTQp,k(wp,i−1;xp,k,b)

(6)

ψp,i =
1

L

∑
k∈Lp,i

(wp,k,i + gp,k,i) , (7)

wp,i =
∑
m∈Np

amp (ψm,i + gmp,i) (8)

Furthermore, if we assume we are using SMC tools, like secret
sharing, we can model the protocol by an invertible function
f(·) that maps the local update to an encrypted version. Thus,
in the server aggregation (7) and server combination (8) steps,
we replace wp,k,i and ψm,i with f(wp,k,i) and f(ψm,i),
respectively. For the remainder of the paper, we shall continue
with the algorithm formulation in (6)-(8) instead of introducing
f(·), for ease of notation.

III. PERFORMANCE ANALYSIS

A. Modeling Conditions

Certain reasonable assumptions on the nature of the graph
and the cost functions are made to allow for a tractable
convergence analysis.

Assumption 1 (Adjacency matrix). The adjacency matrix A
describing the graph is symmetric and doubly-stochastic, i.e.:

apm = amp,

P∑
m=1

amp = 1. (9)

Furthermore, it is fully connected, satisfying:

λ
∆
= ρ(A− 1

P
11T) < 1. (10)

Assumption 2 (Convexity and smoothness). The empirical
risks Pp,k(·) are ν−strongly convex, and the loss functions
Qp,k(·; ·) are convex, namely:

Pp,k(w2) ≥ Pp,k(w1) +∇wTPp,k(w1)(w2 − w1)

+
ν

2
‖w2 − w1‖2, (11)

Qp,k(w2; ·) ≥ Qp,k(w1; ·) +∇wTQp,k(w1; ·)(w2 − w1).
(12)

Furthermore, the loss functions have δ−Lipschitz gradients:

‖∇wTQp,k(w2; ·)−∇wTQp,k(w1; ·)‖ ≤ δ‖w2 − w1‖. (13)

Note that in our previous work [22], [23], we assumed that
the local optimal models, which optimize Pp,k(·) at the agents,
do not differ too much from the global optimal model at
the server. We do not make such an assumption here since
we are assuming each agent perfroms one epoch during the
agent update step. More explicitly, the bound on the model
dissagreement only appears in the incremental error term



which we do not have here. If we were to assume that the
clients perform mulitple SGD steps in one model update step,
then we would need such an assumption to make sure the
incremental noise is bounded. However, this assumption is not
restrictive, since if the local models differed too much, then
collaboration would be nonsensical.

Assumption 3 (Bounded gradients). The norm of the
stochastic gradients is bounded along the trajectory of the
algorithm:

‖∇wTQp,k(w; ·)‖ ≤ B (14)

The bound on the gradient norm is required in the privacy
analysis of the algorithm. In general, it is assumed that the
gradients are uniformly bounded, and when that does not hold,
as in the case of strongly convex cost functions, normalized
gradients are used instead. However, we consider the less
restrictive condition of bounding the gradients only on the
models calculated by the algorithm.

B. Error Recursion

We focus on the network centroid wc,i defined by:

wc,i
∆
=

1

P

P∑
p=1

wp,i. (15)

By combining the three steps of the algorithm, we can get the
following recursion for the network centroid:

wc,i =wc,i−1 − µ
1

P

P∑
p=1

∇̂wTPp(wp,i−1)

+
1

PL

P∑
p=1

∑
k∈Lp,i

gp,k,i +
1

P

P∑
p=1

P∑
m=1

ampgmp,i, (16)

where we define the stochastic gradient at server p as:

∇̂wTPp(·)
∆
=

1

L

∑
k∈Lp,i

1

Bp,k

∑
b∈Bp,k,i

∇wTQp,k(·;xp,k,b). (17)

This expression approximates the true gradient ∇wTPp(·). By
defining w̃c,i = wo −wc,i and the gradient noise:

si =
1

P

P∑
p=1

(
∇̂wTPp(wp,i−1)−∇wTPp(wp,i−1)

)
, (18)

we can write the following error recursion:

w̃c,i = w̃c,i−1 + µ
1

P

P∑
p=1

∇wTPp(wp,i−1) + µsi− gc,i, (19)

with gc,i capturing the total added noise.

C. Convergence Results

Before moving to the result on the network convergence,
we introduce the following preliminary lemma. We show that
all models at the servers {wp,i}Pp=1 remain significantly close
to the network centroid wc,i.

Lemma 1 (Network disagreement). The average deviation
from the centroid is bounded during each iteration i:

1

P

P∑
p=1

E‖wc,i −wp,i‖2 ≤ 2E‖w̃c,i−1‖2 +O(µσ2
s) +O(σ2

gc),

(20)

where O(σ2
gc) is a variance term that depends on the variance

of the added noise gmp,i and gp,k,i, and σ2
s is the variance of

the gradient noise given by:

σ2
s

∆
=

2

PK

P∑
p=1

K∑
k=1

E‖∇wTQp,k(wo;x)‖2. (21)

Proof. Proof omitted due to space limitations

We observe that the added noise contributes an added
O(σ2

gc) to the bound, which does not exist in the non-private
algorithm. Furthermore, the bound is in terms of the centroid
error w̃c,i−1. As seen in the main theorem below, that term
converges to a neighbourhood around zero.

Theorem 1 (Convergence of MSE). Under Asumptions 1
and 2, the network centroid converges to the optimal point wo

exponentially fast for a sufficientlt small step size µ :

E‖w̃c,i‖2 ≤λiE‖w̃c,0‖2 +
1− λi

1− λ
O
(
µ2(σ2

s + σ2
gc) + σ2

gc

)
,

(22)

where λ = 1 − O(µ) + O(µ2) ∈ (0, 1). Then, repeating the
algorithm infinitly many times, we get:

lim sup
i→∞

E‖w̃c,i‖2 ≤ O(µ(σ2
s + σ2

gc)) +O(µ−1σ2
gc). (23)

Proof. Proof omitted due to space limitations.

Thus, a close examination of the above theorem reveals that
all privatized algorithms that can be modelled by added noise,
add a noise variance term scaled by O(µ+µ−1). The O(µ−1)
term comes from the noise added at the client level to the
updates sent to the server, while the O(µ) term comes from
the network disagreement between the models at the server and
the centroid model. The result does not come as a surprise,
since it quantifies the trade-off between privacy and accuracy.

D. Performance of the hybrid scheme

We now specialize the above results to the scheme adopted
in this work. The protocol developed in [16] utilizes a secret
sharing method to insure that the messages sent by the clients
arrive to the server encoded. The method is equivalent to



applying a mask to the updates by each client, which cancels
out at the server, i.e., at every server p the following holds:∑

k∈Lp,i

gp,k,i = 0. (24)

Furthermore, we apply graph homomorphic perturbations, in-
troduced in [21]. Let each server p sample independently from
the Laplace distribution gp,i ∼ Lap(0, σg/

√
2) with variance

σ2
g . Then, the noise sent among servers can be constructed as:

gmp,i =

{
gm,i, if m 6= p,

− 1−amm

amm
gm,i, if m = p.

(25)

Thus, the following result holds:

1

P

P∑
p=1

P∑
m=1

ampgmp,i = 0. (26)

Therefore, with this scheme, the centroid model recursion (16)
has no noise component. This implies that the O(µ−1) term
disappears from the bound of the MSE (23). Eventhough the
effect of the noise added by the servers remains, it is scaled
by µ in the MSE bound.

IV. PRIVACY ANALYSIS

We focus on the privacy of the hybrid scheme described
in the previous section. We quantify privacy using differential
privacy [24]. Thus, we first need to find the sensitivity of the
graph FedAvg algorithm, since it is used to callibarate the
perturbations. To do so, consider, without loss of generality,
that client 1 connected to server 1 decided not to participate,
and instead its data x1,1 was replaced by some other data x′

with a different distribution. Then, the algorithm will follow
a different trajectory w′p,k,i. The sensitivity of the function is
thus given by:

∆(i)
∆
= max

(p,k)
‖wp,k,i −w′p,k,i‖ ≤ 2µBi (27)

Next, we wish to show that the algorithm is differentially
private, but before doing so we present the definition of
ε(i)−differential privacy.

Definition 1 (ε(i)−Differential privacy). We say that the
algorithm given in (6)-(8) is ε(i)−differentially private for
server p at time i if the following condition holds:

P
({
{ψp,j + gmp,j}m∈Np\{p}

}i
j=0

)
P
({{

ψ′
p,j + gmp,j

}
m∈Np\{p}

}i
j=0

) ≤ eε(i) (28)

The above definition states that the probability of any trajec-
tory is comparable whether or not a client shares its data.
Furthermore, it will be our goal to have a small ε(i) to get a
higher privacy guarantee.

Theorem 2 (Privacy of GFL algorithm). If the algorithm (6)-
(8) adopts the hybrid privacy scheme described in the previous
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Fig. 2: Performance plots with M = 2, µ = 0.1, ρ = 0.01,
σg = 0.2

section, then it is ε(i)−differentially private, at time i for a
standard deviation of σg =

√
2µB(1 + i)i/ε(i) .

Proof. Proof omitted due to space limitations.

Thus, if we wish to keep the privacy high as more iterations
are performed, then the variance of the added noise ought to be
increased. This clearly decreases the model utility, as seen in
Theorem 1. Another way of interpreting the privacy theorem is
as follow: If we keep σg fixed, then ε(i) =

√
2µB(1+i)i/σg =

O(i2), which increases as more iterations are performed. Thus,
the privacy decreases quadratically with time. This does not
come as a surprise, since the longer the algorithm runs, the
more information across servers and clients is difussed.

V. EXPERIMENTAL RESULTS

To illustrate the theoretical results numericaly, we simulate
a GFL consisting of P = 10 servers, each with K = 50
clients, whose goal is to solve a logistic regression binary
problem. We generate a set of data points {γp,k(n), hp,k,n}100

n=1

for each client, where γp,k(n) = ±1, and hp,k,n ∈ RM
with f(hp,k,n|γp,k(n) = γ) = N (γ;σ2

h,p,k). We compare our
private scheme with a standard private algorithm that uses
standard perturbations, and with the non-private algorithm.
The results are found in Figure 2. We observe that our
hybrid scheme performs well at approximating the non-private
scheme. We also increase the noise variance, and we observe
that while the IID private scheme does not converge, our
scheme continues to perform as well as the non-private one.

VI. CONCLUSION

In this work, we extended the federated learning architecture
to GFL. We privatized the algorithm by using non-random
perturbations. We quantified the privacy of our algorithm using
differential privacy and provided a performance analysis. Both
the theoretical and experimental results showed that dependent
perturbations among servers reduce the negative effect of
added noise to the model utility.
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