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ABSTRACT

This paper presents an adaptive combination strategy for distributed
learning over diffusion networks. Since learning relies on the col-
laborative processing of the stochastic information at the dispersed
agents, the overall performance can be improved by designing com-
bination policies that adjust the weights according to the quality of
the data. Such policies are important because they would add a new
degree of freedom and endow multi-agent systems with the ability to
control the flow of information over their edges for enhanced perfor-
mance. Most adaptive and static policies available in the literature
optimize certain performance metrics related to steady-state behav-
ior, to the detriment of transient behavior. In contrast, we develop
an adaptive combination rule that aims at optimizing the transient
learning performance, while maintaining the enhanced steady-state
performance obtained using policies previously developed in the lit-
erature.

Index Terms— distributed learning, diffusion strategy, combi-
nation weights, adaptive network.

1. INTRODUCTION

We consider a strongly-connected network of N nodes with a pre-
defined topology. We denote the neighborhood of node k (including
node k itself) by Nk and the degree of node k by nk. A local risk
function Jk(w) = ExQk(w;x) is associated with each node, where
Qk(w;x) is some loss function. The objective is to generate an es-
timate, in a collaborative and distributed manner, for the unknown
vector wo ∈ RM that minimizes the global cost:

Jglob(w) ,
N∑

k=1

Jk(w) (1)

Each Jk(w) is a real valued function defined over w ∈ RM , and
assumed to be differentiable and strongly convex. Consequently,
Jglob(w) is also a strongly convex and the minimizer wo is unique
[1]. In this work, we focus on the important case where each of the
local cost functions {Jk(w)} are also minimized at the same wo.

The solution to this problem can be pursued in a decentralized
and iterative manner by generating local estimates wk,i at each node
k and time i ≥ 0. The iterates can be constructed using a variety of
decentralized strategies, including incremental [2], consensus [3–5],
diffusion [6, 7], primal-dual [8, 9], proximal [10], augmented La-
grangian [11], or gradient tracking methods [12]. Here, we focus on
the Adapt-then-Combine (ATC) diffusion strategy, which has been
shown to have superior mean-square error performance and stability
range in adaptive scenarios [7].
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Since the statistical distribution of the data x is not known
beforehand in most cases of interest, the exact gradient vectors
∇wJk(w) are not available or easily obtainable. Motivated by this
consideration, we follow the stochastic gradient descent construc-
tion for diffusion algorithms and utilize gradient approximations in
our analysis. We refer to the perturbation as a random additive noise
component and write the approximate gradient vector in the form:

∇̂wJk(w) = ∇wJk(w) + sk,i(w) (2)
where sk,i(w) denotes the gradient noise term. Note that we use
a boldface symbol to highlight its stochastic nature. Using the per-
turbed gradient vectors, the ATC diffusion strategy is given by:

ψk,i = wk,i−1 − µk∇̂wJk(wk,i−1)

wk,i =
∑
`∈Nk

a`k,iψ`,i

(3a)

(3b)

where ψk,i is an intermediate local estimation vector at node k, µk

is the step size at node k and {a`k,i} are possibly time-varying, real-
valued combination weights. In most of the prior works on decen-
tralized processing, the combination weights are pre-selected and
treated as known deterministic variables. However, in this work, we
focus on the case where these combination weights are constructed
on the fly, and will therefore be data-dependent. They will neverthe-
less be always normalized to satisfy:∑

`∈Nk

a`k,i = 1, a`k,i = 0 if ` /∈ Nk (4)

Although the literature on diffusion strategies mostly includes works
where the combination weights are constrained to be non-negative
[6,7], there also exist works that allow negative values [13]. We will
not impose the non-negativity requirement as well.

Since the choice of the combination weights {a`k,i} plays an
important role in the performance of decentralized strategies, dif-
ferent static and adaptive combination policies have been proposed
in previous studies. The static combination policies include Uni-
form [14], Laplacian [15, 16], Maximum-Degree [17], Metropolis
[16], Hastings [18] and Relative-Variance [19] rules. To allow for
data-aware processing, adaptive combination policies have also been
developed. These policies learn data statistics during the operation
of the algorithm and adapt combination weights accordingly. Ex-
amples include the adaptive version of Relative-Variance rule [19],
Phase-Switching algorithm [20], and the policy proposed in [21].

Previous works on adaptive combiners mostly concentrate on
improving the steady-state performance of the nodes by incorporat-
ing the information obtained during the learning process [19, 20].
However, these algorithms do not explicitly aim at improving the
transient performance. Some empirical results indicate that they can
be outperformed by simple static combination policies (such as the
averaging rule) in the transient phase [6, 19]. We address this prob-
lem in the context of networks with a general cost structure described
previously, and propose an adaptive combination policy that will im-
prove the transient performance of the decentralized learning algo-
rithms while preserving the improved steady-state performance.



2. GRAMIAN-BASED ADAPTIVE POLICY

We first describe the error recursions corresponding to the ATC dif-
fusion formulation in (3) and start by defining the error vectors

w̃k,i = wo −wk,i , ψ̃k,i = wo −ψk,i (5)

for all k = 1, . . . , N and i ≥ 0. Following the approach taken in [6],
we subtract both sides of equations (3a) and (3b) from wo, substitute
expression (2) for the perturbed gradient vector, and call upon the
mean-value theorem to express the error recursion as:

ψ̃k,i = [IM − µkHk,i−1]w̃k,i−1 + µksk,i(wk,i−1)

w̃k,i =
∑
`∈Nk

a`k,iψ̃`,i

(6a)

(6b)

where

Hk,i−1 ,
∫ 1

0

∇2
wJk(wo − tw̃k,i−1)dt (7)

and ∇2Jk(·) denotes the Hessian matrix of Jk(·). We also define
the combination vectors and the combination matrix as follows:

ak,i , col{a1k,i, . . . ,aNk,i} ∈ RN for k = 1, . . . , N

Ai , [a1,i, . . . ,aN,i] ∈ RN×N
(8)

2.1. Development of the Algorithm

We define the problem of selecting the combination weights as an
optimization problem where our goal is to maximize the improve-
ment obtained in each time step by estimating the best possible com-
bination weighting for each node. For this purpose, we introduce
a performance metric for the network and formulate the optimiza-
tion problem using this metric. We construct the network Square-
Deviation measure as follows:

SDav(i) ,
1

N
‖w̃i‖2 =

1

N

N∑
k=1

‖w̃k,i‖2 (9)

Although it is similar to the widely-used MSD metric [6], SD mea-
sures the error norm at each iteration i in contrast to MSD that mea-
sures the expected norm of the steady-state error. For completeness,
we also provide the standard definition for the average Mean-Square-
Deviation metric as MSDav , limi→∞E‖w̃i‖2/N .

In order to account for error similarity between the nodes, we
construct the Gramian matrix Qi for the set of intermediate estima-
tion error vectors {ψ̃k,i}:

Qi , Ψ̃
T

i Ψ̃i (10)

where Ψ̃i ,
[
ψ̃1,i, . . . , ψ̃N,i

]
. Using these definitions, we can

express (6b) as a matrix vector product:

w̃k,i = Ψ̃iak,i (11)

In order to pursue an optimal combination policy Ai as a function
of the estimation errors ψ̃k,i, we define an objective function using
the SD measure defined in (9) and substitute (10)-(11) to get

SDav(i) =
1

N

N∑
k=1

‖Ψ̃iak,i‖2 =
1

N

N∑
k=1

aT
k,iQiak,i (12)

Consequently, the problem of finding the combination weights that
minimize the given error measure can be expressed as a constrained

minimization problem in the form:

min
{a`k,i}

N∑
k=1

aT
k,iQiak,i

s.t. a`k,i = 0, for all ` /∈ Nk

aT
k,i1 = 1, for k = 1, . . . , N

(13)

Since some entries of the vector ak,i are constrained to be zero, we
only need to solve this quadratic minimization problem for entries
a`k,i such that ` ∈ Nk. Therefore, we define the truncated combi-
nation vectors:

ck,i , col{a`k,i}`∈Nk ∈ Rnk (14)
such that

ak,i = Pkck,i (15)

where Pk , [. . . , `th column of IN , . . . ] for ` ∈ Nk (i.e, Pk is the
N×nk matrix whose columns are standard (natural) basis vectors of
indices corresponding to the neighbors of node k). Additionally, we
define the local counterparts of the Gramian matrix and error matrix
as follows:

Ψ̃k,i , Ψ̃iPk

Qk,i , Ψ̃
T

k,iΨ̃k,i = PT
kQiPk

(16a)

(16b)

Furthermore, in (13), neither the kth term of the summation in the
objective function nor the constraints for ak,i depend on the selec-
tion of a`,i for ` 6= k. Therefore, this optimization problem can
be decoupled into N independent sub-problems. Using the notation
introduced in (15), we express the sub-problem related to node k as:

min
ck,i

cTk,iQk,ick,i

s.t. cTk,i1 = 1
(17)

We continue with writing the optimality conditions as a KKT system
for this equality constrained quadratic optimization problem:[

Qk,i 1nk

1T
nk

0

] [
ck,i
λ

]
=

[
0nk

1

]
(18)

For general quadratic optimization problems, if the KKT system is
not solvable, it means that the problem is unbounded below or infea-
sible [22, p. 522]. However, Qk,i is certainly positive-semidefinite
(since it is a Gramian matrix) and thus the minimum value of the
objective is bounded below by zero. Additionally, we note that the
feasible set given by the linear constraint is non-empty. Therefore,
solving (18) will always yield an optimal ck,i (there may be multiple
optimal solutions if the KKT matrix is singular).

IfQk,i turns out to be non-singular, it is straightforward to verify
that the optimal solution can be found in the following closed-form:

ck,i =
Q−1

k,i1nk

1T
nk
Q−1

k,i1nk

(19)

The resulting expressions enable us to compute the combination
weights as a function of the matrix Qk,i and hence ψ̃k,i. However,
these quantities are not known for the nodes, since the nodes only
have access to ψk,i, but not wo. Consequently, the difficulty in
employing the given combination policy, while optimal in the sense
that it maximizes the reduction in squared deviation, lies in the fact
that we are required to estimate the statistics of the error vectors.

In order to construct an estimate for the matrixQk,i, we adopt a
sample mean approach. We recall the definition ofQk,i and express
it in terms of the known quantities {ψk,i} as

Qk,i , Ψ̃
T

k,iΨ̃k,i = (Ψk,i − wo
1
T
nk

)T(Ψk,i − wo
1
T
nk

) (20)

where Ψk,i ,
[
. . . ,ψ`,i, . . .

]
for ` ∈ Nk. However, estimating

Qk,i directly in this form is difficult because it requires knowledge



of the optimal weight vector wo. We follow the reasoning used in
[19, 21], and approximate the optimal wo by the expected estimate
at iterate i, i.e., wo ≈ Eψk,i. Consequently, an estimate for Qk,i

will be
Q̂k,i ≈ (Ψk,i − EΨk,i)

T(Ψk,i − EΨk,i) (21)
Using the approximation that Qk,i is locally stationary, we propose
using an exponential moving average scheme to construct Q̂k,i as:

Q̂k,i = (1− α1)Q̂k,i−1 + α1(Ψk,i − Ψ̄k,i−1)T(Ψk,i − Ψ̄k,i−1)

Ψ̄k,i = (1− α2)Ψ̄k,i−1 + α2Ψk,i

(22)
for some constants 0 < α1, α2 � 1. Using this estimation scheme,
we can complete the construction of the algorithm as follows:

Algorithm 1: Gramian-Based Adaptive Diffusion
Parameters and initialization: 0 < α1, α2 � 1, µk > 0,
Q̂k,−1 = Ink , Ψ̄k,−1 = 0M×nk ,wk,−1 = 0M .

for each time i ≥ 0 do
for each node k do

ψk,i = wk,i−1 − µk∇̂wJk(wk,i−1)

end
for each node k do

Ψk,i =
[
. . . ,ψ`,i, . . .

]
, for ` ∈ Nk

Gk,i = (Ψk,i − Ψ̄k,i−1)T(Ψk,i − Ψ̄k,i−1)

Q̂k,i = (1− α1)Q̂k,i−1 + α1Gk,i

Ψ̄k,i = (1− α2)Ψ̄k,i−1 + α2Ψk,i

solve
[
Q̂k,i 1nk

1T
nk

0

] [
ck,i
λ

]
=

[
0nk

1

]
, for ck,i

wk,i = Ψk,ick,i
end

end

3. STEADY-STATE MEAN-SQUARE PERFORMANCE

To examine the performance of the algorithm, it is necessary to
introduce some simplifying assumptions; otherwise, the analysis
becomes intractable due to the multiple adaptation layers. Some
of these assumptions are common in the literature on decentralized
adaptive algorithms. They essentially essentially require that the
construction of the approximate gradient vector should not intro-
duce bias and that its error variance should decrease as the quality
of the iterate improves [6].

Assumption 1 (Conditions on Gradient Noise). The gradient noise
processes are temporally and spatially independent. Additionally,
the first and second-order moments of the gradient noise processes
satisfy the following conditions:

E [sk,i(wk,i−1)] = 0

E
[
‖sk,i(wk,i−1)‖2

]
≤ β2E

[
‖wo −wk,i−1‖2

]
+ σ2

s,k

(23a)

(23b)

for some constants β2 ≥ 0, σ2
s,k ≥ 0.

For static combination matrices that satisfy (4), it has been shown
that ‖w̃k,i‖2 can be made arbitrarily small in steady-state if suffi-
ciently small step-sizes are used [6, 7]. Consequently, it has been
argued that Hk,i−1 can be approximated by Ho

k , ∇2
wJk(wo) for

small step-sizes. In light of this observation, we employ the assump-
tion that similar arguments will hold for our dynamic combination
policy. In other words, we argue that the iterates can get sufficiently
close to wo such that the curvature and noise structures can be well-
approximated with their corresponding values at wo.

Furthermore, as done in the analysis of other adaptive policies
in the literature [19, 21], we will assume that the estimation process
is wide-sense stationary and samples are temporally uncorrelated in
steady-state. This follows from the observation that the estimates
wk,i will approach wo in expectation and the deviations will be
mostly caused by independent noise factors.

Assumption 2 (Steady-State). Using small enough step-sizes, it is
assumed that the following stationarity conditions are approximately
valid:

lim
i→∞

Hk,i−1 ≈ Ho
k

lim
i→∞

E
[
sk,i(wk,i−1)sTk,i(wk,i−1)

]
≈ Rs,k

lim
i→∞

EΨi ≈ EΨ

lim
i→∞

E
[
ΨT

i Ψi−1

]
≈ EΨTEΨ

(24a)

(24b)

(24c)

(24d)

where Ho
k , ∇2

wJk(wo), Rs,k , E
[
sk,i(w

o)sTk,i(w
o)
]

and EΨ is
an unknown deterministic matrix.

Lastly, we will require the independence of each combination matrix
from the last estimation error. For small enough α1 and α2 values,
the combination matrixAi at step i is a function of many past noise
samples, while the estimation error w̃i−1 at step i mostly depends
on more recent noise samples. Therefore, it is reasonable to employ
the assumption that two quantities are independent.

Assumption 3 (Independent Combination Matrix). For small α1

and α2 values,Ai and w̃k,i−1 are independent in steady-state.

3.1. Approximate Steady-State Combination Policy

Since the expression for the combination policy and the distribution
of Ψi matrices are intertwined with each other, it is not straightfor-
ward to write down a steady-state expression for EAi. However,
we can introduce the assumption that EAi will converge to some
constant matrix, following [21]. This assumption originates from
the observation that Ai matrices change slowly over iterations (for
small α1 and α2 values) and therefore capture information mostly
about the error statistics of the nodes. Furthermore, we assume that
this constant matrix is such that it minimizes the expected error at
the nodes and hence it is equal to the combination matrix generated
by (19) using limi→∞ EQ̂k,i for Qk,i. Essentially, we assume that
the expectation applied to both sides of (19) can be approximated as
follows in the steady-state limit:

Eck,i = E

[
Q−1

k,i1nk

1T
nk
Q−1

k,i1nk

]
≈

E
[
Qk,i

]−1
1nk

1T
nk

E
[
Qk,i

]−1
1nk

(25)

Assumption 4. Expected value of the combination matrix Ai con-
verges to A∞ in steady-state regime and we can employ following
approximations:

lim
i→∞

E [Ai] ≈ A∞

lim
i→∞

E [Ai ⊗Ai] ≈ A∞ ⊗A∞

(26a)

(26b)

where Ai = Ai ⊗ IM , A∞ = A∞ ⊗ IM and columns of A∞ are

ak,∞ =
PkQ̂

−1
k,∞1nk

1T
nk
Q̂−1

k,∞1nk

(27)

where Q̂k,∞ , PT
k Q̂∞Pk and Q̂∞ , limi→∞ EQ̂i.

Following this assumption, we write an expression for EQ̂i in
steady-state, so that we can approximate A∞.



Theorem 1. Under Assumptions 1-2, the steady state expectation for
Q̂i can be approximated as a diagonal matrix of the form:

lim
i→∞

EQ̂i ≈
1

2
diag{µ2

1σ
2
s,1, . . . , µ

2
Nσ

2
s,N} (28)

where σ2
s,k , E‖sk,i(wo)‖2.

Proof. The proof is omitted due to space limitations.

When we substitute (28) into (27), each entry of the matrix A∞ is
found to be approximated by

a`k,∞ =


θ`∑

m∈Nk
θm

, if ` ∈ Nk

0 , otherwise
(29)

where θ` , 1/(µ2
`σ

2
s,`). As this result shows, the steady-state com-

bination weights generated by the proposed algorithm matches in
expectation with the Relative-Variance rule [6, 19]. Of course, this
result only holds under the simplifying Assumption 4. Nevertheless,
as we illustrate numerically in Sec. 5, the resulting approximation
error is small in practice. Therefore, we can conclude that our pro-
posed algorithm can match the enhanced steady-state performance
of previously proposed algorithms.

3.2. Steady-State Mean-Square Performance

Our next goal is to approximate the steady-state network MSD. We
follow the analysis conducted in [6, 7] and adapt it according to our
case of study. We also use the low-rank approximation method de-
scribed in [6] so that network MSD can be approximated in terms of
the data/noise statistics, the Perron eigenvector of the combination
policy, and the step sizes.

Theorem 2 (Low-Rank Approximation for the Network MSD).
Under Assumptions 1-4, the steady-state network MSD obtained by
the proposed algorithm is approximately equal to

MSDav ≈
1

2
Tr

( N∑
k=1

µkpkH
o
k

)−1( N∑
k=1

µ2
kp

2
kRs,k

) (30)

where Ho
k = ∇2

wJk(wo), Rs,k = E
[
sk,i(w

o)sTk,i(w
o)
]

and

pk =
θk
∑

m∈Nk
θm∑N

`=1

(
θ`
∑

m∈N`
θm
) (31)

using the notation θk = 1/(µ2
kσ

2
s,k) , for k = 1, . . . , N .

Proof. The proof is omitted due to space limitations.

4. SIMPLIFIED VERSION OF THE ALGORITHM

In the steady-state analysis of the originally proposed algorithm, we
have observed that the expected value of the matrixQi converges to
a diagonal matrix as i goes to infinity. Since computation of only
diagonal elements would also result in the same steady-state MSD
with our original approach, we consider a diagonal approximation
forQi starting from the initial iterate. Therefore, one approximation
scheme forQi can be expressed as

qk,i = (1− α1)qk,i−1 + α1‖ψk,i − ψ̄k,i−1‖
2

ψ̄k,i = (1− α2)ψ̄k,i−1 + α2ψk,i

(32)

where qk,i is the kth diagonal entry of the approximation Q̂i. Using
(19), each entry of the matrixAi becomes equal to

a`k,i =


q−1
`,i∑

m∈Nk
q−1
m,i

if ` ∈ Nk

0 otherwise

(33)

Fig. 1: Learning curves obtained with different combination policies

5. SIMULATIONS

We provide an empirical performance analysis of various combina-
tion policies with ATC algorithm on a decentralized logistic regres-
sion problem. The objective is to generate estimates for optimal wo

that minimizes all of the local cost functions:

Jk(w) = E
{

ln(1 + e−γkh
T
kw)
}

+
ρk
2
‖w‖2 (34)

where (hk,γk) represent the streaming data received at node k.
We consider the stochastic construction given by instantaneous data
samples (hk,i,γk,i). At each iteration i, we first generate labels
γk,i ∈ {±1} independently and then generate the corresponding
feature vector hk,i ∼ N (γk,iµh,k1M , σ

2
h,kIM ) ∈ RM . In all ex-

periments, we set M = 10, N = 20, µk = 0.005 and select ρk
approximately equal to 0.5 for all nodes, where the minor adjust-
ments serve the purpose of ensuring a common minimizer among
all local cost functions. Scaling factors µh,k and σ2

h,k are selected
uniformly in the interval (0.6, 1.4) and log-uniformly in the interval
(10−2, 1), respectively. All other algorithm related parameters are
selected such that the observed average network MSD is minimized.
For both versions of the proposed algorithm, the parameters are set
to α1 = 0.01 and α2 = 0.03.

The plots in Fig.1 depict the expected value of the network SD,
which is approximated by averaging the results obtained from 400
independent experiments that use the same data statistics. Further-
more, we numerically approximate Ho

k and Rs,k matrices using the
expressions given in [6, p. 321], so that we can calculate the theoreti-
cal MSD given by equation (30). We observe that the MSD obtained
using either version of the Gramian-Based Adaptive Diffusion strat-
egy agrees with the theoretical value and it also coincides with the
results obtained by the Relative-Variance rule as discussed in Sect.
3.1. Proposed strategies maintain the best steady-state performance
achieved by other combination rules. Moreover, both versions of the
proposed algorithm outperform all others during the transient-phase,
satisfying our primary objective in their development.

6. CONCLUSION

We proposed an adaptive combination rule for distributed estimation
over diffusion networks. We achieved this formulation by defining
an optimization problem where the goal is to obtain the least estima-
tion error possible in each time step. We analyzed the performance
of the proposed algorithm and concluded that it can maintain the en-
hanced MSD performance provided by previous algorithms in the
literature, while improving the transient performance.
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