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ABSTRACT
This work examines the problem of learning the topology of a net-
work (graph learning) from the signals produced at a subset of the
network nodes (partial observability). This challenging problem
was recently tackled assuming that the topology is drawn accord-
ing to an Erdős-Rényi model, for which it was shown that graph
learning under partial observability is achievable, exploiting in par-
ticular homogeneity across nodes and independence across edges.
However, several real-world networks do not match the optimistic
assumptions of homogeneity/independence, for example, high het-
erogeneity is often observed between very connected nodes (hubs)
and scarcely connected peripheral nodes. Random graphs with pref-
erential attachment were conceived to overcome these issues. In this
work, we discover that, over first-order vector autoregressive sys-
tems with a stable Laplacian combination matrix, graph learning is
achievable under partial observability, when the network topology is
drawn according to a popular preferential attachment model known
as the Bollobás-Riordan model.

Index Terms— Graph learning, topology inference, preferential
attachment, Bollobás-Riordan graph, partial observability.

1. INTRODUCTION AND MOTIVATION

In this work we consider a network with N nodes where at time in-
stant i > 1, each node k collects a random input signal xk,i and
forms the output signal yk,i according to the following diffusion
model, a.k.a. first-order Vector AutoRegressive (VAR) model [1]:

yk,i =

N∑
`=1

ak`y`,i−1 + xk,i. (1)

The random variables {xk,i} are independent and identically dis-
tributed (i.i.d.) w.r.t. to both k ∈ {1, 2, . . . , N} and i > 1, with
zero mean and finite variance. A critical feature of (1) is that the
combination weights ak` reflect the network topology: ak` is strictly
positive if k and ` are connected, and is zero otherwise. Thus, it is
legitimate to ask whether the topology can be retrieved from the dy-
namical evolution of the nodes’ signals in (1). The resulting graph
learning problem (also referred to as topology inference or network
tomography) has been extensively studied in the last decades, with
fruitful application to several domains: in social learning, to discover
how individual network agents contribute to opinion formation [2];
in neuroscience, to unveil the relationships between functional and
structural connectivity [3]; in biology, to reveal how fish in a school
coordinate their movements to escape a predator [4, 5].

Unfortunately, in many practical situations it is impossible to
gather signals from the overall ensemble of nodes. This limita-
tion leads to the partial observability setting, where one can ob-

serve the signals in (1) emitted only by nodes belonging to a subset
S ⊂ {1, 2, . . . , N}. Formally, we assume that the cardinality of S
can scale with the network size in such a way that the asymptotic
fraction of probed nodes stays constant, namely,

|S|
N

N→∞−→ ξ ∈ (0, 1). (2)

The partial observability assumption adds significant complexity to
the topology estimation task, since the collected state measurements
are influenced by the latent unobserved nodes which act as noise
sources. This work focuses on this challenging paradigm, namely,
we address graph learning under partial observability, where the
goal is to estimate the interconnections among nodes in S, by gath-
ering only signals from S.

1.1. Related Work

There exist several useful works addressing the graph learning prob-
lem. We now list some references more closely related to our work,
and refer the reader to [6] for a broader literature survey. Conditions
for graph learning under partial observability are available for spe-
cific types of graphs, e.g., for polytrees [7, 8]. More general graph
structures are considered in [9, 10], where, however, conditions for
graph learning are formulated in terms of detailed local features of
the network topology, which are not particularly suited to the large-
scale setting considered here.

In order to circumvent dependence on specific network struc-
tures, an asymptotic approach is considered in [11,12], in the context
of high-dimensional graphical models with latent variables. In [11],
provable learning guarantees are offered under an appropriate lo-
cal separation criterion, whereas in [12] graph learning is shown to
be achievable under the so-called sparsity and low-rank condition,
namely, when the probed subnetwork is sparsely connected, whereas
the unobserved subnetwork has suitably bounded size.

However, all the aforementioned works do not consider the time
dynamics of the signals emitted by the nodes, and, hence, they are
not applicable to dynamical systems like the VAR model considered
here. For dynamical graph models, relevant results under full ob-
servability were presented in [13–19], whereas partial observability
was recently addressed in [20–25]. Particularly relevant to our work
is the setting considered in [23–25], where the VAR model (1) runs
on top of an Erdős-Rényi random graph [26, 27]. Under reasonable
technical assumptions, it is shown that graph learning is achievable
under different regimes of connectivity. However, despite their pop-
ularity, Erdős-Rényi graphs are often not a faithful representation of
real-world networks. For this reason, other random graphs have been
proposed, which are able to capture several useful features emerging
over real-world networks. One notable model is the preferential at-
tachment model, which can be traced back to the work of Barabási



Fig. 1. One example of iterative construction of a BR multigraph
with parameter η = 3.

and Albert [28]. For example, these types of graphs are able to em-
body the appearance of hubs with many connections (as opposed to
peripheral, scarcely connected nodes), while Erdős-Rényi graphs are
homogeneous by their own nature [26, 27]. As explained in Sec. 2,
such enhanced descriptive power hinges basically on the statistical
dependence enforced between the edges (as opposed to the edge
independence implied by the Erdős-Rényi construction). Unfortu-
nately, owing to this dependence, extending results valid for Erdős-
Rényi graphs to preferential attachments graphs is a highly nontrivial
task. The main contribution of the present work is to solve this chal-
lenging task, which allows us to provide a set of sufficient conditions
for consistent graph learning over preferential attachment graphs.

Notation. Matrices are denoted by upper-case letters, vectors by
lower-case letters. We use boldface font to denote random variables,
and normal font for their realizations. If A is a matrix, we denote
its (k, `)-entry by ak`. Sets and graphs are denoted by upper-case
calligraphic letters. For anN×N matrixA, the submatrix spanning
the rows and columns indexed by a set S ⊂ {1, 2, . . . , N} is denoted
by AS, or alternatively by [A]S. For a graph G, the corresponding
capital letter G is used to denote its adjacency matrix.

2. BOLLOBÁS-RIORDAN MODEL

Preferential attachment graphs are usually obtained as the result of
an iterative procedure where, starting from an initial graph with a
certain predetermined structure, at each subsequent iteration one
node is added, along with some edges connecting this node to the
rest of the graph constructed until the current iteration. The term
preferential attachment stems from the fact that, at each iteration,
the probability that the new node is connected to an existing node
is proportional to the degree of the latter. This way, nodes that have
already experienced a large amount of connections are favored, giv-
ing rise to a dichotomy in the network, where some nodes emerge
as hubs with most of the connections, whereas the remaining nodes
become peripheral and feature few connections.

The way to build a preferential attachment model is not unique.
Following the work of Barabási and Albert [28], several preferential
attachment models have been proposed. One of the most popular
variants is the Bollobás-Riordan (BR) random graph, which is the
model examined in this work. The BR model is able to capture many
features of real-world networks, through an elegant mathematical
formulation that allows obtaining clean analytical results as regards
the main quantitative descriptors of the graph (e.g., node degrees,
minimum and maximum degrees, centrality measures).

Actually, the Bollobás-Riordan graph is a multigraph, which
means that multiple self-loops and multiple edges are permitted. The
multigraph structure was chosen by Bollobás and Riordan since it is
instrumental to prove a number of theoretical results [29,30]. The fi-
nal goal of their model is to construct a standard (i.e., simple) graph,
with single edges and no self-loops. Actually, the multigraphs gen-
erated according to the Bollobás-Riordan model are approximately
similar to simple graphs, since it is possible to show that the frac-

tion of edges that are either repetitions or self-loops vanishes as n
grows, while the simple graph inherits the fundamental properties of
the multigraph. Accordingly, once a BR multigraph is constructed,
the corresponding simple graph that will be used to draw the weights
governing the VAR model in (1), is obtained by merely uprooting all
self-loops and multiple edges from the BR multigraph.

A random multigraph of size n will be denoted by M(n). Its
adjacency matrix, denoted by M(n), is the symmetric n × n ma-
trix whose off-diagonal (k, `)-entry mk`(n) counts the number of
edges between nodes k and `, and whose diagonal entry mkk(n)
counts the number of self-loops of node k. We adopt the standard
convention that, in a multigraph, the degree dk(n) of node k is the
number of edges connected to k, with self-loops counted twice1 [31]:

dk(n) =

n∑
`=1

mk`(n) + 2mkk(n). (3)

A Bollobás-Riordan graph with parameter η ∈ N consists of
a random sequence of multigraphs {M(n)}n>1, which are itera-
tively constructed as follows — see Fig. 1 for a graphical illustra-
tion. The initial multigraph M(1) is a deterministic multigraph with
one node and η self-loops. Multigraph M(n) is constructed starting
from M(n− 1) adding a new node n and η new edges. Specifically,
η steps are performed, and at each step an edge is introduced to con-
nect node n to a node randomly chosen from the set {1, 2, . . . , n}.
The intermediate multigraph obtained at step s = 1, 2, . . . , η, is de-
noted by M(n; s). Accordingly, since after η steps we obtain the
updated multigraph M(n), we have the identity M(n; η) = M(n).
Likewise, we adopt the convention that M(n; 0) = M(n− 1). The
particular node that becomes connected to n through the edge intro-
duced at step s is denoted by v(n; s). At each step s, the degree of a
node k 6= n in the intermediate multigraph M(n; s) increases by 1
if the node picked at step s is equal to k, namely,

dk(n; s) = dk(n; s− 1) + I(v(n; s) = k), (4)

where I(·) is the indicator function, which is equal to 1 if its argu-
ment is true, and is zero otherwise. The degree of the new node n
increases by 1 if the node picked at step s is equal to k < n, while in-
creases by 2 if node n itself is picked, since each self-loop is counted
twice in the degree, namely,2

dn(n; s) = dn(n; s− 1) + 1 + I(v(n; s) = n). (5)

The description of the BR graph construction is now completed by
assigning the probability that a particular node is picked:

P [v(n; s) = k|M(n; s− 1)] =
dk(n; s− 1)∑n
`=1 d`(n; s− 1)

. (6)

The probability distribution in (6) reflects the preferential attachment
paradigm, since we see that nodes with higher degrees in M(n, s−
1) are more likely to be connected to the incoming node n, and so
their degrees are more likely to increase further as the multigraph
construction proceeds, according to “the rich get richer” philosophy.

Finally, to obtain the graph of the network that governs the dif-
fusion model in (1), we first generate a multigraph M(N) through

1With this convention, the (half-)sum of all degrees is the total number of
edges and self-loops in the network. This property is particularly useful in
controlling the behavior of the denominator in the probability update rule (6).

2Actually, the update rule in (5) is undetermined when s = 1, since the
degree dn(n; 0) = dn(n − 1) is in principle undefined because node n is
not present in M(n− 1). In order to guarantee symmetry in the multigraph
construction, in [30] the customary choice dn(n; 0) = 1 is adopted.



the BR construction, and then obtain the corresponding simple graph
G(N) by uprooting all repeated edges and self-loops in M(N).

Once a particular graph G(N) is obtained, a combination pol-
icy must be chosen to determine the combination weights appearing
in (1). We focus on the Laplacian policy, which is defined as follows,
for k 6= `, and for some parameters 0 < ρ < 1 and 0 < λ ≤ 1 [32]:

ak`(N) =
ρλ

dmax(N)
gk`(N), akk(N) = ρ−

N∑
`=1
6̀=k

ak`(N),

(7)
where gk`(N) ∈ {0, 1} is the (k, `)-entry of the adjacency matrix
G(N) of the simple graph G(N), and dmax(N) is the maximum
degree of G(N). We remark that we added explicit dependence of
the combination matrix, A(N) = [ak`(N)], on the network size.
The Laplacian policy is a popular choice (e.g., in distributed opti-
mization and graph signal processing) which, despite its simplic-
ity, encodes full information on the network graph, and generates a
doubly-stochastic combination matrix. This property is often desir-
able for distributed strategies like (1) since (over a strictly connected
network) it leads to a uniform Perron eigenvector, implying that all
nodes are able to gain equal importance through diffusion, irrespec-
tive of their different individual levels of connectivity [32].

3. MAIN RESULT

Whenever the network graph G(N) is the support graph of the com-
bination matrixA(N) (as in (7)), a natural approach to graph learn-
ing is to first estimate the combination matrix, and then retrieve the
connected pairs through some thresholding/clustering strategy ap-
plied to the matrix entries [6]. Accordingly, we start by seeing how
the combination matrix can be estimated.

By evaluating the steady-state (i → ∞) covariance matrix
R0(N) and the one-lag covariance matrix R1(N) of the signals
{yk,i}Nk=1 in (1), it is readily verified that the submatrix of A(N)
corresponding to the probed subset S is given by:

AS(N) =
[
R1(N)(R0(N))−1]

S
. (8)

Equation (8) reveals that the combination matrix can be computed
from the covariance matrices. This is useful because covariance ma-
trices can be estimated within any precision when the number of
samples i grows.3 However, in our partial observability setting we
can only probe the subgraph of nodes in S and, hence, only the sub-
matrices [R0(N)]S and [R1(N)]S can be available. Therefore, the
matrix R1(N)(R0(N))−1 in (8) cannot be computed, due to the
lack of information about the latent nodes. For this reason, the fol-
lowing surrogate of (8) is considered:

ÂS(N) , [R1(N)]S ([R0(N)]S)
−1 . (9)

The estimator in (9) clearly differs from the true matrix in (8). How-
ever, in the next theorem we show that the error introduced by the
presence of latent nodes can be sufficiently small to allow faithful
reconstruction of the adjacency matrix of the graph of probed nodes.

3We focus on an achievability result, i.e., on establishing if graph learning
is asymptotically possible as the network grows, and when an arbitrarily large
number of samples is available. We do not address the sample complexity
aspect, i.e., how the number of samples must grow with the network size.

Theorem 1 There exists a positive random variable4 Γ such that
the estimator ÂS(N) defined in (9) satisfies the following properties
with high probability as N → ∞. Let ε > 0. For k, ` ∈ S, if k and
` are connected we have:

(1− ε)Γ <
√
N âk`(N) < (1 + ε)Γ, (10)

whereas if k and ` are unconnected we have:

−εΓ <
√
N âk`(N) < εΓ. (11)

Sketch of proof. A known property of BR graphs is that a positive
random variable δ exists such that dmax(N) scales as [33]:

dmax(N)√
N

a.s.−→ δ, (12)

where a.s.−→ denotes almost-sure convergence. Exploiting (7), we con-
clude that the nonzero entries of the true combination matrix fulfill:

√
Nak`(N) =

√
N

ρλ

dmax(N)

a.s.−→ Γ ,
ρλ

δ
. (13)

The next step of the proof consists in showing that the estimated ma-
trix ÂS(N) is close to the true matrix with high probability, namely,

√
N‖ÂS(N)−AS(N)||max-off

p−→ 0, (14)

where ‖ · ‖max-off computes the maximum absolute value across the
off-diagonal entries of its matrix argument, and

p−→ denotes conver-
gence in probability. The proof of (14) is rather sophisticated and
cannot be reported here for space limitations. We deem it useful to
illustrate shortly the main idea behind the proof. First, from the sym-
metry ofA(N) we haveR0(N) = (I −A2(N))−1, where I is the
N ×N identity matrix. Exploiting the explicit form ofR0(N), it is
possible to construct a series of recursive bounds for the error matrix
ÂS(N)−AS(N), see the error series provided in [25, Eqs. (157)–
(159)]. Then, it can be shown that, to get (14), it is necessary to prove
that the following random variable converges to zero in probability:

max
k,k′∈{1,2,...,N}

k 6=k′

N∑
`=1
6̀=k,k′

ak`a`k′ . (15)

In [25], this task is accomplished with reference to ER graphs, ex-
ploiting the fact that the edges over these graphs are drawn as inde-
pendent Bernoulli random variables [26, 27]. Over BR graphs, this
property is lost, and in particular the node degrees are dependent
and non-identically distributed. In order to overcome this difficulty,
we appeal to the martingale structure of the degrees and to a max-
imal martingale inequality [34], which allow us to prove (15), and
then (14). Using now (13), (14) and the triangle inequality we get:

‖
√
NÂS(N)− ΓGS(N)‖max-off

p−→ 0. (16)

Since Γ is positive, Eq. (16) implies, for all ε > 0:

lim
N→∞

P
(
‖
√
NÂS(N)− ΓGS(N)‖max-off > εΓ

)
= 0, (17)

which is equivalent to the claim of the theorem. �

4The particular realization of Γ arises from the a.s. limit of the maximum
degree in (12). As a result, Γ does not vary across different entries ak`(N),
whereas it varies across different graph realizations.
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Fig. 2. Illustration of Theorem 1 for three networks of N = 100 nodes. The probed subset S has cardinality ξN = 50, and its nodes
(displayed with black circles, while latent nodes are gray) are randomly picked without replacement from {1, 2, . . . , N}. The radius of each
circle is proportional to the degree of the corresponding node. We show the entries of the estimated matrix ÂS(N) (scaled by

√
N , vectorized

and rearranged so that the entries corresponding to unconnected nodes come first). The broken line displays the gap Γ. Left and middle: Two
realizations of a BR graph. Right: Graph of 100 nodes extracted from the real-world network of routers named “tech-internet-as”, taken from
the data repository networkrepository.com [35].

The practical significance of Theorem 1 resides in the fact that
Eqs. (10) and (11) entail the possibility of clustering the entries of
the estimated matrix so as to classify connected vs. unconnected
pairs. In particular, as suggested in [25], it is possible to devise a
variant of the k-means algorithm (with k = 2) that: i) finds the sta-
tionary points of the optimization problem solved by the k-means
algorithm, namely, the configurations fulfilling simultaneously the
nearest-neighbor and the centroid conditions; and ii) selects, among
the stationary configurations, that with the highest distance between
the centroids. By virtue of (10) and (11), for a sufficiently small
ε this clustering algorithm ends up with correct classification with
high probability. We remark that a similar property was shown for
ER graphs in [6]. However, over ER graphs the gap separating con-
nected and unconnected entries is deterministic, whereas a funda-
mental difference arising over BR graphs is the randomness of the
limiting gap Γ. We can show that, despite this additional uncertainty,
consistent graph learning can be achieved.

Another important difference between ER and BR graphs is re-
lated to the degree growth. Over ER graphs, the maximum degree
scales roughly as 1/(Np), where p is the edge formation probability.
Over BR graphs, the situation is markedly different. First, the min-
imum degree is upper bounded by η, because, e.g., node N (which
is added last) has at most η edges. Second, the maximum degree
grows as

√
N . Accordingly, BR graphs are simultaneously inhomo-

geneous (since they contain nodes whose degree blows up with N
and nodes with bounded degree) and sparse (since even the very
connected nodes feature a number of edges that is asymptotically
negligible as compared to the N candidate neighbors of each node).

4. ILLUSTRATIVE EXAMPLES

In Fig. 2 we show the true and estimated combination matrix entries
corresponding to three network topologies. The first two topologies
(left and middle) are independent realizations of a BR graph with
N = 100 and η = 3, whereas the third topology (right) is a graph
of 100 nodes taken from a real-world network of routers [35]. In
all three cases, a Laplacian combination policy with ρ = 0.5 and
λ = 0.75 is applied to the pertinent topology, and used to drive the
dynamical model (1). For what concerns the BR graphs, we observe
the clear emergence of the clustering effect predicted by Theorem 1.
Moreover, we see that the different realizations of the BR graph with
the same parameters correspond to different values of the gap Γ,
which confirms that this gap is in fact random. Notably, the gap pres-
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Fig. 3. Probability of correct graph recovery, computed over 103

Monte Carlo runs, for different values of the network size N . We
consider: the limiting estimator obtained by using the true covari-
ances (solid line); and the empirical estimator obtained by using the
sample covariances evaluated over 105 samples (dashed line).

ence and the clustering effect are preserved in the real-world exam-
ple, which exhibits some of the basic features of BR graphs (e.g.,
heterogeneous structure with few hubs and many peripheral nodes).

In Fig. 3 the graph learning problem is examined in a more quan-
titative fashion. Specifically, the dynamical evolution in (1) is simu-
lated over a BR graph (with η = 3) of increasing size, and a subset
of probed nodes with cardinality bξNc is assumed, with ξ = 0.15.
For each size, the probability of correct graph learning (using the es-
timator in (9) and the modified k-means algorithm described in the
previous section) is evaluated over 103 Monte Carlo runs. In Fig. 3
we report the performance of both the limiting estimator obtained by
using the true covariance matrices, and of the empirical estimator ob-
tained by using the sample covariance matrices computed over 105

time samples. We see how the probability of correct graph learning
approaches 1 as N grows, confirming the validity of our analysis.

5. CONCLUSION

We examined the problem of learning a network graph from the sig-
nals diffusing across the network according to (1). The distinguish-
ing features of our work are: i) only part of the network is monitored
(partial observability); and ii) the topology is modeled as a pref-
erential attachment random graph. We establish that graph learning
under partial observability is achievable (with high probability as the
network grows) for the class of Bollobás-Riordan graphs when the
combination weights in (1) follow a Laplacian combination policy.



6. REFERENCES

[1] H. Lütkepohl, New Introduction to Multiple Time Series Anal-
ysis, Berlin, Germany: Springer, 2005.

[2] V. Matta, V. Bordignon, A. Santos, and A. H. Sayed, “Interplay
between topology and social learning over weak graphs,” IEEE
Open J. Signal Process., vol. 1, pp. 99–119, 2020.
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