
OPTIMAL IMPORTANCE SAMPLING FOR FEDERATED LEARNING

Elsa Rizk, Stefan Vlaski, Ali H. Sayed

ABSTRACT
Federated learning involves a mixture of centralized and decentral-
ized processing tasks, where a server regularly selects a sample
of the agents and these in turn sample their local data to compute
stochastic gradients for their learning updates. The sampling of
both agents and data is generally uniform; however, in this work we
consider non-uniform sampling. We derive optimal importance sam-
pling strategies for both agent and data selection and show that under
convexity and Lipschitz assumptions, non-uniform sampling with-
out replacement improves the performance of the original FedAvg
algorithm. We run experiments on a regression and classification
problem to illustrate the theoretical results.

Index Terms— federated learning, importance sampling, asyn-
chronous SGD, non-IID data, heterogeneous agents

1. INTRODUCTION AND RELATED MATERIAL

Most current machine learning applications work on large datasets,
and sometimes this data is distributed accross several locations, mak-
ing learning algorithms computationaly and communicatively ex-
pensive. Therefore, designers of these learning algorithms move to-
ward stochastic implementations where only a subset of the data is
used, such as in stochastic gradient descent (SGD). The most promi-
nent selection schemes use uniform sampling. While it has proven to
be a good approximator of the original solution, a greater advantage
exists in non-uniform sampling that prioritizes samples and results in
a faster learning process. For SGD, importance sampling attributes
to each data sample a probability proportional to the gradient eval-
uated at that sample. Such probabilities result in faster convergence
and reduced stochastic gradient variance [1–5].

A prominent machine learning architecture is federated learning
[6] where non-IID data is distributed accross heterogeneous agents,
and a server acts as a master node and controller of the learning pro-
cess. The goal is to find a model that fits all the data across the
agents. If we consider K agents each with a non-IID dataset {xk,n}
of sizeNk, where subscript k denotes the agent and subscript n indi-
cates the sample number, the global optimization problem becomes
as expressed in (1), where the cost function Pk(·) is defined as the
sample average of some loss function Qk(·;xk,n).

wo ∆
= argmin

w

1

K

K∑
k=1

{
Pk(w)

∆
=

1

Nk

Nk∑
n=1

Qk(w;xk,n)

}
(1)

In standard federated learning, at each iteration i the server selects L
agents, and we denote by Li the set of indices of the chosen agents.
In turn, each participating agent runs Ek epochs, during which it se-
lects a mini-batch Bk,i,e of size Bk. The sampling occurs uniformly
with replacement. Thus, unlike standard learning algorithms, two-
level sampling exists in federated learning: first at the agent level
and second at the data level.

In the literature on federated learning, researchers have studied
the effects of non-uniform selection of agents, i.e., the selection of
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agents with unequal probabilities. The selection schemes can be split
into those maximizing accuracy and those prioritizing fairness. Of
the works maximizing accuracy, the authors in [7] introduce a new
agent selection scheme called FedCS. The selection protocol con-
sists of two steps. In the first step, the server asks the available
agents for information on their resources. In the second step, based
on the recieved information, the server selects the most number of
agents that are capable of finishing an interation by a set deadline.
Reference [8] broadens the previous work to include non-IID data,
and they allow the server to act as one of the agents; the server col-
lects from the selected agents some of their data and runs SGD on
them. In [9], a non-uninform sampling scheme of agents is consid-
ered; the probability distribution of the sampling of agents is calcu-
lated by maximizing the inner product between the global and local
gradients. They provide an approximate solution, since the actual
calculations of the sampling probabilities is non-trivial. In [10, 11],
the goal is to ensure fairness. In [10] the authors introduce agnos-
tic federated learning where they model the data distribution as a
non-uniform mixture of the local distributions. Thus, they solve a
minimax problem to select the agents. Such a solution leads to min-
imizing the worst loss function. Building on the previous work, q-
FFL [11] reweights the cost function by assigning higher weights to
agents that have larger loss.

None of these works appears to consider the problem of incorpo-
rating importance samples at two levels: one for selecting the subset
of agents and another for the agents to sample their own local data.
In what follows, we implement non-uniform sampling of agents and
data without replacement. To do so, we first introduce the notion of
normalized inclusion probability. We define pk as the normalized
inclusion probability of agent k and p(k)

n as the normalized inclusion
probability of data sample n of agent k [12]:

pk
∆
=

P(k ∈ Li)

L
, p(k)

n
∆
=

P(n ∈ Bk,i,e)

Bk
. (2)

We briefly mention the difference between the inclusion probabil-
ities and the sampling probabilities, since it is important to under-
stand the distinction for the remainder of this work. The former in-
dicates the probability of a sample being chosen after the sampling
scheme is done, while the latter is used to choose the samples. The
sampling probability is not affected by the sampling scheme, while
the inclusion probability is. When sampling with replacement, the
two are equal up to a multiplicative factor. When sampling with-
out replacement, a non-trivial relationship exists between them. For
instance, if we require to sample 2 out of 4 balls with sampling prob-
abilitis denoted by πn, the normalized inclusion probability of ball 1
is given by:

p1 =
1

2

4∑
n=2

P
(
1 chosen on the 1st trial & n chosen on the 2nd trial

)
+ P

(
n chosen on the 1st trial & 1 chosen on the 2nd trial

)
=

1

2

4∑
n=2

(
π1

πn

1− π1
+ πn

π1

1− πn

)
. (3)



In standard importance sampling, we optimize over the sampling
probabilities, while in our implementation we optimize over the nor-
malized inclusion probabilities, since we sample without replace-
ment.

2. ALGORITHM DESCRIPTION

We introduce the ISFedAvg algorithm, which is a variation of the
original FedAvg [6]. The goal of the original algorithm is to approx-
imate the true gradient by some stochastic gradient. During each
iteration i of FedAvg algorithm, agent k runs Ek steps of SGD:

wk,e = wk,e−1 − µ
1

Bk

∑
b∈Bk,i,e

∇wTQk(wk,e−1;xk,b), (4)

where wk,0 = wi−1. After each agent finishes its epochs, the server
combines the new parameter vector as follows:

wi =
1

L

∑
k∈Li

wk,Ek . (5)

The solution provided by FedAvg algorithm leads to the following
estimation of the gradient at any given iteration i:

1

L

∑
k∈Li

1

Bk

Ek∑
e=1

∑
b∈Bk,i,e

∇wTQk(wk,e−1;xk,b). (6)

However, as argued in [13], we modify the estimator by scaling it by
the epoch size, so that the resulting estimator is unbiased. Further-
more, under more general sampling schemes, the unbiased estimator
is in fact [1]:

1

L

∑
k∈Li

1

Kpk

1

EkBk

Ek∑
e=1

∑
b∈Bk,i,e

1

Nkp
(k)
b

∇wTQk(wk,e−1;xk,b).

(7)
Thus, the new algorithm operates as follows: At each iteration i, the
server selects L participating agents such that each agent’s proba-
bility of inclusion is P(k ∈ Li) = Lpk. Then, each agent k ini-
tializes its model with the previous model sent by the server wi−1

and performs Ek SGD steps. During each step, agent k chooses
its mini-batch such that a data point’s probability of inclusion is
P(b ∈ Bk,i,e) = Bkp

(k)
b . It then uses the following stochastic gra-

dient to update its local model:

1

KpkEkBk

∑
b∈Bk,i,e

1

Nkp
(k)
b

∇wTQk(w;xk,b). (8)

After all the agents are done and send back their new model, the
server aggregates them according to (5). We call this new algorithm
Importance Sampling FedAvg (ISFedAvg).

3. ALGORITHM CONVERGENCE

We now examine the convergence behavior of the proposed ISFe-
dAvg implementation. The analysis will suggest ways to optimize
the selection of the sampling probabilities which we discuss in the
next section.

3.1. Modeling Conditions

Certain standard assumptions on the nature of the cost functions and
the local optimizers must be made to ensure a tractable convergence
analysis. Thus, in this work we assume convexity of the cost func-
tions and smoothness of their gradients.

Algorithm 1 (Importance Sampling Federated Averaging)

initialize w0

for each iteration i = 1, 2, · · · do
Select the set of participating agents Li by sampling L times
from {1, . . . ,K} without replacement according to the proba-
bilities pk.
for each agent k ∈ Li do

initialize wk,0 = wi−1

for each epoch e = 1, 2, · · ·Ek do
Find indices of the mini-batch sample Bk,i,e by sampling
Bk times from {1, . . . , Nk} without replacement accord-
ing to the probabilities p(k)

n .

g =
1

KpkEkBk

∑
b∈Bk,i,e

1

Nkp
(k)
b

∇wTQk(wk,e−1;xk,b)

wk,e = wk,e−1 − µg
end for

end for
wi =

1

L

∑
k∈Li

wk,Ek

end for

Assumption 1. The functions Pk(·) are ν−strongly convex, and
Qk(·;xk,n) are convex, namely:

Pk(w2) ≥ Pk(w1) +∇wTPk(w1)(w2 − w1) +
ν

2
‖w2 − w1‖2,

(9)

Qk(w2;xk,n) ≥ Qk(w1;xk,n) +∇wTQk(w1;xk,n)(w2 − w1).
(10)

Also, the functions Qk(·;xk,n) have δ−Lipschitz gradients:

‖∇wTQk(w2;xk,n)−∇wTQk(w1;xk,n)‖ ≤ δ‖w2 − w1‖. (11)

We further require the local optimizers wo
k = argminw Pk(w) not

to drift too far from the global optimizer. Such an assumption is
necessary for good performance since without it, agents would have
very different local models. The resulting average model would not
perform well locally.

Assumption 2. The distance of each local model wo
k to the global

model wo is bounded unifromly:

‖wo
k − wo‖ ≤ ξ. (12)

3.2. Main Convergence Result

Instead of writing the recursion as in (4) and (5) and using the more
general estimator (7), we can combine the multiple epochs and the
aggregation into one SGD step:

wi = wi−1 − µ
1

L

∑
k∈Li

1

KpkEkBk

Ek∑
e=1

∑
b∈Bk,i,e

1

Nkp
(k)
b

×∇wTQk(wk,e−1;xk,b). (13)

For simplicity of notation, we introduce the stochastic gradient:

∇̂wTPk(w)
∆
=

1

EkBk

Ek∑
e=1

∑
b∈Bk,i,e

1

Nkp
(k)
b

∇wTQk(w;xx,b).

(14)



Then, by introducing w̃i = wo −wi and defining two error terms:

si
∆
=

1

L

∑
k∈Li

1

Kp`
∇̂wTPk(wi−1)− 1

K

K∑
k=1

∇wTPk(wi−1),

(15)

qi
∆
=

1

L

∑
`∈Li

1

Kp`E`B`

E∑̀
e=1

∑
b∈B`,i,e

1

N`p
(`)
b

×
(
∇wTQk(w`,e−1;x`,b)−∇wTQk(wi−1;x`,b)

)
, (16)

we can write the following error recursion:

w̃i = w̃i−1 + µsi + µqi + µ
1

K

K∑
k=1

∇wTPk(wi−1). (17)

We call the first error term gradient error (15), which quantifies the
error due to the approximation of the gradient by using subsets of
agents and data; it is the error that results when central SGD is ran
at the server. We call the second error term incremental error (16),
since it captures the error induced by running multiple epochs lo-
cally. We show that both errors have bounded second order mo-
ments; furthermore, we show that the gradient noise is zero-mean,
which implies that the gradient estimate is unbiased. We summarize
the results in the below two theorems.

Theorem 1 (Estimation of first and second order moments of the
gradient noise). The gradient noise si defined in (15) is zero-mean
with bounded variance:

E‖si‖2 ≤β2
sE‖w̃i−1‖2 + σ2

s , (18)

where:

β2
s

∆
= 3δ2 +

1

K2

K∑
k=1

1

pk

(
β2
s,k + 3δ2) , (19)

σ2
s

∆
=

1

K2

K∑
k=1

1

pk

{
σ2
s,k +

(
3 +

6

EkBk

)
‖∇wTPk(wo)‖2

}
,

(20)

β2
s,k

∆
=

3δ2

EkBk

(
1 +

1

N2
k

Nk∑
n=1

1

p
(k)
n

)
, (21)

σ2
s,k

∆
=

6

EkBkN2
k

Nk∑
n=1

1

p
(k)
n

‖∇wTQk(wo;xk,n)‖2. (22)

Proof. Proof omitted due to space limitations.

We observe that the gradient noise is controlled by the normalized in-
clusion probabilities. The σ2

s,k term captures the average local data
variability, which is controlled by the batch size Bk. To overcome
its effect, agents must increase their batch size. Furthermore, the
second term in σ2

s captures the model variability, since it quantifies
the suboptimality of the global model wo. With Assumption 2, we
can bound its influence on the convergence of the algorithm.

Theorem 2 (Estimation of the second order moments of the in-
cremental noise). The incremental noise qi defined in (16) has
bounded variance:

E‖qi‖2 ≤ O(µ)E‖w̃i−1‖2 +O(µ)ξ2 +O(µ2)σ2
q , (23)

where:

σ2
q

∆
=

1

K

K∑
k=1

3

BkN2
k

Nk∑
n=1

1

p
(k)
n

‖∇wTQk(wo;xk,n)‖2, (24)

and the O(·) terms depend on epoch sizes, local convergence rates,
total number of data samples, number of agents, Lipschitz constant,
and data and agent inclusion probabilities.

Proof. Proof omitted due to space limitations.

Similarly to the bound on the variance of the gradient noise, we
observe a data variablity term σ2

q and a model variability term ξ2.
However, here the effect of the latter is greater than that of the for-
mer, since it is multiplied by an O(µ) term as opposed to O(µ2).

Thus, using the above results, we show under general probabil-
ity sampling schemes that the ISFedAvg algorithm converges to an
O(µ)−neighbourhood of the global model. The result is summa-
rized in the below theorem.

Theorem 3 (Mean-square-error convergence of federated learn-
ing under importance sampling). Consider the iterates wi gen-
erated by the importance sampling federated averaging algorithm.
For sufficiently small step-size µ, it holds that the mean-square-error
converges exponentially fast:

E‖w̃i‖2 ≤O(λi) +O(µ)
(
σ2
s + ξ2)+O(µ3)σ2

q , (25)

where λ = 1−O(µ) +O(µ2) ∈ [0, 1).

Proof. Proof omitted due to space limitations.

In fact, we observe that the only significant contribution from the
incremental noise is the ξ term that captures the model variability
accross the agents.

4. IMPORTANCE SAMPLING: PROBABILITY
DERIVATION

Since agents and data are heterogeneous, increasing the chances of a
subset being choosen is generally beneficial. In the previous section,
we established a performance bound under general probabilities; the
probabilities appear in the σ2

s term. Thus, to improve the perfor-
mance bound we will choose these probabilities by minimizing σ2

s .

4.1. Optimal Probabilities

Importance sampling occurs at two levels: at the agent level when
selecting the data, and at the server level when selecting the agents.
During each epoch of every iteration, agent k has to select a mini-
batch in accordance with its normalized inclusion probabilities p(k)

n .
To calculate the optimal probabilities, we minimize σ2

s,k, and we
find:

p(k),o
n

∆
=

‖∇wTQk(wo;xk,n)‖∑Nk
m=1 ‖∇wTQk(wo;xk,m)‖

, (26)

which is proportional to the data variability. The more uniform the
data is, the closer the distribution is to a uniform distribution. Simi-
larly, during each iteration the server selects a subset of participating
agents. Thus, we minimize σ2

s , and find the optimal probabilities:

pok
∆
=

√
σ2
s,k + αk‖∇wTPk(wo)‖2∑K

`=1

√
σ2
s,` + α`‖∇wTP`(wo)‖2

, (27)



where we define the constants αk =
(

3 + 6
EkBk

)
. The probabil-

ities are proportional to the two variability terms, data and model.
Thus, the more homogeneous the agents are or the local data, the
closer the probabilites are to a uniform distribution. Furthermore,
both expressions of the probabilities are proportional to the gradi-
ent. Thus, we attribute larger probabilities to agents and samples
with higher gradients resulting in a steeper gradient step during an
iteration and converging faster.

4.2. Practical Problems

The expressions of the optimal probabilities are in terms of the true
modelwo, which we do not know. Furthermore, they require the true
gradient, which is costly to calculate. Thus, we modify the expres-
sions by writing them in terms of the mini-batch gradient evaluated
at the previous model wi−1. In addition, while each agent has ac-
cess to all of its data and can calculate the denominator in (26), the
server does not have acces to all the agents and cannot calculate the
denominator in (27). Therefore, we suggest the following scheme to
calculate the probabilities: during the initial iteration we assume the
normalized inclusion probability of the agents is uniform. Then, dur-
ing the succeeding iterations, the server updates the probabilities of
the participating agents after they have sent their current stochastic
gradients:

p̂ok =

√
σ2
s,k + αk

∥∥∥∇̂wTPk(wi−1)
∥∥∥2

∑
`∈Li

√
σ2
s,` + α`

∥∥∥∇̂wTP`(wi−1)
∥∥∥2

1−
∑
`∈Lc

i

p̂o`

 .

(28)

The multiplicative factor is to ensure all inclusion probabilities ac-
cross the agents sum to 1. Similarly, we implement the same scheme
to approximate the normalized data inclusion probabilities at the
agents:

p̂(k),o
n =

‖∇wTQk(wi−1;xk,n)‖∑
b∈Bk,i,e

‖∇wTQk(wi−1;xb)‖

1−
∑

b∈Bc
k,i,e

p̂
(k),o
b

 .

(29)

Given the inclusion probabilities, there are many works in the lit-
erature that devise schemes to deduce from them what the sampling
probabilities should be. We choose to implement the scheme intro-
duced in [14]. If given k = 1, 2, · · · ,K agents to choose from with
normalized inclusion probabilities pk, and if we require to sample
L agents, we first introduce the progressive totals Πk =

∑k
`=1 Lp`

and set Π0 = 0. Next, we uniformly choose at random a variable
d ∈ [0, 1). Finally, we select the L agents such that Πk−1 ≤ d+i ≤
Πk for some i ∈ [0, L− 1].

5. EXPERIMENTAL SECTION

We test the algorithm on a regression problem with simulated data
and a quadratic risk function, and on a classification problem with
simulated data and logistic risk. Starting with the regression prob-
lem, we considerK = 300 agents, for which we generateNk = 100
data points {uk,n,dk(n)} according to the following model:

dk(n) = uk,nw
? + vk(n), (30)
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Fig. 1: Left: MSD plots of the regression problem. Right: percent
testing error of the classification problem.

where w? is some generating model and vk(n) Guassian noise in-
dependent of uk,n. The local risk is given by:

Pk(w) =
1

Nk

Nk∑
n=1

‖dk(n)− uk,nw‖2 + 0.001‖w‖2. (31)

We set L = 6 and choose epoch sizes Ek ∈ [1, 5] and batch sizes
Bk ∈ [1, 10] randomly. We test the performance by calculating the
mean-square-deviation (MSD) at each iteration:

MSD = ‖wi − wo‖2, (32)

where wo is explicitly calculated for the risk (31):

wo =
(
R̂u + ρI

)−1

R̂uw
? +

(
R̂u + ρI

)−1

r̂uv, (33)

R̂u
∆
=

1

K

K∑
k=1

1

Nk

Nk∑
n=1

uT
k,nuk,n, (34)

r̂uv
∆
=

1

K

K∑
k=1

1

Nk

Nk∑
n=1

vk(n)uk,n. (35)

We compare 3 algorithms: FedAvg, ISFedAvg with true probabili-
ties (27)–(26), and ISFedAvg with approximate probabilities (28)–
(29). We fix the step size µ = 0.01, and run each algorithm 100
times and average the results to get the curves in Figure 1 on the left.
We observe that both importance sampling schemes outperform the
standard algorithm. Furthermore, the approximate probabilities do
not degrade the performance of ISFedAvg algorithm.

We then solve a logistic regression problem on non-IID gener-
ated data {hk,n, γk(n)} for K = 100 agents with varying Nk ∈
[20, 100] and dimension M = 2. Each agent’s features hk,n are
sampled from a normal distribution N (µk, σk), where the variance
and mean are choosen randomly. Then, the labels are calculated as
follows:

γk(n) = sign(hT
k,nw

?
k), (36)

where w?
k are some random generating models that do not drift too

far apart accross agents. We also generate 100 test samples. We
compare the testing error for the FedAvg and ISFedAvg algorithm,
and we observe that importance sampling improves the performance
from 2% to almost 0% (Figure 1 on the right).

6. CONCLUSION

This work introduces a two-level importance sampling scheme to
federated learning: one at the level of agents and another at the level
of data. The theoretical results establish convergence of the new
algorithm. Optimal inclusion probabilities are derived and then ap-
proximated to overcome the practical issues. Experiments illustrate
the superior performance of the proposed sampling techniques.



7. REFERENCES

[1] K. Yuan, B. Ying, S. Vlaski, and A. H. Sayed, “Stochastic
gradient descent with finite samples sizes,” in Proc. Interna-
tional Workshop on Machine Learning for Signal Processing
(MLSP), Salerno, Italy, 2016, pp. 1–6.

[2] G. Alain, A. Lamb, C. Sankar, A. Courville, and Y. Bengio,
“Variance reduction in SGD by distributed importance sam-
pling,” arXiv:1511.06481, 2015.

[3] D. Needell, R. Ward, and N. Srebro, “Stochastic gradient de-
scent, weighted sampling, and the randomized kaczmarz algo-
rithm,” in Proc. Advances in Neural Information Processing
Systems, Montreal, Canada, 2014, pp. 1017–1025.

[4] P. Zhao and T. Zhang, “Stochastic optimization with impor-
tance sampling for regularized loss minimization,” in Proc. In-
ternational Con-ference on Machine Learning (ICML), Lille,
France, 2015, pp. 1355–1363.

[5] S. U. Stich, A. Raj, and M. Jaggi, “Safe adaptive importance
sampling,” in Proc. Advances in Neural Information Process-
ing Systems, Long Beach, California, USA, 2017, pp. 4381–
4391.

[6] H. B. McMahan, E. Moore, D. Ramage, and S. Hampson,
“Communication-efficient learning of deep networks from de-
centralized data,” Proc. International Conference on Artifi-
cial Intelligence and Statistics, vol. 54, pp. 1273–1282, 20–22
April 2017.

[7] T. Nishio and R. Yonetani, “Client selection for federated
learning with heterogeneous resources in mobile edge,” in
Proc. IEEE International Conference on Communications
(ICC), Shanghai, China, 2019, pp. 1–7.

[8] N. Yoshida, T. Nishio, M. Morikura, K. Yamamoto, and R. Yo-
netani, “Hybrid-fl for wireless networks: Cooperative learning
mechanism using non-iid data,” in Proc. IEEE International
Conference on Communications (ICC), Dublin, Ireland, 2020,
pp. 1–7.

[9] H. T. Nguyen, V. Sehwag, S. Hosseinalipour, C. G. Brinton,
M. Chiang, and H. V. Poor, “Fast-convergent federated learn-
ing,” arXiv:2007.13137, 2020.

[10] M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic feder-
ated learning,” in Proc. International Con-ference on Machine
Learning (ICML), vol. 97, Long Beach, California, USA, 09–
15 Jun 2019, pp. 4615–4625.

[11] T. Li, M. Sanjabi, A. Beirami, and V. Smith, “Fair resource
allocation in federated learning,” in Proc. International Con-
ference on Learning Representations, Addis Ababa, Ethiopia,
2020, pp. 1–27.

[12] D. G. Horvitz and D. J. Thompson, “A generalization of sam-
pling without replacement from a finite universe,” Journal of
the American statistical Association, vol. 47, no. 260, pp. 663–
685, 1952.

[13] E. Rizk, S. Vlaski, and A. H. Sayed, “Dynamic federated learn-
ing,” in Proc. IEEE SPAWC, Atlanta, Georgia, USA, 26–29
May 2020, pp. 1–5.

[14] H. O. Hartley and J. N. K. Rao, “Sampling with unequal prob-
abilities and without replacement,” Ann. Math. Statist., vol. 33,
no. 2, pp. 350–374, 06 1962.


