
GRAPH-HOMOMORPHIC PERTURBATIONS FOR PRIVATE DECENTRALIZED
LEARNING

Stefan Vlaski and Ali H. Sayed
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ABSTRACT

Decentralized algorithms for stochastic optimization and
learning rely on the diffusion of information through repeated
local exchanges of intermediate estimates. Such structures are
particularly appealing in situations where agents may be hes-
itant to share raw data due to privacy concerns. Nevertheless,
in the absence of additional privacy-preserving mechanisms,
the exchange of local estimates, which are generated based
on private data can allow for the inference of the data itself.
The most common mechanism for guaranteeing privacy is the
addition of perturbations to local estimates before broadcast-
ing. These perturbations are generally chosen independently
at every agent, resulting in a significant performance loss. We
propose an alternative scheme, which constructs perturba-
tions according to a particular nullspace condition, allowing
them to be invisible (to first order in the step-size) to the
network centroid, while preserving privacy guarantees. The
analysis allows for general nonconvex loss functions, and is
hence applicable to a large number of machine learning and
signal processing problems, including deep learning.

Index Terms— Decentralized optimization, learning, dif-
ferential privacy, encryption, diffusion strategy.

1. INTRODUCTION AND RELATED WORKS

We consider a collection of K agents, where each agent k is
equipped with a local loss function:

Jk(w) , EQ(w;xk) (1)

The agents are interested in pursuing a minimizer to the ag-
gregate optimization problem:

min
w
J(w) , min

w

1

K

K∑
k=1

Jk(w) (2)

While the minimizer of (2) can be pursued by a variety of
decentralized strategies, we focus here on the Adapt-Then-
Combine (ATC) diffusion strategy due to its enhanced perfor-
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mance in adaptive scenarios [1]:

φk,i = wk,i−1−µ∇Qk(wk,i−1;xk,i) (3)

wk,i =
∑
`∈Nk

a`kφl,i (4)

The diffusion strategy (3)–(4) has strong performance guaran-
tees in both the (strongly) convex [1–3] and non-convex [4,5]
settings. For (3)–(4) to minimize (2), we will assume the com-
bination weights to be symmetric and stochastic, i.e.:

a`k = ak`,

K∑
`=1

a`k = 1, a`k ≥ 0 (5)

When agents are concerned about privacy, they may be hesi-
tant to share their intermediate estimates φk,i, since they can
contain significant information about their locally observed
data xk,i through its evolution via the gradient. To see that
this is the case, consider the least-squares lossQk(w;h,γ) ,
‖γ − hTwo‖2, with stochastic gradient:

∇Q(w;h,γ) = h
(
γ − hTw

)
∝ h (6)

In other words, the stochastic gradient ∇Q(w;h,γ) reveals
the raw feature h up to a normalizing factor, and hence obser-
vation of iterates, which evolve according to ∇Q(w;h,γ),
allows for the inference of h. A common strategy to ensure
privacy in recursive algorithms is to perturb intermediate es-
timates before sharing them, resulting in [6]:

φk,i = wk,i−1−µ∇Qk(wk,i−1;xk,i) (7)

ψk,i = φk,i−1 + qk,i (8)

wk,i =
∑
`∈Nk

a`kψl,i (9)

The added perturbation qk,i is typically chosen to follow
some zero-mean Gaussian or Laplacian distribution and es-
sentially masks the gradient ∇Qk(wk,i−1;xk,i), which con-
tains information about the data xk,i. This results in rigorous
privacy guarantees (quantified by differential privacy [7]),
but comes at a cost, namely non-negligible degradation in
performance. To see why this is the case, we introduce the
gradient noise:

sk,i , ∇Qk(wk,i−1;xk,i)−∇Jk(wk,i−1) (10)



Under this definition, recursions (7)–(9) can be written equiv-
alently as:

φk,i = wk,i−1−µ∇Jk(wk,i−1)− µ sk,i (11)

ψk,i = φk,i−1 + qk,i (12)

wk,i =
∑
`∈Nk

a`kψl,i (13)

Inspection of (11)–(13) shows that the effect of privatizing the
gradient ∇Qk(wk,i−1;xk,i) is amplification of the gradient
noise term µ sk,i by an additive term qk,i.

1.1. Related Works

Solutions to the aggregate optimization problem (2) can be
pursued by a variety of decentralized algorithms, including
primal [1–3, 8] and primal-dual [9–13] methods.

The notion of ε-differential privacy as a means of quan-
tifying the privacy loss encountered by sharing functions of
private data is due to [7, 14], as is the Laplace mechanism,
which ensures ε-differential privacy by perturbing the output
of the function by Laplacian noise, where the power of the
perturbation is calibrated to the sensitivity of the function and
the desired privacy level ε.

In the context of centralized optimization by means of re-
cursive algorithms, differential privacy has been applied to
gradient descent [15–17], deep learning [18], as well as fed-
erated learning [19, 20]. The decentralized setting considered
in this work is studied in [6, 21–24], where independent and
identically distributed perturbations are added at each agent
as in (8) and differential privacy is established.

Similarly to these related works, our scheme is based
on stochastic gradient descent, and employs perturbations to
achieve privacy. In contrast to prior works, however, locally
generated perturbations at each agent will be tuned to the lo-
cal graph topology, ensuring that the effect on the evolution of
the network centroid is minimized, while preserving privacy
guarantees. The authors in [25] present a “topology-aware”
perturbation scheme, where noise powers are tuned to the
local connectivity of agents. We, on the other hand, will be
constructing the actual realizations, rather than perturbation
powers, to match the graph topology.

2. DIFFUSION WITH GRAPH-HOMOMORPHIC
PERTURBATIONS

We generalize the scheme (11)–(13), and allow agent ` to send
different perturbation vectors q`k,i to different neighbors k,
resulting in:

φk,i = wk,i−1−µ∇Jk(wk,i−1)− µ sk,i (14)

ψk`,i = φk,i + qk`,i (15)

wk,i =
∑
`∈Nk

a`kψ`k,i (16)

Our objective is to exploit this additional degree of freedom
to construct the perturbations q`k,i in a manner that protects
agent ` from agent k, but minimizes the negative effect on the
network as a whole. Previous studies on the dynamics of the
diffusion recursion without privacy guarantees have shown
that the local dynamics of each agent closely track that of
a network centroid after sufficient iterations, both in the con-
vex [2,3] and nonconvex [4,5] setting. From (16), we find for
the network centroid:

wc,i ,
1

K

K∑
k=1

wk,i

(16)
=

1

K

K∑
k=1

K∑
`=1

a`kφ`,i +
1

K

K∑
k=1

K∑
`=1

a`kq`k,i

=
1

K

K∑
`=1

(
K∑
k=1

a`k

)
φ`,i +

1

K

K∑
`=1

K∑
k=1

a`kq`k,i

(5)
=

1

K

K∑
`=1

φ`,i +
1

K

K∑
`=1

K∑
k=1

a`kq`k,i

(7)
= wc,i−1−

µ

K

K∑
`=1

∇Q(wk,i−1;xk,i)

+
1

K

K∑
`=1

K∑
k=1

a`kq`k,i (17)

We observe that the network centroid wc,i evolves similarly
to a stochastic gradient update on the aggregate loss (2), per-
turbed by the sample mean of the weighted privacy terms
a`kq`k,i. The key question then is whether it is possible to
construct q`k,i in an uncoordinated manner, such that:

1

K

K∑
`=1

K∑
k=1

a`kq`k,i
desired

= 0 (18)

while preserving the privacy of all agents. If this were the
case, the evolution of the network centroid would be largely
unaffected by the privacy perturbations. We say “largely un-
affected” since the gradients∇Q(wk,i−1;xk,i) are evaluated
at wk,i−1, rather than wc,i−1 and hence indirectly affected
by the privacy perturbations. As such, a more detailed perfor-
mance analysis is necessary, which we conduct further below.
The key take-away from the analysis will be that, despite the
fact that the perturbations added in (15) are independent of
the step-size, ensuring (18) modulates the effect of the pri-
vacy perturbations on the evolution of the centroid by a factor
of the step-size µ, allowing for increasing levels of privacy
perturbation as the step-size decreases. Since perturbations
satisfying (18) have a reduced effect on the evolution of the
network centroid under the combination matrix A, we will
refer to them as “graph-homomorphic”.

Definition 1 (Graph-homomorphic perturbations). A set
of perturbations q`k,i is homomorphic for the the graph de-
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fined by the combination matrix A , [a`k] if it holds with
probability one that:

1

K

K∑
`=1

K∑
k=1

a`kq`k,i = 0 (19)

While other constructions are possible, we present here a sim-
ple construction, which can be implemented locally and inde-
pendently at every agent k.

Lemma 1 (Constructing graph-homomorphic pertur-
bations). Let each agent ` sample independently from the
Laplace distribution v`,i ∼ Lap (0, bv) with variance σ2

v =
2b2v . Then, the construction:

q`k,i =

{
v`,i, if k ∈ N` and k 6= `,

− 1−a``
a``

v`,i, if k = `.
(20)

is homomorphic for the graph described by the symmetric ad-
jacency matrix A = AT.

Proof. The result can be verified immediately by substitution.

3. ANALYSIS

3.1. Modeling Conditions

We make the following common assumptions to facilitate the
performance and privacy analysis.

Assumption 1 (Adjacency matrix). The combination matrix
A , [a`k] is symmetric and doubly-stochastic, i.e.:

a`k = ak`,
∑
`∈Nk

a`k = 1, a`k = 0 ∀ ` /∈ Nk (21)

Furthermore, the graph described by A is connected, ensur-
ing that:

λ2 , ρ

(
A− 1

K
11T

)
< 1 (22)

Assumption 2 (Smoothness). The risk functions Q(·;xk)
have uniformly Lipschitz gradients, i.e., for all w1, w2, and
with probability one:

‖∇Q(w1;xk)−∇Q(w2;xk)‖ ≤ δ‖w1 − w2‖ (23)

Additionally, we impose a bound on the norm of the gradient:

‖∇Q(w;xk)‖ ≤ G (24)

3.2. Privacy Analysis

We now quantify the privacy loss encountered by a particular
agent, when deciding to participate in the learning protocol.
To quantify privacy precisely, we will employ the notion of

ε-differential privacy [7]. For simplicity of exposition, and
without loss of generality, we will focus on establishing a pri-
vacy guarantee for agent 1. By symmetry, the same argument
applies to all other agents as well.

To this end, consider an alternative scenario, where agent
1 has decided not to volunteer its private information for the
diffusion of information, and its data x1 is replaced by some
other data x′1, following a different distribution. In this set-
ting, implementing (14)–(16), would naturally result in a dif-
ferent learning trajectoryw′k,i at every agent k, since the data
x′1 propagates through∇Q(w′1,i,x

′
1) and the diffusion of es-

timates through the entire network. We first quantify the sen-
sitivity of the evolution of the algorithm (14)–(16), a quantity
that determines the amount of perturbation necessary to mask
any particular agent [6, 7].

Lemma 2 (Sensitivity of the diffusion algorithm). The dis-
tance between the trajectorieswk,i andw′k,i is bounded with
probability one by:

∆(i) , max
k
‖wk,i−w′k,i ‖ ≤ µ2Gi (25)

Proof. Omitted due to space limitations.

Definition 2 (ε-differential privacy). We say that the diffu-
sion recursion (14)–(16) is ε(i)-differentially private for agent
1 at time i if:

f

({{
ψ1`,n

}
6̀=1∈N1

}i
n=0

)
f

({{
ψ′1`,n

}
6̀=1∈N1

}i
n=0

) ≤ eε(i) (26)

where f(·) denotes the probability density function and{{
ψ1`,n

}
6̀=1∈N1

}i
n=0

collects all quantities transmitted
by agent 1 to any of its neighbors during the operation of the
algorithm, while excluding its local iterates ψ11,n, which are
kept private.

In light of the fact that eε(i) ≈ 1 − ε(i) for small ε(i), rela-
tion (26) ensures that the distribution of estimates shared by
agent 1 is close to unaffected (for small ε(i)), whether agent
1 uses its own private data x1, or a proxy x′1, and as such lit-
tle can be inferred about x1 by observing messages shared by
agent 1.

Theorem 1 (Privacy cost of the diffusion algorithm). Sup-
pose (14)–(16) employs homomorphic perturbations con-
structed as in (20). Then, at time i, algorithm (14)–(16) is
ε(i)-differentially private according to (26), with:

ε(i) = µ
G(i2 + i)

bv
(27)

Proof. Omitted due to space limitations.
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3.3. Performance Analysis

In order to quantify the impact of the privacy perturbations on
the performance of the algorithm, we conduct a performance
analysis in the presence of perturbations. Following the ar-
guments in [4] for analyzing the dynamics of the unperturbed
recursion (3)–(4) in nonconvex environments, we begin by es-
tablishing that the collection of iterates {wk,i}Kk=1 continue to
cluster around the network centroid wc,i.

Lemma 3 (Network disagreement). Suppose the collec-
tion of agents {wk,i}Kk=1 is initialized at a common, non-
informative location, say wk,0 = col {0, . . . , 0} for all k.
Then, the deviation from the centroid is bounded for all i ≥ 0
as:

1

K

K∑
k=1

E ‖wk,i−wc,i‖2 ≤ µ2 λ22
(1− λ2)2

G2 + b2v
2a

1− λ2
(28)

where:

a , max
k

{
(1− akk) +

(1− akk)2

a2kk

}
(29)

Proof. Omitted due to space limitations.

Relative to performance expressions for non-private decen-
tralized gradient descent, we observe that the privacy pertur-
bations account for an additional deviation on the order of
O(b2v). Nevertheless, relation (18) under (20) allows us to
establish an improved descent relation.

Theorem 2 (Descent relation). Under Assumptions 1–2, and
for homomorphic perturbations constructed as in (20), the
network centroid descends along the loss (2) as:

E J(wc,i) ≤ E J(wc,i−1)− µ

2
(1− 2µδ)E ‖∇J(wc,i−1)‖2

+
µ

2
(1 + 2δµ)b2v

2δ2a

1− λ2
+ µ22δG2 +O(µ3)

(30)

Proof. Omitted due to space limitations.

Examination of (30) reveals that, despite the fact that the
amount of perturbations added in (15) is independent of the
step-size, their negative effect on the ability of the network
centroid to descend along the aggregate loss J(w) is multi-
plied by µ, and hence decays with the step-size.

Corollary 1 (Convergence to stationary points). Suppose
J(w) ≥ Jo. Then, under Assumptions 1–2, and for homo-
morphic perturbations constructed as in (20), we have:

1

i

i−1∑
n=0

E ‖∇J(wc,n ‖2 ≤ O
(

1

µi

)
+O(b2v) +O(µG2)

(31)

Proof. The result follows after rearranging (30) and telescop-
ing.

Fig. 1: Performance comparison with M = 5, K = 20, µ =
1, ρ = 0.1, σ2

h = 1, σ2
p = 2.

4. NUMERICAL RESULTS

We verify the analytical results in the context of decentralized
logistic regression for binary classification. Given class labels
γ ∈ {+1,−1}, we construct feature vectors h to be condi-
tionally Gaussian, with means µ+1 and µ−1 respectively, i.e.,
h ∈ RM with f(h|γ = γ) = N

(
µγ , σ

2
h

)
. Each agent k is

equipped with a local logistic loss function of the form:

Jk(w) , E ln
(

1 + e−γh
Tw
)

+
ρ

2
‖w‖2 (32)

We compare the performance of the ordinary diffusion recur-
sion (3)–(4) with the privatized recursion (7)–(9) and the pro-
posed scheme (14)–(16), constructed according to (20). The
resulting performance is illustrated in Fig. 1. We observe
that the proposed perturbation scheme approximately matches
the performance of the non-private diffusion implementation,
while outperforming the implementation with i.i.d. perturba-
tions, despite employing the same perturbation powers σ2

p.

5. CONCLUSION

We have proposed a new perturbation scheme for differen-
tially private decentralized stochastic optimization, where
the perturbations are constructed at each agent to match the
local graph topology. The resulting perturbations are invis-
ible to the network centroid under the diffusion operation,
while preserving ε-differential privacy, and hence termed
graph-homomorphic (for a particular topology). Analytical
and numerical results show that the construction reduces the
negative effect of privacy perturbations, while preserving
differential privacy.
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