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ABSTRACT

Adaptation and learning over multi-agent networks is a topic
of great relevance with important implications. Elaborating on
previous works on single-task networks engaged in decision
problems, here we consider the multi-task version in the chal-
lenging scenario where the state of nature may change arbi-
trarily. We propose a data diffusion scheme for tracking these
changes in real time, and investigate by numerical simulations
the corresponding steady-state decision performance. For the
slow-adaptation regime, the complete analytical characteriza-
tion of the agents’ status is provided, under the simplifying
assumption that the network connection matrix is correctly es-
timated.

Index Terms— Adaptive networks, diffusion schemes,
multi-task decisions, slow-adaptation regime.

1. INTRODUCTION
We consider a network of agents engaged in a decision task.
Agents collect observations from the environment and diffuse
their data through the network by local interactions with neigh-
boring agents. Our focus is on multi-task networks in which
agents are grouped into different clusters. Observations col-
lected by agents belonging to the same cluster are indepen-
dently drawn from the same statistical distribution, which is re-
ferred to as the state of nature for that cluster. Different clusters
experience, in general, different states of nature. Each agent is
aware of what the possible states of nature are, but does not
know which cluster it belongs to. We consider the challeng-
ing scenario where the states of nature may change in an un-
predictable and uncontrollable manner. Thus, the network is
tasked to track these changes in real time, and the system de-
sign must manage the tradeoff between adaptation (tracking
capability) and decision performance at steady-state (learning
capability).

Multi-task decision problems are relevant to sensor net-
work applications in heterogeneous environments. These
applications include surveillance and tracking systems, social
sensing, health monitoring, homeland security, disaster pre-
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Fig. 1. An example of a multi-task network. Agents belonging to
cluster 1, such as agents 5 and 13, are shown by black circles. Agents
belonging to cluster 2, as agent 4, are shown by red boxes.

vention and management, Earth observation, and many more
— see [1–10] and the references therein.

Our study can be cast in the line of research on multi-agent
adaptive systems. The case of inference problems over single-
task networks has been considered before, see, e.g., [11–18]
for examples of consensus schemes and [1,2,19] for examples
of diffusion schemes, with generalizations to multi-task net-
works in [3–5]. With specific reference to decision problems,
the works [6–10] address the single-task setting, while we are
not aware of studies on the multi-task decision problems as
formalized in the next section.

2. MULTI-TASK DECISION FORMULATION

We consider a networked ensemble of S agents, grouped into
clusters — see Fig. 1. The observations collected by agents
belonging to a given cluster are drawn from a common distri-
bution, selected from an assigned set of H probability mass
functions (PMFs) {ph(x)}Hh=1, x ∈ X , where X is a finite al-
phabet, common to all PMFs. The observation made by agent
k = 1, . . . , S, at time i = 1, 2, . . . , is denoted by xk(i). If
h ∈ {1, . . . ,H} is the state of nature at time i for the cluster
that agent k belongs to, then xk(i) is drawn from ph(x). Ob-
servations taken at different times and/or different agents are
mutually independent. We make a distinction between neigh-
bors Nk of agent k, namely those connected to k (by lines in
Fig. 1), and effective neighbors Ek ⊆ Nk, which refer to neigh-



bors belonging to the same cluster. For instance, agent 5 has 5
neighbors but only 3 effective neighbors. Note that, by defini-
tion, k is included in both Nk and Ek.

Agents do not know their cluster. Thus, upon collecting the
observation xk(i) at time i, agent k computes H transforma-
tions as follows:

d
(h)
k (i) , log ph(xk(i)), h = 1, . . . ,H, (1)

and uses them to perform the updates:{
z
(h)
k (i) = 0, i = 0;

z
(h)
k (i) = z

(h)
k (i− 1) + µ[d

(h)
k (i)− z

(h)
k (i− 1)], i ≥ 1.

(2)

The variables {z(h)k (i)}Hh=1 represent the status of the agent
isolated from the network. According to the maximum likeli-
hood approach, agent k can use these values to infer its cluster:

ĥ
(loc)
k (i) = arg max

h
z
(h)
k (i), k = 1, . . . , S. (3)

Agent k then communicates this local decision to its neigh-
bors. In this way, at any time i, agent k is informed about the
(random) set Êk(i) ⊆ Nk composed of the neighboring agents
that believe they belong to the same cluster as agent k. Specif-
ically,

Êk(i) , {` ∈ Nk : ĥ
(loc)
` (i− 1) = ĥ

(loc)
k (i− 1)}, (4)

where we note that the neighbors’ local decisions at time (i−1)
are used to estimate the clustering at time i.

The sets {Êk(i)}Sk=1 define the (random) right-stochastic
nonnegative combination matrix A(i) = [ak`(i)] used in
the diffusion algorithm to be introduced shortly, see (6). If
Êk(i) = {k}, matrix A(i) contains akk(i) = 1 at position
(k, k) and all remaining entries over the k-th row are zero,
which means that agent k does not combine its status with
those of its neighbors. If, on the other hand, |Êk(i)| > 1, then
we set

ak`(i) =


0, ` 6∈ Êk(i),

1−ak
|Êk(i)|−1

, ` ∈ Êk(i) \ {k},
ak, ` = k.

(5)

The rationale is to assign the self-weight ak to agent k itself,
and constant weights to all other agents in Êk(i). This reduces
the design parameters appearing in the combination matrix to
only the self-weight coefficients {ak, k = 1, . . . , S}.

The ATC-type diffusion algorithm used in this work ex-
ploits matrix A(i) defined in (5) as follows [2]. For h =
1, . . . ,H:
w

(h)
k (i) = 0, i = 0,

v
(h)
k (i) = w

(h)
k (i− 1) + µ

[
d
(h)
k (i)−w

(h)
k (i− 1)

]
i ≥ 1,

w
(h)
k (i) =

∑S
`=1 ak`(i)v

(h)
` (i), i ≥ 1,

(6)

and the decision made by agent k at time i is:

ĥk(i) = arg max
h

w
(h)
k (i). (7)

Note that, over time i = 1, 2, . . . , two iterates are com-
puted by any agent k, both driven by the same sequences
{d(h)

k (i)}Hh=1 defined in (1). The first, {z(h)k (i)}Hh=1 shown
in (2) is used to define the matrix A(i), which is then ex-
ploited in the computation of the status {w(h)

k (i)}Hh=1 in (6).
Note also that, if the identity of the effective neighbors of all
agents were known beforehand, then the connection matrix
would reduce to a known time-invariant matrix; A(i) = A.

Iterating (6) one obtains the explicit form:

w
(h)
k (i) =

i∑
j=1

µ(1− µ)j−1

×
S∑
`=1

bk`(i, j) log ph(x`(i− j + 1)), (8)

where we have introduced the matrix B(i, j) = [bk`(i, j)]:

B(i, j) ,
i−j+1∏
m=i

A(m), j = 1, . . . , i, and i = 1, 2, . . . (9)

Note that (8) is the sum (over index j) of a random triangu-
lar array (see, e.g., [20]), because the argument of the outmost
sum depends on i. Note also that the coefficients bk`(i, j) de-
pend in a nontrivial way on the the same observations xk(i −
j + 1) appearing in the term log ph(xk(i− j + 1)). For these
reasons, in general, obtaining an exact statistical characteriza-
tion of the agents’ status w(h)

k (i) is challenging. On the other
hand, such characterization represents a fundamental building
block for the design and analysis of practical detection algo-
rithms. Accordingly, in the present work we derive an approx-
imate and limiting characterization of the agents’ status, which
is then exploited to address the performance assessment of the
decision algorithm (7) at steady-state. Our results can be the
starting point for more accurate analysis of the system perfor-
mance, which is left for future work.

3. STATISTICAL CHARACTERIZATION

The adaptive properties of ATC-like diffusion schemes are
well-known, see e.g., [2]. Here, as done in similar stud-
ies [8–10], the focus is on the complementary aspect of the
network learning capability, quantified by the decision per-
formance at steady-state, assuming that the states of nature
for all agents are constant for all times. This study will be
conducted under the simplifying assumption that the diffusion
algorithm employs the exact combination matrix A, namely
we let Êk(i) = Ek, as if the clustering operation would be
made without errors. By substituting Ek for Êk(i) in (5), we
see that B(i, j) = B(j) = Aj , see (9). Then, from (8):

w
(h)
k (i) =

√
µ

i∑
j=1

t
(h)
k (i, j), (10a)

t
(h)
k (i, j) ,

√
µ(1− µ)j−1

S∑
`=1

bk`(j) log ph(x`(i− j + 1)). (10b)



Likewise, for the local updates (2), letting A = IS , where IS
denotes the S × S identity matrix, equation (10) yields:

z
(h)
k (i) =

√
µ

i∑
j=1

u
(h)
k (i, j), (11a)

u
(h)
k (i, j) ,

√
µ(1− µ)j−1 log ph(xk(i− j + 1)). (11b)

Let us arrange the quantities in (10b) and (11b) for h =
1, . . . ,H , in a vector qk(i, j) of length 2H , as follows

qk(i, j) ,
[
t
(1)
k (i, j), . . . , t

(H)
k (i, j),u

(1)
k (i, j), . . . ,u

(H)
k (i, j)

]T
,

(12)

and consider the triangular array of vectors:

qk(1, 1)
qk(2, 1) qk(2, 2)
qk(3, 1) qk(3, 2) qk(3, 3)
. . . . . . . . . . . .

qk(i, 1) qk(i, 2) qk(i, 3) . . . qk(i, i)
. . . . . . . . . . . . . . . . . .

(13)

Let E, V, and P denote the expectation, variance, and prob-
ability operators, computed under the state of nature, say h∗,
relative to the agent under consideration.

Theorem 1 Suppose that all PMFs corresponding to the pos-
sible states of nature are strictly positive: ph(x) > 0, x ∈ X ,
h = 1, . . . ,H . Then, in the limit i → ∞ followed by µ → 0,
the sum

∑i
j=1

[
qk(i, j)−Eqk(i, j)

]
of the zero-mean version

of the i-th row of array (13), converges in distribution to a
multivariate zero-mean Gaussian vector with covariance ma-
trix Σ. The 2S × 2S covariance matrix is given by

Σ =

(
Λβk(A) Λ γk(A)
Λ γk(A) Λ 1

2

)
, (14)

where the entries Λmn of the S × S matrix Λ are

Λmn = E
[(

log pm(x)− E log pm(x)
)

(
log pn(x)− E log pn(x)

)]
, (15)

and where

βk(A) = lim
µ→0

∞∑
j=1

S∑
`=1

µ(1− µ)2j−2 b2k`(j), (16)

γk(A) = lim
µ→0

∞∑
j=1

µ(1− µ)2j−2 bkk(j), (17)

0 ≤ γk(A) ≤ 1

2
,

1

2S
≤ βk(A) ≤ 1

2
. (18)

PROOF Fix k, i, and j, and note that each entry of the vector
qk(i, j) in (13) has finite variance because ph(x) > 0 implies
| log ph(x)|2 ≤ M for all h and some M > 0. Note also
that the elements on each row of the array (13) are mutually
independent. Let us denote by COV(q) the covariance matrix

(computed under h∗) of the vector q, and by I(·) the indicator
function. If, for some covariance matrix Σ and every ε > 0,

lim
µ→0

lim
i→∞

i∑
j=1

COV(qk(i, j)) = Σ, (19)

lim
µ→0

lim
i→∞

i∑
j=1

E
[
‖qk(i, j)‖2 I

(
‖qk(i, j)‖ > ε

)]
= 0, (20)

then
∑i
j=1

[
qk(i, j) − Eqk(i, j)

]
converges in distribution to

a zero-mean Gaussian vector with covariance matrix Σ, by
Lindeberg-Feller version of central limit theorem for triangular
arrays of vectors [21, Prop. 2.27].

Consider the expression in (19). By exploiting the inde-
pendence of the observations xk(i) for different values of k,
and assuming m,n ∈ {1, . . . ,H}, simple calculations show
that the covariance between the two variables t

(m)
k (i, j) and

t
(n)
k (i, j) appearing in (10b), is given by

µ(1− µ)2j−2
S∑
`=1

b2k`(j) Λmn. (21)

By summing (21) for j that ranges from 1 to i, and taking
the limit i → ∞ followed by µ → 0, yields the S × S up-
per left corner of matrix Σ shown in (14), with βk(A) given
in (16). Similar calculations hold for other values of (m,n),
which shows that (19) is verified with Σ given by (14).

Consider next Lindeberg condition (20), and fix δ > 0. By
omitting the indexes (i, j) and the subscript k for notational
simplicity, we have

E
[
‖q‖2 I

(
‖q‖ > ε

)]
≤ E

[
‖q‖2+δ

εδ
I
(
‖q‖ > ε

)]
≤

E
[
‖q‖2+δ

]
εδ

,

which shows that limµ→0 limi→∞
∑i
j=1 E

[
‖qk(i, j)‖2+δ

]
=

0, known as Lyapunov-type condition [22], implies the limit
in (20). Now, from (10)-(12),

E
[
‖qk(i, j)‖2+δ

]
= µ1+ δ

2 (1− µ)(j−1)(2+δ)

× E

{
H∑
h=1

[
log ph(xk(i− j + 1)

]2

+

H∑
h=1

[
S∑
`=1

bk`(j)ph(x`(i− j + 1))

]2
1+ δ

2

(22a)

≤ µ1+ δ
2 (1− µ)(j−1)(2+δ)E

{
HM +

H∑
h=1

[
S∑
`=1

b2kl(j)

×
S∑
`=1

(
logh(x`(i− j + 1))

)2]}1+ δ
2

(22b)

≤ µ1+ δ
2 (1− µ)(j−1)(2+δ)(HM(1 + S))1+

δ
2 , (22c)

where (22b) follows by | log ph(x)|2 ≤ M and by Cauchy-
Schwarz inequality. Inequality (22) shows that condition (20)
is verified because limµ→0

∑∞
j=1 µ

1+ δ
2 (1−µ)(j−1)(2+δ) = 0.

To conclude the proof, note that the inequalities (18) follow
by recalling that the combination matrix A is nonnegative and
right-stochastic and so are its powers B(i) = Ai, yielding



0 0.066 0.132 0.198 0.264 0.33
0

0.2

0.4

0.6

0.8

1

Fig. 2. Error probability of agent k = 4 for the network shown in
Fig.1. Solid curves refer to simulations of the diffusion scheme (6),
dashed curves to the upper bound, and dash-and-dotted curves to the
lower bound. Small circles show an ad-hoc approximation obtained
by adjusting the value of βk(A) used in deriving the lower bound.
Different colors refer to different scenarios, see main text for details.

∑S
`=1 bk`(i) = 1, for all i. The bounds for γk(A) follow im-

mediately. The lower bound for βk(A) follows by Cauchy-
Schwarz inequality (

∑S
`=1 bk`(i))

2 ≤ S
∑S
`=1 b

2
k`(i).

Denoting by w
(h)
k and z

(h)
k the steady-state values of the al-

gorithm outputs obtained by letting i→∞ in (10a) and (11a),
Theorem 1 allows us to make the following approximation for
µ� 1 (with obvious notation):[

w
(1)
k , . . . ,w

(H)
k , z

(1)
k , . . . , z

(H)
k

]T
∼ N (c, µΣ) , (23)

where c = [E log p1(x), . . . , E log pH(x), E log p1(x), . . .
E log pH(x)]T , and Σ is given by (14). In particular,

w
(h)
k ∼ N

(
E log ph(x), µ βk(A) V log ph(x)

)
,

z
(h)
k ∼ N

(
E log ph(x), µ 1

2
V log ph(x)

)
.

(24)

Recalling that 1/(2S) ≤ βk(A) ≤ 1/2, from (24) we see that
the beneficial effect of the collaboration among agents is quan-
tified by the variance-reduction factor βk(A), which also en-
codes the topology of the network. We know that if A = IS ,
then βk(A) = 1/2 for all k, while if all the entries of A are
equal to 1/S, then βk(A) = 1/(2S) for all k. The former
situation corresponds to isolated agents, while the latter corre-
sponds to a fully connected single-task network with all agents
belonging to the same cluster.

4. PERFORMANCE ASSESSMENT
Even under the simplifying assumption of knowing the con-
nection matrixA, computing the error probability of agent k as
shown in (7) requires difficult multi-dimensional integration of
a jointly Gaussian distribution, which can only be done numer-
ically. It is more convenient to exploit the theoretical results of
the previous section to design a simplified setup for computer
simulations, which achieves remarkable saving in terms of ex-
ecution times with respect to the plain simulation of the diffu-
sion algorithm (6). In particular, the statistical characterization

of z(h)k , for h = 1, . . . ,H , and k = 1, . . . , S, provided in (23),
is exploited to implement a standard Monte Carlo counting
procedure for estimating P{arg maxh z

(h)
k 6= h∗}, see (3),

where h? is the state of nature relative to agent k. This proba-
bility is taken as an approximate upper bound of the actual per-
formance. Likewise, exploiting (23), P{arg maxhw

(h)
k 6= h∗}

is estimated by Monte Carlo counting and is taken as an ap-
proximate lower bound of the actual performance, because of
the assumption of knowing A.

With reference to the network shown in Fig. 1, composed
of S = 35 agents, in Fig. 2 the performance bounds are com-
pared to the results of computer simulations of the diffusion
algorithm (6), for a scenario in which there are H = 4 possi-
ble states of nature, described by the following PMFs:

h = h1 ⇒ p1 = [p11, p12, p13],
h = h2 ⇒ p2 = [p11 + α, p12, p13 − α],
h = h3 ⇒ p3 = [p11 − α, p12, p13 + α],

h = h4 ⇒ p4 =
[
p11 − α

2
, p12 + α, p13 − α

2

]
,

(25)

wherein p11 = p12 = p13 = 1/3, and 0 < α < 1/3. Further-
more, we set ak = 0.5 for all agents, see (5), µ = 0.05, and
i = 1000 algorithm steps are considered.

Figure 2 depicts the decision performance of agent k = 4,
which belongs to cluster 2. The curves in blue in Fig. 2 refer
to the case in which the state of nature for agents belonging
to cluster 1 is h = 4, and that for agents belonging to clus-
ter 2 is h = 1. The green curves refer to the case in which
the state of nature for cluster 1 is h = 3, and that for clus-
ter 2 is h = 2. The performance bounds are shown as dashed
and dash-and-dotted curves. The small circles that provide a
good approximation for the error probabilities were obtained
by modifying the lower bound derived from w

(h)
k as follows.

The variance-reduction factor βk(A), defined in (16), has been
adjusted in an ad-hoc manner within the range of allowable val-
ues shown in (18), in order to closely fit the error probability of
the diffusion scheme. This might suggest future approaches for
obtaining reliable approximations, beyond the derived bounds.

It should be noted that the performance bounds are approx-
imate. For instance, the upper bound obtained by z

(h)
k can be

violated, because the error probability of agents having many
neighbors but only a few effective neighbors, may be larger
than the error probability of the agents themselves operating in
isolation. This may happen, for instance, to agent 13 in Fig. 1.
For these agents, our performance prediction is of limited util-
ity, and a different approach should be pursued.

5. CONCLUSION
In this work, we developed an ATC-like diffusion scheme for
multi-task networks engaged in decision tasks. Adaptation ca-
pabilities are ensured by design, and learning capabilities are
investigated by computer simulations. A theoretical analysis
is carried out to obtain approximate steady-state performance
bounds, in the regime of small step-sizes. Insights are pro-
vided to derive approximations of the decision performance,
rather than bounds, while performance prediction for agents
with many non-effective neighbors remains an open problem.
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