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ABSTRACT
This work studies the learning abilities of agents sharing partial be-
liefs over social networks. The agents observe data that could have
risen from one of several hypotheses and interact locally to decide
whether the observations they are receiving have risen from a par-
ticular hypothesis of interest. To do so, we establish the conditions
under which it is sufficient to share partial information about the
agents’ belief in relation to the hypothesis of interest. Some inter-
esting convergence regimes arise.

Index Terms— Social learning, partial information, Bayesian
update, diffusion strategy.

1. INTRODUCTION AND RELATED WORK

Modeling opinion formation over social networks is a subject
of great interest, including in modern times with the prolifera-
tion of social platforms. Many algorithmic approaches have been
conceived for this purpose [1–4], including the non-Bayesian ap-
proach, in which agents update their beliefs or opinions by using
local streaming observations and by combining information shared
by their neighbors. Some of the main studies along these lines rely
on consensus and diffusion strategies [5, 6], both with linear and
log-exponential belief combinations (see, e.g., [7–12]). In all of
these works, it is assumed that agents share with their neighbors
their entire belief vectors, which can be an unrealistic assumption
since in many cases the agents are more likely to exchange their
opinions on specific questions/hypotheses.

In this work, we consider that agents share only partial beliefs.
We motivate the model by means of an example. Consider a collec-
tion of agents connected by a topology and monitoring the weather
conditions in a certain region of space. Each agent is measuring
some local data that is dependent on the weather conditions, say,
temperature, pressure, wind speed and direction. The agents wish
to interact to decide whether the state of nature is one of three pos-
sibilities: sunny, rainy or snowing. At every time instant i, each
agent k will have a belief vector, say, µk,i(θ) = [0.6, 0.2, 0.2].
These values mean that, at time i, agent k believes it is sunny with
probability 0.6. Similarly, all other agents in the network will have
their own beliefs. If the weather conditions are sunny, we would
like the agents to converge after sufficient iterations to the belief
vector [1, 0, 0]. This type of convergence behavior has already been
established in prior studies [7, 12] for strongly-connected networks
(i.e., over networks where there is always a path and a reverse path
between any two agents, in addition to at least one agent having a
self-loop to reflect confidence in their local data).

But what if we now formulate a different question for the net-
work to answer? Assume the objective is for the network to decide
“whether it is sunny,” rather than try to discover the true state of
nature (which could be sunny, rainy, or snowing. Will the agents
still need to share their entire belief vectors repeatedly to find out
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whether it is sunny or not? What if we devise a cooperation scheme
where agents share only, at every iteration, the likelihood they have
for the “sunny” condition and ignore the other entries in their be-
lief vector. Will they still be able to learn if it is sunny? That is,
can agents still learn if they only share partial information without
needing to share simultaneously information about all possible hy-
potheses?

This work answers these questions and provides conditions un-
der which different interesting forms of convergence regimes can
occur. We will consider that agents are not willing to share infor-
mation on all hypotheses, while aiming to answer a binary question
regarding one specific hypothesis of interest. To model this choice,
we present in Eqs. (2)–(5) below the learning algorithm by which
agents share partial information in relation to the particular question
that the network is trying to answer.

Theoretical results are provided for two alternatives: i) the par-
tial approach, where agents are so focused on the partially shared
opinion that they segment also their own belief; ii) and the self-
aware partial approach where each agent takes into account its own
true belief vector. Due to space limitations some proofs are omitted.
The analysis of both algorithms points toward interesting behavior,
which complements our understanding of social learning systems.
It also motivates the enunciation of a third algorithm, which will be
merely introduced in this work: it consists of agents sharing their
most relevant belief component at each time.

2. PARTIAL INFORMATION

In this work, we consider a strongly connected network ofN agents
interacting to learn an unknown state of nature θ ∈ Θ. Each agent k
observes, at instant i, streaming data ξk,i ∈ X (we use bold notation
for random variables), which can be either continuous or discrete
random variables assumed independent across time. The likelihood
of the data corresponding to a given hypothesis θ will be denoted
by L(ξ|θ), for ξ ∈ X. The data ξk,i are distributed according to
L(ξ|θ0), where θ0 is the true hypothesis.

We model the topology by means of a strongly-connected graph
with a left-stochastic combination matrix A whose nonnegative en-
tries a`k are equal to zero if ` /∈ Nk, with Nk being the set of
neighbors of agent k. We denote by v the Perron eigenvector of A,
which is defined as

Av = v, 1
>v = 1, v � 0. (1)

Assumption 1 (Positive initial beliefs). In the absence of any prior
information, all agents assign positive initial beliefs to all hypothe-
ses, i.e., µk,0(θ) > 0 for each agent k and all θ ∈ Θ. �

Assumption 2 (Likelihood ratios). For each agent k and i =
1, 2, . . . , the random variables log (L(ξk,i|θ)/L(ξk,i|θ′)) are
integrable for every pair {θ, θ′} ∈ Θ. �



2.1. Partial approach

Let θTX denote a hypothesis of interest1. The objective for the
agents is to verify whether the state of nature agrees with θTX
or not. Thus, we propose the following modified version of the
log-linear social learning diffusion construction used in [12, 13]:

ψk,i(θ) =
µk,i−1(θ)L(ξk,i|θ)∑

θ′∈Θ

µk,i−1(θ′)L(ξk,i|θ′)
, (2)

ψ̂k,i(θ) =

ψk,i(θ), for θ = θTX,
1−ψk,i(θTX)

H − 1
, for θ 6= θTX,

(3)

µk,i(θ) =

exp

{
N∑̀
=1

a`k log ψ̂`,i(θ)

}
∑
θ′∈Θ

exp

{
N∑̀
=1

a`k log ψ̂`,i(θ′)

} . (4)

In (2), the agents perform a Bayesian update to construct an inter-
mediate belief vector ψk,i. In order to obtain the final belief vector
µk,i, we consider the usual log-linear combination rule seen in (4).
However, each agent k shares only the component ψk,i(θTX). The
receiving agents will then split the remaining mass 1 − ψk,i(θTX)
uniformly across the values θ 6= θTX. For this reason, the combina-
tion rule is applied to the modified belief vectors {ψ̂`,i}N`=1 in (3).

2.2. Self-aware partial approach

The second approach consists in rewriting the combination step of
the algorithm in such a way that agent k combines its neighbors
modified beliefs {ψ̂`,i}N`=1,` 6=k with its own true belief ψk,i:

µk,i(θ) =

exp

akk logψk,i(θ) +
N∑̀
=1
6̀=k

a`k log ψ̂`,i(θ)


∑
θ′∈Θ

exp

akk logψk,i(θ′) +
N∑̀
=1
6̀=k

a`k log ψ̂`,i(θ′)


.

(5)
We can distinguish in (5) two terms in its numerator: a first self-
awareness term and a second term combining the partially true be-
liefs from neighbors.

3. CONVERGENCE ANALYSIS

3.1. Partial approach

In this approach, agent k chooses to combine its own modified
belief vector ψ̂k,i with its neighbors’ equally modified beliefs.
Lemma 1 states a result regarding the asymptotic rate of conver-
gence while Theorem 1 establishes the convergence behavior of
belief vectors, under different regimes. Note that DKL[·] refers
to the Kullback-Leibler (KL) divergence. In the following, when
computing KL divergences the argument ξ of the pertinent distri-
butions is omitted for ease of notation, and a.s. refers to almost
sure convergence. Due to space constraints, proofs will be partially
introduced.

Lemma 1 (Asymptotic rate of convergence). Under Assumptions 1
and 2, we have that, for any k and for all θ 6= θTX:

lim
i→∞

1

i
log

µk,i(θ)

µk,i(θTX)

a.s.
= DKL[L(θ0)||L(θTX)]

1The subscript TX denotes the “transmitted” hypothesis.

−DKL[L(θ0)||P (θcTX)], (6)

where we define the average likelihood function distinct from θ as

P (ξ|θc) , 1

H − 1

∑
τ 6=θ

L(ξ|τ). (7)

Proof of Lemma 1. Note that (4) is equivalent to writing, for every
pair θ, θ′ ∈ Θ:

log
µk,i(θ)

µk,i(θ′)
=

N∑
`=1

a`k log
ψ̂k,i(θ)

ψ̂k,i(θ′)
. (8)

We see from (3) that, for all θ, θ′ 6= θTX,

log
µk,i(θ)

µk,i(θ′)
= 0⇒ µk,i(θ) = µk,i(θ

′). (9)

Considering (9) and the recursion in (8) with θ′ = θTX results in

log
µk,i(θ)

µk,i(θTX)
=

N∑
`=1

a`k

[
log

µ`,i−1(θ)

µ`,i−1(θTX)
+ log

P (ξ`,i|θcTX)

L(ξ`,i|θTX)

]
.

(10)
Multiplying by 1/i, taking the limit over i as it goes to infinity, and
using limiting arguments as in [11], we get

lim
i→∞

1

i
log

µk,i(θ)

µk,i(θTX)

a.s.
=

N∑
`=1

v`︸ ︷︷ ︸
=1

E
[
log

P (ξ`,i|θcTX)

L(ξ`,i|θTX)

]
, (11)

which establishes the desired conclusion. �

Theorem 1 (Belief collapse). Under Assumptions 1 and 2, for any
k, we have that:
If θTX = θ0,

DKL [L(θ0)||P (θc0)] > 0⇒ lim
i→∞

µk,i(θ0)
a.s.
= 1. (12)

If conversely θTX 6= θ0,

DKL[L(θ0)||P (θcTX)]

DKL[L(θ0)||L(θTX)]
> 1⇒ lim

i→∞
µk,i(θTX)

a.s.
= 1, (13)

and
DKL[L(θ0)||P (θcTX)]

DKL[L(θ0)||L(θTX)]
< 1⇒ lim

i→∞
µk,i(θ)

a.s.
=

1

H − 1
, (14)

for all θ 6= θTX.

Proof of Theorem 1. When θTX = θ0, if the inequality in (12)
holds, the convergence rate from Lemma 1 will be strictly nega-
tive, which implies that, since µk,i(θ0) is bounded by 1, for any
θ 6= θ0, limi→∞ µk,i(θ)

a.s.
= 0, resulting in (12). When θTX 6= θ0,

the convergence behavior will depend on the sign of the RHS of
(6). If the inequality in (13) holds, the sign is negative and we get
the convergence in (13). If the inequality in (14) holds, the sign is
positive, which implies that µk,i(θTX) goes to zero, and all µk,i(θ)
are equal in view of (9). �

Theorem 1 reveals that when the transmitted hypothesis θTX is
equal to the true one, all agents are able to recover the truth. More-
over, in the alternative scenario, two situations can be produced:
either all agents will converge to a belief concentrated at the hy-
pothesis θTX, or they will converge to a uniform splitting across
the non-transmitted hypotheses. This behavior admits a very use-
ful interpretation. When (13) is verified, the transmitted hypothesis
is more easily confounded with the true one (since their KL diver-
gence is small). In comparison, when (14) is verified, there is no
sufficient evidence for choosing θTX, but since in view of (9) all the
unshared beliefs remain equal, the only meaningful choice of the
agents is to split equally their beliefs across the remaining H − 1
hypotheses.
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Fig. 2. Partial approach: Belief evolution for agent 1 for different choices of θTX.

3.2. Self-aware partial approach

Now, we consider that agent k will combine its true belief vec-
tor ψk,i with its neighbors’ modified belief vectors {ψ̂`,i}N`=1, 6̀=k.
When θTX = θ0, we have the result stated in Theorem 2. For this
approach, proofs are omitted due to space constraints.

Theorem 2 (Truth learning with self-awareness). Under Assump-
tions 1 and 2, when θTX = θ0, if DKL [L(θ0)||Pq(θc0)] 6= 0 for any
pmf q(·) over Θ\θ0 such that we define

Pq(ξ|θc0) ,
∑
τ 6=θ0

q(τ)L(ξ|τ), (15)

then for any k, we have

lim
i→∞

µk,i(θ0)
a.s.
= 1. (16)

�

On the other hand, when θTX 6= θ0, two situations may arise:
the belief concerning the transmitted hypothesis will collapse either
to zero or to one, under the sufficient conditions given in Lemmas 2
and 3, respectively.

Lemma 2 (Alternative behavior with self-awareness). Under As-
sumption 1 and 2, when θTX 6= θ0, for any k, if

DKL[L(θ0)||L(θTX)] >
1

H − 1

∑
τ 6=θTX

DKL[L(θ0)||L(τ)], (17)

then
lim
i→∞

µk,i(θTX)
a.s.
= 0. (18)

�

Under the sufficient condition in Lemma 2, we discover that the
belief concerning θTX collapses to zero with probability one. As for
the remaining elements, it can be shown that they will exhibit an
oscillatory behavior according to the recursion

log
µk,i(θ)

µk,i(θ′)
= akk log

µk,i−1(θ)

µk,i−1(θ′)
+ akk log

L(ξk,i|θ)
L(ξk,i|θ′)

(19)

for θ, θ′ 6= θTX. This scenario differs from the partial approach,
where the above recursion is given instead by (9), where the beliefs
for non-transmitted hypotheses evolve equally.

Before presenting Lemma 3, we introduce an extra assumption
on the boundedness of the likelihood functions.

Assumption 3 (Bounded likelihoods). Let there be M > 0, such
that, for all ξ ∈ X and for any pair θ, θ′ 6= θTX, we have:

−M ≤ log
L(ξ|θ)
L(ξ|θ′) ≤M. (20)

�

Lemma 3 (Mislearning with self-awareness). Under Assumptions
1, 2 and 3, for any k, when θTX 6= θ0, if

DKL[L(θ0)||P (θcTX)] > DKL[L(θ0)||L(θTX)] +M

N∑
`=1

v`a``,

(21)
then

lim
i→∞

µk,i(θTX)
a.s.
= 1. (22)

�

Lemma 3 reveals that, for some sufficiently small choice of
self-awareness weights a`` for every ` = 1, 2, . . . , N , as long as
DKL[L(θ0)||P (θcTX)] > DKL[L(θ0)||L(θTX)] holds, the belief con-
cerning the transmitted hypothesis θTX will converge to one, while
all others will go to zero. The sufficient condition in (21) is expected
to be not tight because Lemma 3 relies on the bounds in (20), which
are usually not tight. This condition is nonetheless useful since it
highlights the possibility that mislearning occurs.

4. SIMULATION RESULTS

Consider a network, whose topology can be seen in Fig. 1 (self-
loops are present at every node and are not displayed) and whose
combination matrixA is determined using a parametrized averaging
rule [14]:

a`k =


λ, if ` = k
1− λ
nk − 1

, if ` 6= k and ` ∈ Nk

0, otherwise,

(23)

where λ is a hyperparameter used to tune self-awareness and nk is
the degree of agent k (including k itself). The set of hypotheses is
given by Θ = {1, 2, 3}, and the true state of nature corresponds to
the first hypothesis, i.e., θ0 = 1.

1
23

4
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6

7
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10

Fig. 1. Network topology, where agent 1 is highlighted.

4.1. Partial approach

We first consider the partial approach, with hyperparameter λ =
0.5. Assume the same family of unit-variance Gaussian likelihood
functions across all agents, whose means are chosen as 0, 0.2 and
1 for θ = 1, θ = 2 and θ = 3 respectively, as seen in the left part
of Fig. 2. We will focus on the behavior of agent 1 for illustra-
tion purposes. As predicted by Theorem 1, when θTX = θ0 = 1,
we observe that the agent’s belief collapses with full confidence
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Fig. 3. Self-aware partial approach: Belief evolution for agent 1 for different choices of θTX.

to the true hypothesis as seen in Fig. 2. When θTX = 2, since
DKL[L(θ0)||L(θTX)] − DKL[L(θ0)||P (θcTX)] = −0.091 < 0, the
agent’s belief vector converges with full confidence to the shared
hypothesis. Alternatively, when θTX = 3, DKL[L(θ0)||L(θTX)] −
DKL[L(θ0)||P (θcTX)] = 0.494 > 0, so the agent’s belief is equally
split among all hypotheses different than the shared one.

4.2. Self-aware partial approach

For this approach, we consider λ = 0.03 and a family of likelihood
functions with discrete support over ξ, i.e. ξ ∈ {0, 1, 2}, as seen in
the left panel of Fig. 3. In this scenario, Assumption 3 is satisfied,
and, more particularly, the constant M from (20) is equal to 3.5.

When θTX = θ0 = 1, illustrating Theorem 2, we observe al-
most sure convergence to the true hypothesis, as seen in Fig. 3.
Some interesting phenomena arise from observing the evolution of
beliefs when θTX 6= θ0.

When θTX = 2,DKL[L(θ0)||P (θcTX)]−DKL[L(θ0)||L(θTX)]+

M
∑N
`=1 v`a`` = 0.02 > 0 and therefore Lemma 3 is satisfied. In

simulation, for larger values of λ, even though the previous condi-
tion no longer holds, we still observe that limi→∞ µk,i(θTX) = 1,
which is due to the fact that Lemma 3 only establishes a sufficient
condition. Another interesting observation from the simulation is
that when λ is sufficiently large, i.e., the self-awareness term is
dominant, we are able to recover the alternative behavior for which
limi→∞ µk,i(θTX) = 0.

When θTX = 3, we observe that DKL[L(θ0)||L(θTX)] −
1

H−1

∑
τ 6=θTX

DKL[L(θ0)||L(τ)] = 0.094 > 0 and therefore
Lemma 2 holds and no choice of λ results in a change of regime,
i.e., µk,i(θTX) will always converge to zero almost surely. This
behavior is seen in Fig. 2, where the beliefs concerning hypotheses
θ = 1 and θ = 2 oscillate indefinitely, according to recursion (19).

In this case, the self-awareness parameter λ will influence the
behavior of the beliefs concerning the non-transmitted hypotheses,
more specifically, it will influence the amplitude of their oscillatory
behavior. In Fig. 4, we see how increasing λ makes the oscillatory
behavior of (19) increase.
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Fig. 4. Belief evolution for agent 1 with θTX = 2. Left: For λ =
0.9. Right: For λ = 0.99.

Besides, since the problem is identifiable at every agent, a grow-
ing self-awareness parameter brings the agents closer to the truth.
Note that in the limit, when λ → 1, we obtain a non-cooperative
learning framework.

4.3. A third approach

So far we have considered two algorithms where the agents choose
deterministically to share one hypothesis from among the available
ones. Another interesting approach would be to consider instead the
following intermediate step:

ψ̂k,i(θ) =

ψk,i(θ), for θ = θk,iMAX,

1−ψk,i(θk,iMAX)

H − 1
, for θ 6= θk,iMAX,

(24)

where we defined the random variable θk,iMAX , argmaxθ(ψk,i(θ))
as the most relevant hypothesis for agent k at instant i. The be-
havior of the algorithm without self-awareness, considering (24) as
intermediate step can be seen in Fig. 5 for uniform initial beliefs
and for random initializations over 100 Monte Carlo runs.
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Fig. 5. Social learning with most relevant hypothesis sharing.
Left: Uniform initialization. Right: Random initialization with 100
Monte Carlo experiments.

Observing the convergence results in Fig. 5, the following re-
markable behavior emerges. First (left of Fig. 5), under uniform
initialization, partial information with max-belief sharing can be
enough to learn properly the true hypothesis. Moreover, under ran-
dom initialization (right of Fig. 5), sometimes mislearning arises.
We have verified on the data that, notably, mislearning is associated
to realizations with poor initialization. In these realizations, θk,iMAX

tends to be equal to θ = 2 in the first iterations, whose behavior
matches the case seen in (13) of Theorem 1.

5. CONCLUSION

In this work we discussed social learning algorithms that incorpo-
rate the notion of partial information sharing. We have shown that
if the presumed hypothesis is the true one, then the network is able
to learn correctly even under the regime of partial information shar-
ing. Otherwise, if there is sufficient KL divergence between the true
likelihood and the likelihood under investigation, then the network
is able to correctly discount the latter. However, and as would be
expected, a mislearning scenario is possible if the KL divergence
between true and presumed hypotheses is small enough, in which
case the presumed hypothesis is confounded with the true one.
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