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Introduction

Decentralized optimization is a powerful paradigm that finds applications in engineering and learning design.
This work studies decentralized composite optimization problems with non-smooth regularization terms.
Most existing gradient-based proximal decentralized methods are known to converge to the optimal solution
with sublinear rates, and it remains unclear whether this family of methods can achieve global linear
convergence. To tackle this problem, this work assumes the non-smooth regularization term is common
across all networked agents, which is the case for many machine learning problems. Under this condition, we
design a proximal gradient decentralized algorithm whose fixed point coincides with the desired minimizer.
We then provide a concise proof that establishes its linear convergence. In the absence of the non-smooth
term, our analysis technique covers the well known EXTRA algorithm and provides useful bounds on the
convergence rate and step-size.

Problem Formulation

Consider a network of K agents (e.g., machines, processors) connected over some graph. Through only
local interactions (i.e., agents only communicate with their immediate neighbors), each node is interested
in finding a consensual vector, denoted by w?, that minimizes the following aggregate cost:

w? = arg min
w∈RM

1
K

K∑
k=1

Jk(w) + R(w) (1)

The cost function Jk(w) : RM → R is privately known by agent k and R(w) : RM → R ∪ {∞}
is a propera and lower-semicontinuous convex function (not necessarily differentiable). We adopt the
following assumption throughout this work.

Assumption 1. (Cost function): There exists a solution w? to problem (1). Moreover, each
cost function Jk(w) is convex and first-order differentiable with δ-Lipschitz continuous gradients:

‖∇Jk(wo)−∇Jk(w•)‖ ≤ δ‖wo − w•‖, for any wo and w• (2 )
and the aggregate cost function J̄(w) = 1

K

∑K
k=1 Jk(w) is ν-strongly-convex:

(wo − w•)T
(
∇J̄(wo)−∇J̄(w•)

)
≥ ν‖wo − w•‖2 (3 )

for any wo and w•. The constants ν and δ satisfy 0 < ν ≤ δ. 2

Note that from the strong-convexity condition (3), we know the objective function in (1) is also strongly
convex and, thus, the global solution w? is unique.

aThe function f (.) is proper if −∞ < f (x) for all x in its domain and f (x) <∞ for at least one x.

Contribution

This paper considers the composite optimization problem (1) and has two main contributions. First, for
the case of a common non-smooth regularizer R(w) across all computing agents, we propose a proximal
decentralized algorithm whose fixed point coincides with the desired global solution w?. We then provide
a short proof to establish its linear convergence when the aggregate of the smooth functions ∑K

k=1 Jk(w) is
strongly convex. This result closes the existing gap between decentralized proximal gradient methods and
the centralized proximal gradient methods. The second contribution is in our convergence proof technique.
Specifically, we provide a concise proof that is applicable to general decentralized primal-dual gradient
methods such as EXTRA [5] when R(w) = 0. Our proof provides useful bounds on the convergence rate
and step-sizes.

Algorithm Derivation

We start by introducing the network weights that are used to implement the algorithm in a decentralized
manner. Thus, we let ask denote the weight used by agent k to scale information arriving from agent s with
ask = 0 if s is not a direct neighbor of agent k, i.e., there is no edge connecting them. Let A = [ask] ∈ RK×K

denote the weight matrix associated with the network. Then, we assume A to be symmetric and doubly
stochastic, i.e., A1K = 1K and 1T

KA = 1T
K. We also assume that A is primitive, i.e., there exists an integer

p such that all entries of Ap are positive. Note that as long as the network is connected, there exist many
ways to generate such weight matrices in a decentralized fashion – [1, 3, 6]. Under these conditions, it holds
from the Perron-Frobenius theorem [2] that A has a single eigenvalue at one with all other eigenvalues being
strictly less than one. Therefore, (IK −A)x = 0 if, and only, if x = c1K for any c ∈ R. If we let wk ∈ RM

denote a local copy of the global variable w available at agent k and introduce the network quantities:

W
∆= col{w1, · · · , wK} ∈ RKM , B ∆= 1

2
(IKM − A⊗ IM) (4)

then, it holds that BW = 0 if, and only if, wk = wsfor all k, s. Note that since A is symmetric with eigen
values between (−1, 1], the matrix B is positive semi-definite with eigenvalues in [0, 1). Problem (1) is
equivalent to the following constrained problem:

minimize
W∈RKM

J (W) +R(W), s.t. B
1
2W = 0 (5)

where J (W) ∆= ∑K
k=1 Jk(wk), R(W) ∆= ∑K

k=1R(wk) and B
1
2 is the square root of the positive semi-definite

matrix B. To solve problem (5), we introduce first the following equivalent saddle-point problem:

min
W

max
Y
Lµ(W, Y) ∆= J (W) +R(W) + YTB

1
2W + 1

2µ
‖B

1
2W‖2 (6)

where Y ∈ RMK is the dual variable and µ > 0 is the coefficient for the augmented Lagrangian. By
introducing Jµ(W) = J (W) + 1/2µ‖B1

2W‖2, it holds that
Lµ(W, Y) = Jµ(W) +R(W) + YTB

1
2W. (7)

To solve the saddle point problem in (6), we propose the following recursion. For i ≥ 0:
Zi = Wi−1 − µ∇Jµ(Wi−1)− B

1
2Yi−1 (8a)

Yi = Yi−1 + αB
1
2Zi (8b)

Wi = proxµR(Zi) (8c)
where α > 0 is the dual step-size (a tunable parameter). We will next show that with the initialization
Y0 = 0, we can implement this algorithm in a decentralized manner.

The Decentralized Implementation

From the definition of Jµ(W), we have ∇Jµ(W) = ∇J (W) + 1/µ BW. Substituting ∇Jµ(W) into (8a), we
have

Zi = (IKM − B)Wi−1 − µ∇J (Wi−1)− B
1
2Yi−1, (9)

With the above relation, we have for i ≥ 1
Zi− Zi−1 = (I −B)(Wi−1−Wi−2)−µ

(
∇J (Wi−1)−∇J (Wi−2)

)
−B

1
2(Yi−1 − Yi−2) (10)

From (8b) we have Yi−1 − Yi−2 = αB1
2Zi−1. Substituting this relation into (10), we reach

Zi = (I − αB)Zi−1 + (I − B)(Wi−1−Wi−2)−µ
(
∇J (Wi−1)−∇J (Wi−2)

)
(11)

for i ≥ 1. For initialization, we can repeat a similar argument to show that the proximal primal-dual method
(8a)–(8c) with Y0 = 0 is equivalent to the following algorithm. Let Z0 = W−1 = 0, set ∇J (W−1)← 0, and
W0 to any arbitrary value. Repeat for i = 1, · · ·

Zi = (I − αB)Zi−1 + (I − B)(Wi−1−Wi−2)−µ
(
∇J (Wi−1)−∇J (Wi−2)

)
(12a)

Wi = proxµR(Zi) (12b)
Since B has network structure, recursion (12) can be implemented in a decentralized way. This algorithm
only requires each agent to share one vector at each iteration; a per agent implementation of resulting
proximal primal-dual diffusion (P2D2) algorithm is listed in (13).

Proximal Primal-Dual Diffusion (P2D2)

Let B = 0.5(I − A) = [bsk] and choose step-sizes µ and α. Set all initial variables to zero and repeat
for i = 1, 2, · · ·

φk,i =
∑
s∈Nk

bsk(αzs,i−1 + ws,i−1 − ws,i−2) (Communication Step) (13a)

ψk,i = wk,i−1 − µ∇Jk(wk,i−1) (13b)
zk,i = zk,i−1 + ψk,i − ψk,i−1 − φk,i (13c)
wk,i = proxµR(zk,i) (13d)

Auxilary Results

We start by showing the existence and properties of a fixed point for recursions (8a)–(8c).

Lemma 1 (Fixed point optimilaty).Under Assumption 1, a fixed point (W?, Y?, Z?) exists for
recursions (8a)–(8c), i.e., it holds that

Z? = W? − µ∇Jµ(W?)− B
1
2Y? (14a)

0 = B
1
2Z? (14b)

W? = proxµR(Z?) (14c)
Moreover, W? and Z? are unique and each block element of W? = col{w?

1, · · · , w?
K} coincides with the

unique solution w? to problem (1), i.e., w?
k = w? for all k.

From Lemma 1, we see that although W? and Z? are unique, there can be multiple fixed points. This is
because from (14a), Y? is not unique due the rank deficiency of B1

2. However, by following similar arguments
to the ones from [4], it can be verified that there exists a particular fixed point (W?, Y?b, Z

?) satisfying (14a)–
(14c) where Y?b is a unique vector that belongs to the range space of B1

2. In the following we will show that
the iterates (Wi, Yi, Zi) converge linearly to this particular fixed point (W?, Y?b, Z

?).
To establish the linear convergence of the proximal primal-dual diffusion (P2D2) (8a)–(8c) we introduce the
error quantities:

W̃i
∆= Wi − W?, Ỹi

∆= Yi − Y?b, Z̃i = Zi − Z? (15)
By subtracting (14a)–(14c) from (8a)–(8c) with Y? = Y?b, we reach the following error recursions

Z̃i = W̃i−1 − µ
(
∇Jµ(Wi−1)−∇Jµ(W?)

)
− B

1
2Ỹi−1 (16a)

Ỹi = Ỹi−1 + αB
1
2Z̃i (16b)

W̃i = proxµR(Zi)− proxµR(Z?) (16c)
We let σmax and σ denote the maximum singular value and minimum non-zero singular value of the matrix
B. Notice that from (4), B is symmetric and, thus, its singular values are equal to its eigenvalues and are
in [0, 1) (i.e., σmin = 0 < σ ≤ σmax < 1). The following result follows from [5, Proposition 3.6].

Lemma 2 (Augmented Cost).Under Assumption 1, the penalized augmented cost J (W) + ρ
2‖W‖

2
B

with any ρ > 0 is restricted strongly-convex with respect to W?:
(W − W?)T

(
∇J (W)−∇J (W?)

)
+ ρ‖W − W?‖2

B ≥ νρ‖W − W?‖2 (17 )
where

νρ = min
{
ν − 2δc, ρσ(B)c2

4(c2 + 1)

}
> 0, for any c ∈

(
0, ν

2δ

)
(18 )

for any W with W? = 1⊗ w? and where w? denotes the minimizer of (1).

—————————————————————————————-

Main Result

Theorem 1 (Linear convergence).Under Assumption 1, Y0 = 0, and if step-sizes satisfy

µ <
(1− σmax)

δ
, α ≤ min {1, µνρ(2− σmax − µδ)} , (19 )

It holds that ‖W̃i‖2 ≤ Cγi where C > 0 and

γ
∆= max {1− µνρ(2− σmax − µδ)/(1− ασmax), 1− ασ} < 1. (20 )

for some ρ > 0 with νρ given in (18).
Next we show that when R(w) = 0, we can have a better upper bound for the dual step-size, which
covers the EXTRA algorithm [5].

Theorem 2 (Linear convergence when R(w) = 0).Under Assumption 1, if R(w) = 0,
Y0 = 0, and the step-sizes satisfy µ < (1−σmax)

δ and α ≤ 1, it holds that ‖W̃i‖2
Q ≤ Cγi where C > 0,

Q = I − αB > 0, and
γ = max

{
1− µνρ(2− σmax − µδ), 1− ασ

}
< 1

for some ρ > 0 with νρ given in (18).
In the above Theorem, we see that the convergence rate bound is upper bounded by two terms, one
term is from the cost function and the other is from the network. This bound shows how the network
affects the convergence rate of the algorithm. For example, in Theorem 2, assume that α = 1 and the
network term dominates the convergence rate so that γ = 1−ασ = 1− σ. Recall that σ = σ(B) is the
smallest non-zero singular value (or eigenvalue) of the matrix 0.5(I−A). Thus, the effect of the network
on the convergence rate is evident through the term 1− σ, which becomes close to one as the network
becomes more sparse. Note when α = 1, the algorithm recovers EXTRA as highlighted in Remark ??.
In this case, our step-size condition is on the order of O((1 − σmax)/δ). Note that the in the original
EXTRA proof in [5, Theorem 3.7], the step-size bound is on the order of O(νρ(1 − σmax)/δ2)), which
scales badly for ill-conditioned problems, i.e., if δ is much larger than νρ.
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