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Abstract— Various bias-correction methods such as EXTRA,
DIGing, and exact diffusion have been proposed recently to
solve distributed deterministic optimization problems. These
methods employ constant step-sizes and converge linearly to
the exact solution under proper conditions. However, their
performance under stochastic and adaptive settings remains
unclear. It is still unknown whether bias-correction is beneficial
in stochastic settings. By studying exact diffusion and exam-
ining its steady-state performance under stochastic scenarios,
this paper provides affirmative results. It is shown that the
correction step in exact diffusion can lead to better steady-state
performance than traditional methods.

I. INTRODUCTION

This work considers stochastic optimization problems
where a collection of K networked agents work coopera-
tively to solve an aggregate optimization problem of the form

w? = arg min
w∈RM

K∑
k=1

Jk(w), where Jk(w) = EQ(w;xk) (1)

The local risk function Jk(w) held by agent k is differ-
entiable and strongly convex, and it is constructed as the
expectation of some loss function Q(w;xk). The random
variable xk represents the streaming data received by agent
k, and the expectation in Jk(w) is over the distribution
of xk. While the cost functions Jk(w) may have different
local minimizers, all agents seek to determine the common
global solution w? under the constraint that agents can
only communicate with their direct neighbors. Problem (1)
can find applications in a wide range of areas including
wireless sensor networks [1], [2], distributed adaptation and
estimation [3]–[5], and distributed statistical learning [6].

There are several techniques that can be used to solve
problems of the type (1) such as consensus [7], [8] and
diffusion [3]–[5] strategies. The class of diffusion strategies
has been shown to be particularly well-suited for online
learning with an enhanced stability range over other methods,
as well as an improved ability to track drifts in the underlying
models and statistics. We therefore focus on this class of
algorithms since we are mainly interested in methods that are
able to learn and adapt from continuous streaming data. For
example, the adapt-then-combine formulation of diffusion
takes the following form:

ψk,i = wk,i−1 − µ∇Q(wk,i−1;xk,i), (adaptation) (2)
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wk,i =
∑
`∈Nk

a`kψ`,i, (combination) (3)

where the subscript k denotes the agent index and i denotes
the iteration index. The variable xk,i is the data realization
observed by agent k at iteration i. The scalar a`k is the
weight used by agent k to scale information received from
agent `, and Nk is the set of neighbors of agent k (including
k itself). In (2)–(3), variable ψk,i is an intermediate estimate
for w? at agent k, while wk,i is the updated estimate. Note
that step (2) uses the gradient of the loss function, Q(·),
rather than its expected value Jk(w). This is because the
statistical properties of the data are not known beforehand. If
Jk(w) were known, then we could use its gradient vector in
(2). In that case, we would refer to the resulting method as a
deterministic rather than stochastic solution. Throughout this
paper, we employ a constant step-size µ to enable continuous
adaptation and learning in response to drifts in the location
of the global minimizer due to changes in the statistical
properties of the data. The adaptation and tracking abilities
are crucial in many applications — see examples in [4], [5].

Previous studies have shown that both consensus and
diffusion methods are able to solve problems of the type (1)
well for sufficiently small step-sizes. That is, the squared
error E‖w̃k,i‖2 approaches a small neighborhood around
zero for all agents, where w̃k,i = w?−wk,i. Note that these
methods do not converge to the exact minimizer w? of (1)
but rather approach a small neighborhood around w? with a
small steady-state bias under both stochastic and determin-
istic optimization scenarios. For example, in deterministic
settings where the individual costs Jk(w) are known, it is
shown in [3] that the squared errors ‖w̃k,i‖2 generated by
the diffusion iterates converge to a O(µ2)-neighborhood. In
this case, this inherent limiting bias is not due to any gradient
noise arising from stochastic approximations; it is instead due
to the inherent update structure in diffusion and consensus
implementations — see the explanations in [9, Sec. III.B].
For stochastic optimization problems, on the other hand, the
size of the bias is O(µ) rather than O(µ2) because of the
gradient noise.

When high precision is desired, especially in deterministic
optimization problems, it would be preferable to remove the
O(µ2) bias. Motivated by these considerations, the works [9],
[10] showed that a simple correction step inserted between
the adaptation and combination steps (2) and (3) is sufficient
to ensure exact convergence of the algorithm to w? by all
agents — see expression (10) further ahead. In this way,
the O(µ2) inherent bias is removed completely, and the
convergence rate is also improved.



While the correction of the O(µ2) bias is critical in the
deterministic setting, it is not clear whether it can help in the
stochastic and adaptive settings. This motivates us to study
exact diffusion in these settings and compare against standard
diffusion. To this end, we carry out a higher-order analysis
of the error dynamics for both methods, and derive their
steady-state performance in both terms O(µ) and O(µ2). In
contrast, prior analysis for diffusion have only focused on
the O(µ) term [4], [5]. Our analysis will reveal that the bias
in diffusion can get amplified over sparsely-connected graph
topologies, and the bias-correction step in exact diffusion can
help address this potential deterioration.

A. Our Results

We establish in Theorem 1 that, under sufficiently small
step-sizes, the exact diffusion strategy (9)–(11) will converge
exponentially fast, at a rate ρ = 1−O(µν), to a neighborhood
around w?. Moreover, the size of the neighborhood will be
characterized as

lim sup
i→∞

1

K

K∑
k=1

E‖w̃k,i‖2ed = O

(
µσ2

Kν
+
δ2

ν2
· µ

2σ2

1− λ

)
(4)

where the subscript ed indicates that wk,i is generated by
the exact diffusion method, the quantity σ2 is a measure of
the size of gradient noise, λ ∈ (0, 1) is the second largest
eigenvalue of the combination matrix A = [a`k] which
reflects the level of the network connectivity, and ν is the
strong convexity constant. In comparison, we will show that
the traditional diffusion strategy converges at a similar rate
albeit to the following neighborhood:

lim sup
i→∞

1

K

K∑
k=1

E‖w̃k,i‖2d

= O

(
µσ2

Kν
+
δ2

ν2
· µ

2σ2

1− λ
+
δ2

ν2
· µ2b2

(1− λ)2

)
(5)

where the subscript d indicates that wk,i is generated by the
diffusion method, and b2 = (1/K)

∑K
k=1 ‖∇Jk(w?)‖2 is a

bias constant independent of the gradient noise.
Expressions (4) and (5) have the following important

implications. First, it is obvious that diffusion suffers from
an inherent bias term µ2b2/(1 − λ)2, which is independent
of the gradient noise σ2. In contrast, exact diffusion removes
this bias. In fact, in the deterministic setting where the
gradient noise σ2 = 0, it is observed from (4) and (5)
that diffusion converges to a O(µ2)-neighborhood around the
global solution w? while exact diffusion converges exactly
to w?. This result is consistent with [3], [4], [10], [11].

Second, it is observed from (4) and (5) that exact diffusion
has generally better steady-state mean-square-error perfor-
mance than diffusion when b 6= 0. The superiority of exact
diffusion is more obvious when the bias term µ2b2/(1−λ)2

is significant, which can happen when the bias b2 is large,
or the network is sparsely-connected (which happens when
λ is close to 1). Under these scenarios, if the step-size is
moderately (but not extremely) small such that

c2(1− λ)2σ2/b2 ≤ µ ≤ c1(1− λ) (6)

where c1 and c2 are constants given in Sec. IV-A, then exact
diffusion will perform better than diffusion in steady-state.

Third, the superiority of exact diffusion over diffusion
will vanish as step-size µ approaches 0. This is because
O(µσ2/Kν) will dominate all other O(µ2) terms when µ
is sufficiently small, i.e.,

lim sup
i→∞

1

K

K∑
k=1

E‖wk,i − w?‖2ed = O
(
µσ2/Kν

)
, (7)

lim sup
i→∞

1

K

K∑
k=1

E‖wk,i − w?‖2d = O
(
µσ2/Kν

)
. (8)

The “sufficiently” small µ can be roughly characterized as
µ ≤ c3(1− λ)2+x, where x is any positive constant.

B. Related work

In addition to exact diffusion, there exist other bias-
correction methods such as EXTRA [12], ESOM [13], NIDS
[14], and gradient-tracking methods such as Aug-DGM [15],
NEXT/SONATA [16], [17], DIGing [18], [19], and push-pull
methods [20], [21]. All these methods can converge linearly
to the exact solution under the deterministic setting, but their
performance (especially their advantage over diffusion or
consensus) in the stochastic and adaptive settings remains
unclear. The work [22] studies a gradient-tracking method
under stochastic and adaptive setting and shows its superi-
ority over consensus via numerical simulations. However, it
does not analytically discuss when and why bias-correction
methods can outperform consensus. Another useful work is
[23], which establishes the convergence property of exact
diffusion for stochastic non-convex cost functions and de-
caying step-sizes. It proves exact diffusion is less sensitive
to the data variance across the network than diffusion and
is endowed with a better convergence rate when the data
variance is large. Different from [23], our bound in (5)
shows that even small data variance (i.e., small b2) can be
significantly amplified by a bad network connectivity, see
the example graphs discussed in Sec. IV-A. This implies that
the superiority of exact diffusion does not only rely on its
robustness to data variance, but, more importantly, to the
network connectivity as well. We will further clarify in this
paper scenarios where exact diffusion and diffusion have the
same performance in steady state.
Notation. Throughout the paper we use col{x1, · · · , xK}
and diag{x1, · · · , xK} to denote a column vector and a
diagonal matrix formed from x1, · · · , xK . The notation
1K = col{1, · · · , 1} ∈ RK and IK ∈ RK×K is an identity
matrix. The Kronecker product is denoted by “⊗”.

II. EXACT DIFFUSION STRATEGY

A. Exact Diffusion Recursions

The exact diffusion strategy from [9], [10] was originally
proposed to solve deterministic optimization problems. We
adapt it to solve stochastic optimization problems by replac-
ing the gradient of the local cost Jk(w) by the gradient of
the corresponding loss function. That is, we now use:

ψk,i = wk,i−1−µ∇Q(wk,i−1;xk,i), (adaptation) (9)



φk,i = ψk,i +wk,i−1 −ψk,i−1, (correction) (10)

wk,i =
∑
`∈Nk

ā`kφ`,i. (combination) (11)

Observe that the fusion step (11) now employs the corrected
iterates from (10) rather than the intermediate iterates from
(9). The recursions (9)–(11) can start from anywk,−1, but we
need to set ψk,−1 = wk,−1 for all k in initialization. Note
that the weight ā`k is different from a`k used in diffusion
recursion (3). If we let A = [a`k] ∈ RK×K and Ā = [ā`k] ∈
RK×K denote the combination matrices used in diffusion
and exact diffusion respectively, the relation between them
is Ā = (A+ IK)/2. In the paper, we assume A (and hence
Ā) are symmetric and doubly stochastic.

As explained in [9], [10], exact diffusion is essentially
a primal-dual method. We can describe its operation more
succinctly by collecting the iterates and gradients from across
the network into global vectors. Specifically, we introduce

Wi=

w1,i

...
wK,i

 , ∇Q(Wi−1; X i)=

∇Q(w1,i−1;x1,i)
...

∇Q(wK,i−1;xK,i)


(12)

A = A⊗ IK and A = (A+ IKM )/2. Then recursions (9) –
(11) lead to the second-order recursion

Wi = A
(

2Wi−1 −Wi−2 − µ∇Q(Wi−1; X i)

+ µ∇Q(Wi−2; X i−1)
)
. (13)

We can rewrite this update in a primal-dual form as follows.
First, since the combination matrix Ā is symmetric and
doubly stochastic, it holds that I − Ā is positive semi-
definite. By decomposing I − Ā = UΣUT and defining
V = UΣ1/2UT ∈ RK×K , where Σ is a non-negative
diagonal matrix, we know that V is also positive semi-
definite and V 2 = I−Ā. Furthermore, if we let V = V ⊗IK
then V2 = IKM − A holds. With these relations, it can be
verified1 that recursion (13) is equivalent to{

Wi = A
(
Wi−1 − µ∇Q(Wi−1; X i)

)
− VYi−1,

lYi = Yi−1 + VWi,
(14)

where Yi ∈ RKM plays the role of a dual variable. The
analysis in [9], [10] explains how the correction term in
(10) guarantees exact convergence to w? by all agents in
deterministic optimization problems where the true gradient
∇Jk(w) is available. In the following sections, we will
examine the convergence of exact diffusion (9)–(11) in the
stochastic setting.

III. ERROR DYNAMICS OF EXACT DIFFUSION

To establish the error dynamics of exact diffusion, we first
introduce some standard assumptions.

Assumption 1 (CONDITIONS ON COST FUNCTIONS):
Each Jk(w) is ν-strongly convex and twice differentiable,

1To verify it, one can substitute the second recursion in (14) into the first
recursion to remove Yi and arrive at (13).

and its Hessian matrix satisfies

νIM ≤ ∇2Jk(w) ≤ δIM , ∀ k. (15)

�
Assumption 2 (CONDITIONS ON COMBINATION MATRIX):

The network is undirected and strongly connected, and the
combination matrix A satisfies

A = AT, A1K = 1K , 1T
KA = 1T

K . (16)

�
Since the network is strongly connected, it holds that

1 = λ1(Ā) > λ2(Ā) ≥ · · · ≥ λK(Ā) > 0. (17)

To establish the optimality condition for problem (1), we
introduce the following notation:

W = col{w1, · · · , wK} ∈ RKM , (18)
∇J (W) = col{∇J1(w1), · · · ,∇JK(wK)}, (19)

where wk in (18) is the k-th block entry of vector W. With
the above notation, the following lemma from [10] states the
optimality condition for problem (1).

Lemma 1 (OPTIMALITY CONDITION): Under Assump-
tion 1, if some block vectors (W?, Y?) exist that satisfy:

µA∇J (W?) + VY? = 0, (20)
VW? = 0. (21)

then it holds that each block entries in W? satisfy:

w?1 = w?2 = · · · = w?N = w? (22)

where w? is the unique solution to problem (1). �

A. Error Dynamics
We define the gradient noise at agent k as

sk,i(wk,i−1)
∆
= ∇Q(wk,i−1;xk,i)−∇Jk(wk,i−1) (23)

and introduce the network vectors:

si(Wi−1) = col{s1,i(w1,i−1), · · · , sK,i(wK,i−1)} (24)
∇J (Wi−1) = col{∇J1(w1,i−1), · · · ,∇JK(wK,i−1)} (25)

It then follows that

∇Q(Wi−1; X i) = ∇J (Wi−1) + si(Wi−1). (26)

Next, we introduce the error vectors

W̃i = W? −Wi, Ỹi = Y? − Yi (27)

where (W?, Y?) are optimal solutions satisfying (20)–(21).
By combining (14), (20), (21), (26) and (27), we reach

W̃i = A
[
W̃i−1 + µ(∇J (Wi−1)−∇J (W?))

]
−VỸi−1 + µAsi(Wi−1),

lỸi = Ỹi−1 + VW̃i.

(28)

Since each Jk(w) is twice-differentiable (see Assumption 1),
we can appeal to the mean-value theorem from Lemma D.1
in [4], which allows us to express each difference in (28) in
terms of Hessian matrices for any k = 1, 2, . . . , N :

∇Jk(wk,i−1)−∇Jk(w?) = −Hk,i−1w̃k,i−1,

where

Hk,i−1
∆
=

∫ 1

0

∇2Jk
(
w?−rw̃k,i−1

)
dr ∈ RM×M (29)



We introduce the block diagonal matrix

Hi−1
∆
=diag{H1,i−1,H2,i−1, · · · ,HK,i−1} (30)

so that

∇J (Wi−1)−∇J (W?) = −Hi−1W̃i−1. (31)

Substituting (31) into the first recursion in (28), we reach{
W̃i=A(IKM−µHi−1)W̃i−1−VỸi−1+µAsi(Wi−1),

lỸi=Ỹi−1 + VW̃i.
(32)

Next, if we substitute the first recursion in (32) into the
second one, and recall that V2 = IKM − A, we reach the
following error dynamics.

Lemma 2 (ERROR DYNAMICS): Under Assumption 1,
the error dynamics for the exact diffusion recursions (9)–
(11) is as follows:[

W̃i

Ỹi

]
=
([ A −V
VA A

]
︸ ︷︷ ︸

∆
= B

−µ
[
AHi−1 0
VAHi−1 0

]
︸ ︷︷ ︸

∆
= T i−1

)[
W̃i−1

Ỹi−1

]

+ µ

[
A
VA

]
︸ ︷︷ ︸

∆
= B`

si(Wi−1), (33)

and Hi is defined in (30). �

B. Transformed Error Dynamics

The direct convergence analysis of recursion (33) is still
challenging. To facilitate the analysis, we identify a con-
venient change of basis and transform (33) into another
equivalent form that is easier to handle. To this end, we
introduce a fundamental decomposition from [10] here.

Lemma 3 (FUNDAMENTAL DECOMPOSITION): Under
Assumptions 1 and 2, the matrix B defined in (33) can be
decomposed as

B=
[
R1 R2 cXR

]︸ ︷︷ ︸
X

 IM 0 0
0 IM 0
0 0 D1


︸ ︷︷ ︸

D

 LT
1

LT
2

1
cXL


︸ ︷︷ ︸
X−1

(34)

where c can be any positive constant, and D ∈ R2KM×2KM

is a diagonal matrix. Moreover, we have

R1 =

[
I
0

]
∈ R2KM×M , R2=

[
0
I

]
∈ R2KM×M ,

(35)

L1 =

[
1
K I
0

]
∈ R2KM×M , L2 =

[
0

1
K I

]
∈ R2KM×M ,

(36)

XR ∈ R2KM×2(K−1)M , XL ∈ R2(K−1)M×2KM . (37)

where I = 1K⊗IM . Also, the matrixD1 is a diagonal matrix
with complex entries. The magnitudes of the diagonal entries
are all strictly less than 1. �

By multiplying X−1 to both sides of the error dynamics
(33) and simplifying we arrive at the following result.

Lemma 4 (TRANSFORMED ERROR DYNAMICS): Under
Assumption 1 and 2, the transformed error dynamics for

exact diffusion recursions (9)–(11) is as follows:[
Z̄i
Ži

]
=

[
IM− µ

K

∑K
k=1Hk,i−1 − cµK I

THi−1XR,u
−µcXLT i−1R1 D1 − µXLT i−1XR

]
×
[

Z̄i−1

Ži−1

]
+ µ

[
1
K I

T

1
cXLB`

]
si(Wi−1). (38)

where XR,u ∈ RKM×2(K−1)M is the upper part of matrix
XR = [XR,u;XR,d]. The relation between the original and
transformed error vectors are[

W̃i

Ỹi

]
=
[
R1 cXR

][ Z̄i
Ži

]
. (39)

�

IV. MEAN-SQUARE CONVERGENCE

Using the transformed error dynamics derived in (38),
we can now analyze the mean-square convergence of exact
diffusion (9)–(11) in the stochastic and adaptive setting. To
begin with, we introduce the filtration

F i−1 = filtration{wk,−1,wk,0, · · · ,wk,i−1, all k}. (40)

The following assumption is standard on the gradient noise
process (see [4], [22]).

Assumption 3 (CONDITIONS ON GRADIENT NOISE): It is
assumed that the first and second-order conditional moments
of the individual gradient noises for any k and i satisfy

E[sk,i(wk,i−1)|F i−1] = 0, (41)

E[‖sk,i(wk,i−1)‖2|F i−1] ≤ β2
k‖w̃k,i−1‖2+σ2

k (42)

for some constants βk and σk. Moreover, we assume
each sk,i(wk,i−1) is independent for any k, i given F i−1.

�
With Assumption 3, it can be verified that

E[si(Wi−1)|F i−1] = 0, ∀ i, (43)

E
[∥∥∥ 1

K

K∑
k=1

sk,i(wk,i−1)
∥∥∥2∣∣∣F i−1

]
≤ β

2

K
‖W̃i−1‖2+

σ2

K
(44)

where β2 ∆
= maxk{β2

k}/K and σ2 ∆
=
∑K
k=1 σ

2
k/K.

Theorem 1 (MEAN-SQUARE CONVERGENCE): Under
Assumptions 1–3, if the step-size µ satisfies

µ ≤ (1− λ)ν

(32+16c1c2 +8
√
c1c2)(δ2 +β2)

=O

(
(1− λ)ν

δ2 + β2

)
(45)

where λ = λ2(A), and c1, c2 are constants independent
of λ, ν, δ, and β, then the exact diffusion recursion (14)
converges exponentially fast to a neighborhood around w?.
The convergence rate is ρ = 1−O(µν), and the size of the
neighborhood can be characterized as follows:

lim sup
i→∞

1

K

K∑
k=1

E‖w̃k,i‖2 = O

(
µσ2

Kν
+
δ2

ν2
· µ

2σ2

1− λ

)
(46)

Proof. We omit the proof due to space limitations. The
detail can be referred to Appendix A in the long report [24].

�
Theorem 1 indicates that when µ is smaller than a specified

upper bound, the exact diffusion over adaptive networks is
stable. The theorem also provides a bound on the size of the
steady-state mean-square error. To compare exact diffusion



with diffusion, we examine the mean-square convergence
property of diffusion as well. The proof of the following
result can be found in Appendix B of the long report [24].

Lemma 5 (MEAN-SQUARE STABILITY OF DIFFUSION):
Under Assumptions 1–3, if µ satisfies

µ ≤ (1− λ)ν

(12+2e1e2 +
√

6e1e2)(δ2 +β2)
=O

(
(1− λ)ν

δ2 + β2

)
(47)

where λ = λ2(A), e1 and e2 are constants independent
of λ, δ, ν and β, then the diffusion recursions (2)–(3)
converge exponentially fast to a neighborhood around w?.
The convergence rate is 1 − O(µν), and the size of the
neighborhood can be characterized as follows

lim sup
i→∞

1

K

K∑
k=1

‖w̃k,i‖2

= O

(
µσ2

Kν
+
δ2

ν2
· µ

2σ2

1− λ
+
δ2

ν2
· µ2b2

(1− λ)2

)
, (48)

where b2 = (1/K)
∑K
k=1 ‖∇Jk(w?)‖2 is a bias term.

�
Comparing (46) and (48), it is observed the expressions

for both algorithms consist of two major terms – one O(µ)
term and one O(µ2) term. However, diffusion suffers from
an additional bias term O(µ2b2/(1− λ)2). In the following,
we compare diffusion and exact diffusion in two scenarios.

A. Bias term is significant

When b2 is large, or the network is sparse, it is possible
that the bias term µ2b2/(1 − λ)2 is significant. We assume
such bias term in (48) is significant if

δ2

ν2
· µ2b2

(1− λ)2
≥ µσ2

ν
(49)

from which we get µ ≥ (1− λ)2σ2ν/δ2b2. Combining with
(45), we conclude that if step-size µ satisfies

d1(1− λ)2σ2ν

δ2b2
≤ µ ≤ d2(1− λ)ν

δ2 + β2
, (50)

where d1 and d2 are some constants, then the bias term in
(48) is significant and exact diffusion is expected to have
better performance than diffusion in steady-state. To make
the interval in (50) valid, it is enough to let
d1(1− λ)2σ2ν

δ2b2
<
d2(1− λ)ν

δ2 + β2
⇐⇒ b2

1− λ
>
d1

d2
σ2. (51)

In the following example, we list several network topologies
in which the inherent bias µ2b2/(1−λ)2 dominates (5) easily.
Example (Sparse networks). Consider a linear or cyclic
network with K agents where each node connects with its
previous and next neighbors. It is shown in [25] that

1− λ = O(1/K2). (52)

Therefore, the bias term in diffusion becomes O(µ2b2K4),
which increases rapidly with the size of the network. For a
grid network with K agents where each node connects with
its neighbors from left, right, behind and front. It is shown
in [26] that

1− λ = O(1/K) (53)

for grid networks. Therefore, the bias term in diffusion is
O(µ2b2K2) which also increases with K. �

B. Bias term is trivial

In theory, if we adjust µ to be sufficiently small, the
O(µ) term in both expressions (46) and (48) will eventually
dominate for any b2 and λ. In such scenario, it holds that

lim sup
i→∞

1

K
E‖W̃i‖2ed = O

(µσ2

Kν

)
, (54)

lim sup
i→∞

1

K
E‖W̃i‖2d = O

(µσ2

Kν

)
. (55)

It is observed that both diffusion and exact diffusion will
have the same mean-square error order, which implies that
diffusion and exact diffusion will perform similarly in this
scenario. Such “sufficiently” small step-size can be roughly
characterized by the range

µ ≤ d3(1− λ)2+x where x > 0. (56)

For example, we can substitute it into (46) to verify

lim sup
i→∞

E‖W̃i‖2ed=O
(
µ+

µ2

1− λ

)
=O
(
(1−λ)2+x

)
=O(µ) (57)

and we can also verify lim supi→∞ E‖W̃i‖2d = O(µ) with
the same technique.

V. NUMERICAL SIMULATION

In this section we compare the performance of exact diffu-
sion and diffusion when solving the decentralized logistic
regression problem:

min
w∈RM

K∑
k=1

E
{

ln
(

1 + e−γkh
T
kw
)}

+
ρ

2
‖w‖2, (58)

where (hk,γk) represent the streaming data received by
agent k. Variable hk ∈ RM is the feature vector and
γk ∈ {−1,+1} is the label scalar. In all experiments, we set
M = 20 and ρ = 0.001. To make the Jk(w)’s have different
minimizers, we first generate K different local minimizers
{w?k}. All w?k are normalized so that ‖w?k‖2 = 1. At agent k,
we generate each feature vector hk,i ∼ N (0, I20). To gen-
erate the corresponding label γk(i), we generate a random
variable zk,i ∈ U(0, 1). If zk,i ≤ 1/(1 + exp(−hT

k,iw
?
k)), we

set γk(i) = 1; otherwise γk(i) = −1. The MSD in y-axis
indicates mean-square deviation

∑K
k=1 E‖w̃k,i‖2.

In the following, we run two sets of simulations. In the
first set, we test the performance of diffusion and exact
diffusion over cyclic networks with different size K. For
each simulation, we fix µ = 0.01 and compare diffusion and
exact diffusion for K = 10 and K = 35. When the size of
the cyclic network becomes larger, we know from examples
in Sec.IV-A that the inherent bias O(µ2b2/(1 − λ)2) will
increase drastically. In this scenario, we can expect exact
diffusion to have better performance in steady-state. The left
and middle plots in Figure 1 confirm this conclusion. It is
observed that when the network is small, both diffusion and
exact diffusion performs almost the same since the inherent
bias is trivial. However, as the size K increases, the term



Fig. 1. Diffusion v.s. exact diffusion over cyclic networks.

O(µ2b2/(1− λ)2) becomes dominant and exact diffusion is
significantly better than diffusion.

In the second set of simulations, we fix the cyclic network
size K = 35 and compare diffusion and exact diffusion at
µ = 0.01 and µ = 0.001. As we discussed in Sec. IV-
B, the O(µ) term will gradually dominate all other higher-
order terms as µ → 0. As a result, we can expect diffusion
and exact diffusion to match with each other as µ becomes
sufficiently small. The middle and right plots in Figure 1
confirm this conclusion. When µ = 0.001, both methods
perform almost the same.

REFERENCES

[1] L. A. Rossi, B. Krishnamachari, and C. C.J. Kuo, “Distributed
parameter estimation for monitoring diffusion phenomena using phys-
ical models,” in Proc. IEEE Conference on Sensor and Ad Hoc
Communications and Networks (SECON), Santa Clara, CA, 2004, pp.
460–469.

[2] D. Li, K. D. Wong, Y. Hu, and A. M. Sayeed, “Detection, classifica-
tion, and tracking of targets,” IEEE Signal Processing Magazine, vol.
19, no. 2, pp. 17–29, 2002.

[3] J. Chen and A. H. Sayed, “Distributed Pareto optimization via
diffusion strategies,” IEEE Journal of Selected Topics in Signal
Processing, vol. 7, no. 2, pp. 205–220, 2013.

[4] A. H. Sayed, “Adaptation, learning, and optimization over networks,”
Foundations and Trends in Machine Learning, vol. 7, no. 4-5, pp.
311–801, 2014.

[5] A. H. Sayed, “Adaptive networks,” Proceedings of the IEEE, vol. 102,
no. 4, pp. 460–497, April 2014.

[6] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for
distributed optimization: convergence analysis and network scaling,”
IEEE Transactions on Automatic Control, vol. 57, no. 3, pp. 592–606,
2012.
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for distributed optimization in networks,” in 2018 IEEE Conference
on Decision and Control (CDC), Miami Beach, FL, USA, Dec. 2018,
pp. 3385–3390.
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