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ABSTRACT

This work develops a variation of diffusion learning by
incorporating an adaptive construction for the combination
weights through local fusion steps. This leads to an imple-
mentation with enhanced convergence rate and mean-square-
error performance while maintaining the same level of com-
plexity as standard implementations. The approach is based
on formulating optimal or close-to-optimal learning and fu-
sion steps using a proximity function rationale within neigh-
borhoods. The first version of the algorithm employs exact
fusion in the least-squares sense using inverses of uncertainty
matrices. The second version replaces these matrices by diag-
onal approximations with reduced complexity. The result is
an LMS-complexity scheme with improved performance for
distributed learning over networks.

Index Terms— diffusion networks, fusion, least-squares,
adaptation, combination weights.

1. INTRODUCTION

In typical implementations of consensus and diffusion strate-
gies for learning over networks, it is customary to combine
estimates from neighborhoods by relying on convex combi-
nation weights [1]-[6]. In general, these weights are fixed and
chosen as (scalar) entries of left-stochastic combination matri-
ces. There have been works in the literature where the combi-
nation weights have also been learned as part of the adaptation
process. For example, the relative variance combination rule
from [7] was derived by optimizing the instantaneous mean-
square-error measure as the learning algorithm evolves over
time.

In this work, we take a different route to learning the com-
bination weights, leading to enhanced performance. We at-
tain this objective by formulating optimal or close-to-optimal
fusion steps locally under a proximity rationale, and subse-
quently reduce the complexity of the iterations by replacing
uncertainty matrices by scalar approximations. The main dif-
ference between our derivation and existing approaches is that
uncertainties in the estimates by the agents are carried from
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self-learning to the social learning phase, and back to self-
learning again, in a continuous fashion. This results in adap-
tive combination weights and lead to lower mean-square-error
and faster convergence compared to existing approaches.

2. DIFFUSION ALGORITHMS REVISITED

We consider a strongly-connected network of distributed
agents, represented by a collection of /N nodes in Fig. 1. Each
agent k receives streaming data {d (i), ux ;}, assumed to be
related via a linear regression model of the form

dk(Z) = umwz + Uk(i) (1)

where ¢ is the time index, w9, is an unknown local parame-
ter of size M x 1, uy, is a regression (row) vector of size
1 x M, and vy () is additive zero-mean white noise, which is
temporally and spatially uncorrelated with other data.

Fig. 1. Illustration of a network with NV =34 agents.

We collect the data measured at each agent k up to time @
into the quantities:

Hy, =

Yk,i

)

col{up,1, U2, ..., Uk} )
col{du(1), dn(2), ..., dy (i)} 3)

In a non-cooperative setting, each agent k£ would estimate
its parameter vector wy, by solving a weighted least-squares
problem of the form:

min [y, , — Hywi|% 4)
Wi



for some weighting matrix Ay ; diag{\""1,... )\ 1}
where 0 « A < 1 is an exponential weighting factor. In
many important situations, however, the individual models
{w?} are related, such as varying smoothly over a graph.
In these cases, it is reasonable to encourage agents to seek
estimates that are close to each other. One way to achieve this
objective is to replace problem (4) by a regularized problem
that enforces coupling among agents. To exploit this idea, let
bdiag(-) denote a block diagonal operator and introduce the
following extended quantities :

w’ = col{w{, w},...,w} ®)
Yy = col{yi ;Yo Ynit (6)
v, = col{vi;,va;,...,0n} %)

H; = bdiag{H,;, Hy,,...,Hy;} ®)
A; = (1/N)bdiag{Ai1;,..., AN} (€)]

Definitions (5)-(9) allow us to write a global linear model for
the data collected across the network up to time ¢ as follows:

Yy, = HW’ +v; (10)
Introduce the extended parameter vector:
w = col{wi,wa,...,wy} an

Now, one way to enforce coupling is via a proximity func-
tion. This is usually achieved by considering the following
regularized cost

Irvl\;ln ly; — ’HZWHAZ,L + pi(w) (12)

for some regularizer p;(W) whose purpose is to encourage
proximity to w°. However, since w? is unknown, we shall
instead encourage proximity with respect to the best guess
available at that moment. We will explain how to obtain this
estimate in the sequel. For now, let us denote its entries by
wy, ; at agent k; i.e., this is the estimate for w{ at agent £ at
time 7. We shall also explain how to associate with this es-
timate a local uncertainty matrix denoted by P}, ;: the better
the quality of wy, ;, the smaller Fk,i will be so that the in-
verse matrix F;i serves as a measure of the uncertainty in
the estimate wy, ;.

Using these intermediate estimates (to be constructed
later), we replace the cost in (12) by one of the form

Tiw) =y, = Howl3, + 2 X" W =Wl (13)
m=1 m

where W,,, = col {W1 n, Wa,m, - .., WN,m}, and

P, —bdisg {Py,, Poyoo s Py} (4)
One possible choice for wy, ; is wy, ;—1, the estimate obtained

at time ¢ — 1. Observe that (13) pushes w towards the es-
timates W,,, by computing an exponentially weighted error

measure from time m = 1 up to time m = 7. Since this ob-
jective function is quadratic, it can be expressed in terms of
its minimizer and Hessian matrix as

2
Ji(w) = [w = wilp + ¢ (15)
for some constant ¢, which can be ignored, and where

Wi = argmin Hw—wiu;l (16)

Pl = VAI(w) = HEAH + Y AR ()

m=1

with * denoting complex conjugate transposition. Of course,
this reformulation is not useful in finding the minimizer
of (13) since it involves w; itself. It does however allow us
to obtain a recursive algorithm for the solution. To see this,
let {d;,U;} contain the most recent data at time i:

d; = col{di(i),ds(i),...,dn (i)} (18)

Z/li = bdlag {u17i7u2,i7~-~,uN,i} (19)

Then, (13) can be expressed as

2 2
Jiw) = |di —UW[" + [y~ Himaw|y,
1—1 .
+A ), AZ*m*lHW*WmH%ﬂ} + HW*WiH%l
m=1
2 2 J—
= ld; =UW["+ AW =i+ W= Wil
—_——
Jifl(W)

(20)
Note that .J;(W) is composed of three components. The first
term, | d; — U;w|?, fits W to the most recent data; the second
term, A W — w; 1 H?Flr_ll, incorporates past information; and
the last term |w — WiH%,l promotes smoothness and close-

ness to the intermediate estimate W; yet to be specified.
Using completion of squares in (20), we can combine the
first two terms and write the minimization problem as:
win [w Wil + W - Wil @1
W k3 ’Pi 2 f;l

in terms of the updated local estimates:

);\Vi = W;_1 + f’iuj‘(di—uiwi,l) 22)
Po= P+ ul, (23)

where );\Vl = col {’&JLZ‘, 11\72)2‘, ey I/I}N,i}, and

~1 ) ~ ~ ~
P,_, = bdiag {Pl,z?l,PQ,ifla'~~>PN,1'71} (24)

We are now left to define {wy, ;, ﬁ;} While @y, ;, is an
improved estimate for wy, over wy, ;_1, since it includes the
most recent data, we proceed one step further by allowing for
an exchange of information within neighborhoods. This can



be obtained by designing W; as a fusion in the neighborhood
N, of the agent’s estimates {@Wy, ;, Pk, ; }, defined in (22) and
(23), in a weighted least-squares manner, however, without
including agent k. This is because the contribution of agent
k will be added by the first term of (21). Now, since (21) is
equivalent to minimizing (15), instead of designing W;, we
can design the result of their fusion, say, {w;, P;}, directly as
the solution to

N
min Y axew), — @eal o 25)
Wk ZENk 2,1
. 2
- ml/n Hw;c 7w;€,i’P/—1 3 k= 172,...7]\] (26)
Wy, ki
= i W - Wi @

for positive scalars {ax,}. The solution to (25) is given by

’ ~ A V-
wy,; = Z Apeiwei, Agei = aePy Py, (28)
KEN)C

if £ € Ny, while Ayg; = 0if £ ¢ Ny. The quantity P, ' is
the uncertainty that results from theses estimates,

~—1
> anePy, (29)
LeNy,

’
—1 o
P =

Hence, in extended vector form, this yields {w}, P}}.
Now, observe that if we select w; = W} and P; = ’P;, the
costs (27) and (15) will have the same form. In other words,
by selecting (27) and (15) to have the same minimizer with
the same uncertainty, we are able to propagate these quantities
from self-learning to social learning in a true recursion.

Note that while we could assume for simplicity that all
agents in \Vj, are equally important in the fusion process, say,
are = v = 0, node k itself can be assigned a different weight
ar, relative to its neighbors, implying that it can have more
or less certainty of its own estimate. In order for these coeffi-
cients to add up to one, we select

ape =1 —y(ng — 1) (30)

where ny is the degree of the neighborhood. Moreover, by
associating the scalars agy to entries of a N x N matrix A,
then A is referred to a Laplacian matrix.

Finally, defining A = A ® I,;, where ® denotes the
Kronecker product, then, in extended matrix notation, it holds
that

w; = AW, 31

where, using (24),
A, = PAP | P! = bdiag [Ai{la@IM)] (32)

It is easily verified that A;1 = (1 ® I,;) is block right-
stochastic by construction. The diffusion recursions derived

so far are listed in Table 1, and constitute what we shall re-
fer to as the Adapt-and-Fuse (AAF) diffusion, which extends
the usual description of diffusion strategy known as Adapt-
then-Combine (ATC), where A; = .A. Figure 2 illustrates the
equivalent global transmission scheme, where we have de-
fined G; = PU}.

Initialization: wo =0, P,' = eI forsmalle

= AP+ Ut

i

P! = bdiag [Ai’;l(l ® IIVI)]

2

A, =PAP,
Wi = Wi1 + PUF(d; —U;wi—1)
W, = Ain

Table 1. AAF Diffusion Adaptation.

Fig. 2. Global Description of the AAF scheme.

3. SIMPLIFIED AAF RECURSIONS

Because the optimal coefficients of A; and all its defining co-
variances w.r.t. node k are complex and matrix-valued, they
require complex matrix X matrix operations and inversions
at each time ¢. These computations can be cumbersome con-
sidering that agents should perform elementary operations
when fusing their estimates within N}. By assuming uncor-
related input regressors, we can simplify the AAF recursions
by restricting the covariances to diagonal matrices, i.e., we
set Py ; ~ o2(i)I, and Py ; ~ 52(i)I. With these approx-
imations, the N x N block entry of A; in (32) simplifies
to
[Ailke = ane()I = areoi (i)5, (D)1

The resulting algorithm is shown in Table 2, which we re-
fer to as the Simplified-AAF (SAAF) algorithm.

Initialization: w0 =0, 022(0) = e forsmall e
fork =1to N:

8;2(0 =Xo, 2(i—1) + Jue (i)

07 (0) = Srens, aredp’ (0)

agi(i) = areor ()5, > (1)

Wy, = Wk,i—1 + 32(2’)11':@ [di (%) — wp,iwp,i—1]
Wi, = > ap(i)We,;
LeN,

Table 2. SAAF Algorithm.

Note that the computational complexity for updating the
combination matrix in the SAAF recursions is of O(NM).



This is in contrast to the relative-variance rule of [7] which
requires O(NAM ) computations per iteration in order to ac-
complish a similar task, where N = Ziv:lj\/ .. That is, the
uncertainties of each node in [7] are assumed to vary over
the neighborhoods, while in the proposed construction, the
nodes uncertainties are absolute; they are updated indepen-
dently, and combined through the fixed Laplacian matrix A.

4. SIMULATIONS

In order to illustrate the performance of the proposed AAF
based algorithms in comparison with existing cooperative-
based schemes, we consider a topology with N = 20 agents
with unknown vectors of size M = 10, and compare: (7) the
power normalized LMS-based algorithms employing a fixed
combination policy; (i) a normalized LMS version of the
adaptive relative variance diffusion algorithm of [7], and
(4i7) the RLS-based diffusion of, e.g., [11].

In order to set one possible theoretical benchmark for
comparison on the minimum mean-square-deviation (MSD),
we consider the one corresponding to the well established
diffusion LMS algorithm. The network MSD in this case, for
sufficiently small y is given by (see [8], pp. 606)

N
M
MSDyistay = > <Z uipiai,k(ai,k + Ui,k|w0_w2|2)>
k=1

N —1
: (Z ukpka;i,k) (33)

k=1

in terms of the input and noise variances, O’Z)  and 012)’ i Te-
spectively, and the entries p; of the Perron vector associ-
ated to the combination matrix, here chosen as the optimal
relative-variance rule (for the cases when w? = w?). This is
illustrated by a thick straight line.

¢ Scenario 1 (Performance of the SAAF algorithm) : Figure
3 shows typical ensemble average learning curves for uncor-
related inputs. We set the step-size as p = 0.002 for the
LMS-based algorithms, A = 1 for the RLS algorithms, and
v = 0.0024 in (30) for the proposed recursions.

We see that the proposed simplified algorithm outper-
forms LMS-based algorithms, and with reduced complexity
compared to the relative-variance policy. We clearly see a dif-
ference in terms of the MSD attained. Moreover, it exhibits
approximately the same performance of existing RLS-based
recursions. It is worth noting that for the latter, the use of a
Metropolis combination rule C' does not yield improvement
against the case when C = I.

¢ Scenario 2 (Performance of the full AAF algorithm for
colored input and )\ < 1 for all RLS algorithms) : Figure 4
shows the curves for the RLS algorithms when A = 0.99, and
for a slightly colored AR process, with pole at 0.5.
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Fig. 3. Comparison among algorithms, uncorrelated input.

We verify that existing diffusion RLS algorithms have
their performance degraded. The exact AAF-RLS, despite
the computational complexity, outperforms in speed and MSE
level, which continues to decrease beyond 8 - 104 iterations.

Non-cooperative LMS

NLMS Average-rule

Qo |7 Adaptive NLMS Relative-Variance rule

Adaptive RLS, C = Metrop. rule; A = Rel. Deg.
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Fig. 4. AAF performance with colored input and for A < 1.

5. CONCLUSIONS

We have proposed a construction for optimized diffusion net-
works which fuses estimates and uncertainties at every node
in the LS sense. The proposed AAF recursions outperform
existing diffusion algorithms, especially when A < 1, and
for colored inputs. For uncorrelated data, we verified that its
simplified version outperforms all other algorithms, and ex-
hibiting the same convergence performance of existing RLS
diffusion schemes, however, under LMS complexity.
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