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Abstract—In this work we consider the problem of learning an
Erdős-Rényi graph over a diffusion network when: i) data from
only a limited subset of nodes are available (partial observation);
ii) and the inferential goal is to discover the graph of intercon-
nections linking the accessible nodes (local structure learning). We
propose three matrix estimators, namely, the Granger, the one-
lag correlation, and the residual estimators, which, when followed
by a universal clustering algorithm, are shown to retrieve the
true subgraph in the limit of large network sizes. Remarkably,
it is seen that a fundamental role is played by the uniform
concentration of node degrees, rather than by sparsity.

I. INTRODUCTION

The evolutionary dynamics of complex networks is deter-
mined by local interactions among neighboring agents. Un-
veiling the topology of these interactions is one fundamental
goal of graph learning [1]–[4]. Graph learning plays a promi-
nent role in many domains including signal processing over
graphs [5], [6], social networks [7], and brain connectivity [8].

In this article, we focus on the graph learning problem
when observations can be collected only from a subset of
the nodes (partial observation) and examine different regimes
of network connectivity including the often overlooked case
of dense networks. Under these demanding conditions, we
establish that, under certain assumptions on the entries of the
combination matrix and the network topology, the problem
of graph learning becomes localized. In other words, the
graph connecting the monitored nodes can be consistently
retrieved, in the limit of large network sizes, from knowledge
contained solely in the information from samples of the
observed agents. Notably, this result holds irrespective of the
sparsity of connections. One fundamental conclusion is that
the main element enabling consistent local tomography is the
node degree concentration and not sparsity.

A. Networked Dynamical System

Given a network of connected agents, streaming observa-
tions from a monitored subset of nodes are gathered. The
objective is to discover the graph of interconnections within
this subnetwork. The learning process consists of two stages:
an estimation stage, where a matrix quantifying the strength
of connections is estimated; and a thresholding stage, where
node pairs whose strength weights stay above some threshold
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are classified as connected. A structurally-consistent estimator
would assign strong weights to connected pairs and weak
weights to disconnected pairs. As a result, at the thresholding
stage one would be able to retrieve the subgraph correctly.

One relevant dynamical model for graph learning is the
diffusion or first-order Vector Autoregressive (VAR) system:

yn = Ayn−1 + xn (1)

where A is some stable N×N matrix with nonnegative entries,
and the random vectors xn = [x1(n),x2(n), . . . ,xN(n)]⊤

and yn = [y1(n),y2(n), . . . ,yN (n)]⊤ collect respectively the
the input (e.g., streaming data or noise) and output from all
nodes at time n. The input variables xi(n) have zero mean and
unit variance, and are independent and identically distributed
(i.i.d.), both spatially (i.e., w.r.t. to index i) and temporally
(i.e., w.r.t. to index n). From (1) we readily see that, at time
n, the output of node i is updated by combining the outputs
of other nodes from time n−1. In particular, node i scales the
output of node ℓ by using a combination weight aiℓ, which
implies that the output of agent ℓ is effectively used by node
i if, and only if aiℓ 6= 0. After the combination step, the
output measurement yi(n) is adjusted by incorporating the
streaming-source value, xi(n), which is locally available at
node i at current time n.

B. Related Work

Most works on graph learning focus on linear dynamical
systems, and in particular on autoregressive diffusion mod-
els [9], [10]. Some recent works focus on reducing complex-
ity by exploiting structural constraints (e.g., smoothness or
sparsity of the signals defined on the graph) [10]. However,
these results consider the case in which measurements from
the entire network are available. We focus instead on the case
in which only partial observation of the network is permitted.
This learning problem is unfeasible or NP-hard in general, and
one fundamental challenge is to find nontrivial graph classes
where it can be affordable [11]. There are results holding for
specific network graphs (polytrees) [12], or results holding
for more general topologies, which are however impractical
over large networks since they require precise details of the
topology and of the statistical models [9], [13]. In contrast,
the thermodynamic regime of large networks is addressed here
by exploiting random graphs, with conditions on the network



connectivity being summarized through average indicators
such as the probability of drawing an edge. Similar approaches
are exploited in the context of graphical models with latent
variables [4], [14], which, however, do not match the dynamic
graph models considered in this work. For the latter models,
recent results are available in [2], [3]. In particular, we focus
on the full Erdős-Rényi model addressed in [2], and, hence, we
now explain briefly the key contributions of the present work
in relation to [2]. Preliminarily, we observe that we adopt a
slightly more restrictive condition on the class of combination
matrices, summarized in Assumption 1 further ahead. We
remark that such assumption is automatically satisfied by the
matrices considered in [2], as they arise naturally when the
combination weights are collected into a (scaled version of
a) symmetric doubly-stochastic matrix whose support graph
matches the underlying graph of connections.

The first advance regards the regime of connectivity, be-
cause here we deal also with the dense regime that is not
addressed in [2]. For what concerns the sparse regime, the
consistency result in [2] is formulated in terms of the average

fraction of misclassified node pairs, whereas we are able to
establish here the stronger conclusion that the total number
(not only the fraction) of misclassified node pairs goes to zero.
We make progress also in relation to the learning algorithms
that we propose since, along with the Granger estimator
examined in [2], we introduce two other estimators: the one-

lag correlation matrix and the correlation matrix between the

residuals (i.e., difference between subsequent time samples). It
will be seen that all three estimators are structurally consistent,
with some remarkable findings in terms of their relative
performance. The analysis will reveal that, in contrast to
widespread belief, the main enabling feature for consistent
graph learning is the node degree concentration, and not graph
connection sparsity. Preliminary results for the dense regime,
and for the Granger estimator, have been reported in [15].

Notation. Boldface letters denote random variables, normal
font letters their realizations. Capital letters are used for ma-
trices, small letters for vectors. For a matrix Z , the submatrix
spanning the rows and columns of Z indexed by a subset of
indices S is denoted by ZS or alternatively by [Z]S.

II. THERMODYNAMIC LIMIT OF ERDŐS-RÉNYI GRAPHS

We assume that the entire network graph is generated
according to the Erdős-Rényi model, where edge drawing
obeys a sequence of Bernoulli experiments with identical
success (i.e., connection) probability [16], [17]. The partial
observability constraint is formalized by saying that the sub-
network of observable measurements, S, has a cardinality S

scaling as (S/N)
N→∞−→ ξ ∈ (0, 1), where ξ is the (asymptotic)

fraction of monitored nodes.
We now introduce two fundamental graph descriptors. The

first descriptor is the adjacency matrix, denoted by G, with
gij = 1 if nodes i and j are connected, and gij = 0 otherwise.
The bold notation highlights that we deal with random graphs.

The second descriptor is the degree, namely, the cardinality
of the node neighborhood (which conventionally includes the

node itself). The degree of node i can be represented as
di = 1 +

∑
ℓ 6=i giℓ. The minimal and maximal degrees will

be denoted by dmin and dmax, respectively.
Over large networks, it is important to characterize the

average behavior that emerges with high probability in the
thermodynamic limit as the network size goes to infinity. To
this end, the traditional framework of random graph evolution
allows the connection probability pN to scale with N . For
instance, with a constant pN , the number of neighbors grows
linearly with N , while a pN scaling as (lnN)/N would
correspond to a number of neighbors growing logarithmically
with N . It is useful for our purposes to list briefly the main
regimes that are of interest for the forthcoming treatment.

In this work we focus on the regime where the graph is
connected with high probability, which is characterized by a
connection probability pN = (lnN + cN )/N , where cN is
any positive sequence diverging to infinity as N → ∞ [16],
[17]. We notice that the concept of connectedness does not
specify whether the connection probability vanishes or not
as N gets large. In particular, a random graph is connected
when pN

N→∞−→ p > 0 (densely connected regime), but can
be connected even when pN vanishes (sparsely connected
regime). The concept of sparsity has been exploited in previous
works about topology inference under partial observations.
Useful structural consistency results have been proved for our
setting under the sparsely connected regime [2], [3].

One fundamental novelty of the present work is charac-
terizing structural consistency by exploiting another feature,
namely, node degree concentration. We remark that the term
“concentration” does not refer to the number of connections.
This concept is instead often used in statistics to refer to
statistical quantities that concentrate around some typical
(deterministic) values as N gets large [18]. In particular, in
our case it is meaningful to consider the uniform concentration

properties of the minimal and maximal degrees of random

graphs. The uniform concentration regime is attained by
choosing the following pairwise connection probability:

pN = ωN

lnN

N

N→∞−→ p ≥ 0 (2)

where ωN is a positive sequence diverging to +∞ with N .
We remark that the case of a constant connection probability
(i.e., pN = p > 0) is a special case of (2). Under (2), both
the minimal and maximal degrees of the graph concentrate

around the expected degree in the following sense:

dmin

NpN

p−→ 1,
dmax

NpN

p−→ 1, [Uniform concentration] (3)

where
p−→ denotes convergence in probability as N → ∞.

In terms of graph properties, Eq. (3) reveals that dmin ∼
NpN + fN and dmax ∼ NpN + gN , where fN and gN
are sequences that are asymptotically dominated by NpN .
According to (2), we see that the regime of concentration can
be either sparse or dense, depending on whether the limiting
connection probability, p, is zero or positive, respectively.



III. MAIN RESULTS

Assumption 1 (Diffusion matrices): The combination matrix
A is symmetric and its entries fulfill

N∑

ℓ=1

aiℓ = ρ,
κ

dmax
gij ≤ aij ≤

κ

dmin
gij ∀i 6= j (4)

for some 0 < ρ < 1 and 0 < κ ≤ ρ. �

The most common combination matrices used in the literature
satisfy Assumption 1 automatically. Some popular choices are
the Laplacian and the Metropolis rules — see [2] — which
arise naturally in many applications, for instance, they find
widespread application over adaptive networks [5].

We notice that the second relationship in (4) implies assign-
ing positive weights to neighboring agents, whereas the first
relationship sets the self-weights as aii = ρ−∑

ℓ 6=i aiℓ.
Next we present the estimators proposed in this work.

We introduce preliminarily the steady-state correlation matrix
R0 = limn→∞ E

[
yny

⊤
n

]
, whose existence is guaranteed

by the stability of A. Exploiting the discrete-time Lyapunov
equation and the symmetry of A, it is possible to show that
R0 = (IN −A2)−1, where IN is the N ×N identity matrix.
Likewise, we introduce the steady-state one-lag correlation
matrix, R1 = limn→∞ E

[
yny

⊤
n−1

]
, which exploiting the

dynamics in (1) can be written as R1 = AR0. Accordingly,
we have the inverse relationship A = R1R

−1
0 , a quantity that

is also referred to as the Granger estimator [9].
Under the limited observation setting, one natural choice is

to compute the Granger estimator only in the subnet S, namely,

Â
(Gra)
S

= [R1]S([R0]S)
−1 [Granger estimator] (5)

Our second strategy relies on using the one-lag correlation
matrix as estimator for the combination matrix:

Â
(1-lag)
S

= [R1]S [one-lag estimator] (6)

The reason behind such choice is the following series expan-
sion of the one-lag correlation matrix:

R1 = AR0 = A(IN −A2)−1 = A+A3 +A5 + . . . , (7)

which implies that Â(1-lag)
S

= AS plus an error matrix involv-
ing the odd powers of matrix A.

Finally we introduce the (scaled) residual vector rn , (yn−
yn−1)/

√
2. Since we have E[rnr

⊤
n ] = R0 −R1 = IN −A+

A2 −A3 + . . ., it makes sense to introduce the estimator:

Â
(res)
S

= [R1]S − [R0]S [residual estimator] (8)

Also in this case we can write Â
(res)
S

= AS plus an error,
which now involves an alternating series of powers of A.

In order to ascertain whether or not it is possible to
discriminate connected/disconnected agents via observation
of their output measurements, we introduce the concept of
margins and identifiability gap.

Definition 1 (Margins): Let ÂS be a certain estimated
combination matrix, corresponding to the subset S. The lower

and upper margins corresponding to the disconnected pairs are
defined as, respectively:

δN , min
i,j∈S:aij=0

i6=j

âij , δN , max
i,j∈S:aij=0

i6=j

âij . (9)

Likewise, the lower and upper margins corresponding to the
connected pairs are defined as, respectively:

∆N , min
i,j∈S:aij>0

i6=j

âij , ∆N , max
i,j∈S:aij>0

i6=j

âij . (10)

�

The aforementioned margins are useful to examine the con-
sistency for an estimator ÂS.

Definition 2 (Universal local structural consistency): Let
ÂS be an estimated combination matrix. If there exist sN > 0,
η ∈ R, and Γ > 0, such that:

sN δN
p−→ η, sN ∆N

p−→ η + Γ

sN δN
p−→ η, sN ∆N

p−→ η + Γ
(11)

we say that the estimated matrix ÂS achieves universal local
structural consistency, with a bias η, an identifiability gap Γ,
and with a scaling sequence sN . �

Remark 1 (Identifiability gap): We see from (11) that i)
the maximum entry of sNÂS over the disconnected pairs
converges to η; while ii) the minimum entry of sNÂS over the
connected pairs converges to η + Γ. Therefore, the estimated
matrix entries corresponding to connected pairs stand well
separated from the entries corresponding to disconnected pairs,
and the separation is quantified by the gap Γ. �

Remark 2 (Bias): For the true combination matrix, the en-
tries corresponding to disconnected pairs are zero. In contrast,
in view of (11), the scaled entries for disconnected pairs are
asymptotically close to η, giving rise to a bias. Remarkably,
this bias does not constitute a problem for consistent classifi-

cation of connected/non-connected nodes. �

Remark 3 (Universality): According to (11), all entries of

sNÂS corresponding to disconnected pairs are sandwiched
between the pair of (scaled) lower margins, sN δN and sN δN ,
which both converge to η. A similar behavior is observed for
the scaled entries over the connected pairs, which converge
altogether to η+Γ. Thus, the connected and disconnected agent
pairs cluster into well-separated classes that can be reliably
identified by means of a universal clustering algorithm. This
is a remarkable conclusion because the threshold to separate
the classes can be determined in a fully data-driven fashion. �

Remark 4 (Locality): The qualification “local” is used
because reconstruction of the monitored subnetwork is asymp-
totically achievable through the information contained only in
the nodes of that subnetwork. �

Theorem 1 (Universal local structural consistency under

uniform concentration): Let A fulfill Assumption 1, let the
network graph follow an Erdős-Rényi model with N nodes and
connection probability pN , and let the fraction of observable
nodes be ξ > 0. Under the concentration regime in (2),
the Granger, the one-lag, and the residual estimators achieve



Estimator Error bias η Identifiability gap Γ

Granger κ2p
(2ρ− κ) (1 − ξ)

1− (ρ2 − 2ρκξ + κ2ξ)
κ

one-lag κ2p
ρ+ ρ ζ2 + 2 ζ

(1− ρ2)(1− ζ2)2
1 + ζ2

(1− ζ2)2
× κ

residual −

κ2p

(1 + ρ)(1 + ζ)2
κ

(1 + ζ)2

TABLE I
BIASES AND GAPS IN THEOREM 1. WE DEFINE ζ = ρ− κ.

universal local structural consistency, with sN = NpN , and
with the biases and gaps in Table I. �

Sketch of proof: The (i, j)-th entry of Ak is denoted
by a

(k)
ij , and N , {1, 2, . . . , N}. Table II lists some auxiliary

variables used in the proof. For space limitations, we illustrate
only the fundamental trick that allows proving the claim, with
reference to the one-lag and the residual estimators. The idea
is working directly in the graph edge domain, and obtaining
uniform (w.r.t. N ) bounds on the combination matrix entries,
which are then exploited to characterize the errors ascribed to
the different estimators. We will show that:

αk ≤ a
(k)
ii ≤ αk, (12)

β
k
aij + γ

k
m ≤ a

(k)
ij ≤ βk aij + γk M ∀i 6= j,(13)

where, for k ≥ 2, the (random) sequences αk, αk, β
k
, βk,

γ
k
, and γk, are determined by the following recursions:

αk+1 = ma,self αk, αk+1 = Ma,self αk +Ma ρ
k,

β
k+1

= αk +ma,self βk
, βk+1 = αk +Ma,self βk,

γ
k+1

= β
k
+ma,sum γ

k
, γk+1 = βk +Ma,sum γk,

(14)
with the initialization choices α2 = ma2,self, α2 = Ma2,self,
β
2
= 2ma,self, β2 = 2Ma,self, γ2

= γ2 = 1.
For k = 2 the claim in (12) is trivially true with the

initialization values for α2 and α2, because of the definition
of ma2,self and Ma2,self. We shall reason by induction to prove
that (12) holds for an arbitrary k. Since we have a

(k+1)
ii =∑

ℓ∈N
aiℓa

(k)
ℓi , by using the fact that

∑
ℓ∈N

a
(k)
ℓi = ρk,

along with the definitions of the pertinent random variables
in Table II, we see that:

aii︸︷︷︸
≥ma,self

a
(k)
ii︸︷︷︸

≥αk

≤ a
(k+1)
ii ≤ aii︸︷︷︸

≤Ma,self

a
(k)
ii︸︷︷︸

≤αk

+Ma ρ
k, (15)

and we conclude that (12) holds true. We switch to the
proof of (13). Again, the suggested initialization choices make
claim (13) true in the case k = 2. Moreover, we have:

a
(k+1)
ij =

∑

ℓ∈N

aiℓa
(k)
ℓj = aija

(k)
jj +

∑

ℓ∈N

ℓ 6=j

aiℓa
(k)
ℓj . (16)

Assuming now that (13) holds for a certain k ≥ 2, and
bounding accordingly the terms a

(k)
ℓj in (16) we get:

a
(k+1)
ij ≤ (αk + βk Ma,self)aij + (βk + γk Ma,sum)M,

Random variable Random variable Limit

Ma , max
i,j∈N

i6=j

aij ma , min
i,j∈N

i6=j

aij 0

Ma,self , max
i∈N

aii ma,self , min
i∈N

aii ρ− κ

Ma2,self , max
i∈N

a
(2)
ii ma2,self , min

i∈N

a
(2)
ii (ρ− κ)2

Ma,sum , max
i,j∈N

i6=j

∑

ℓ∈N

ℓ 6=j

aiℓ ma,sum , min
i,j∈N

i6=j

∑

ℓ∈N

ℓ 6=j

aiℓ ρ

M , max
i,j∈N

i6=j

∑

ℓ∈N

ℓ 6=i,j

aiℓaℓj m , min
i,j∈N

i6=j

∑

ℓ∈N

ℓ 6=i,j

aiℓaℓj ∼

κ2p

NpN

TABLE II
RANDOM VARIABLES RELEVANT FOR THE PROOF OF THEOREM 1. THE

LIMITS ARE IN PROBABILITY, AND “∼” MEANS “SCALES AS”.

which shows that the rightmost inequality in (13) holds with
the sequences βk and γk obeying (14). Similar arguments lead
to the conclusion that the leftmost inequality in (13) holds true.

From (6) and (8) we see that the errors ascribed to the
estimated matrix involve powers of A. The inequalities in (13)
can be used to compute upper and lower bounding sequences
for these errors. Using the limits in Table II we can show that
the upper and the lower bounding sequences, scaled by NpN ,
converge to the same limit: for disconnected pairs this limit is
the bias η, whereas for connected pairs it is η + Γ, with the
pertinent values of η and Γ listed in Table I.

Remark 5 (Role of degree concentration): Intuitively, under
Assumption 1, concentration of the degrees induces concen-
tration of the nonzero entries in the true matrix AS, creating
an identifiability gap in AS. It is less intuitive that degree con-
centration induces an identifiability gap in an estimated matrix
ÂS, which is the critical property shown in Theorem 1. �

The meaning of Theorem 1 is illustrated in Fig. 1. The
three panels refer to the estimators considered in this work, as
detailed in the panel titles. We appreciate the emergence of the
gap Γ and of the bias η, which, remarkably, match well the
theoretical limits summarized in Table I — see dashed lines.

We see from Table I that only the bias of the Granger
estimator depends on the fraction of monitored nodes ξ, which
makes sense since the Granger estimator is based on inversion
of a partial matrix (with the latent variables introducing error),
whereas the one-lag and the residual estimator are natively
determined only by pairwise interactions. We see also that,
for the one-lag and of the residual estimator, the term κ (i.e.,
the Granger gap) multiplies a function of ζ = ρ − κ. When
κ 6= ρ (as can happen, e.g., for the Laplacian rule [2]), this
factor is greater than one for the one-lag estimator, whereas
it is smaller than one for the residual estimator. However, we
remark that a magnified/reduced gap do not itself imply any
conclusion about the classification performance of the perti-
nent estimators, since it is the spread of the entries, relative to
the asymptotic values, that determines the performance. Such
spread is not characterized by our analysis, and predicting the
performance for finite network sizes is nontrivial. Interesting
behaviors can emerge, as we will see in the next section.
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Fig. 1. Illustration of Theorem 1. The entries of the true combination matrix are vectorized (column-major ordering), and rearranged with the zero entries
(blue) appearing before the nonzero entries (red). The entries of the estimated combination matrix are rearranged with the same ordering used for the true
matrix (disconnected pairs displayed in magenta, connected pairs in cyan). Dashed lines depict theoretical values. Note that the rightmost panel has a different
vertical range for better displaying.
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Fig. 2. Graph recovery probability over 103 Monte Carlo runs. The connec-
tion probability is pN = p = 0.1, the fraction of monitored nodes is ξ = 0.2,
and we use a Laplacian rule (see [2]) with ρ = 0.99 and κ = 0.891. Empirical
correlations are estimated over 5× 105 time samples, with Gaussian data.

IV. ILLUSTRATIVE EXAMPLE

In Fig. 2 we consider one example corresponding to the
system parameters detailed in the caption. The three estima-
tors proposed in this work are computed by evaluating the
theoretical (unlimited amount of data) correlation matrices, R0

and R1, as well as by evaluating the empirical correlations
from finite data samples. The classification stage uses a k-
means algorithm with k = 2. Let us start with the unlimited
amount of data. We see that all the estimators match well
the theoretical predictions. In this particular example, after
an initial transient with small network sizes, the Granger
estimator is outperformed by the other two estimators. This
is a remarkable finding, since it highlights how what is good
under the full-observability case (i.e., the Granger estimator)
need not be optimal under a partial-observability setting. One
reason behind this finding can be the sensitivity of the Granger
estimator to the degree of observability. Moving on to examine
the case of finite sample sizes, we observe that different
estimators exhibit a different sensitivity to the number of
samples. In particular, the residual estimator, which offers the
best performance in the case of unlimited sample size, needs
more samples as the network size increases.
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