
Distributed Value-Function Learning with Linear Convergence Rates*

Lucas Cassano1, Kun Yuan1 and Ali H. Sayed2

Abstract— In this paper we develop a fully decentralized
algorithm for policy evaluation with off-policy learning and
linear function approximation. The proposed algorithm is of
the variance reduced kind and achieves linear convergence
with O(1) memory requirements. We consider the case where
a collection of agents have distinct and fixed size datasets
gathered following different behavior policies (none of which is
required to explore the full state space) and they all collaborate
to evaluate a common target policy. The network approach
allows all agents to converge to the optimal solution even
in situations where neither agent can converge on its own
without cooperation. We provide simulations to illustrate the
effectiveness of the method in a Linear Quadratic Regulator
(LQR) problem.

I. INTRODUCTION

Traditionally, the reinforcement learning (RL) community
has had a long standing interest in gradient algorithms, both
for policy evaluation and control purposes. In the policy
evaluation setup, the goal is to find the value function of
a specific policy; while in the control case the goal is to
find an optimal policy for a specific task usually modeled
as a Markov Decision Process (MDP). Policy evaluation
algorithms are important to study because they are often key
components of policy optimization algorithms.

Recent years have seen a plethora of new gradient al-
gorithms for policy evaluation like for example GTD [1],
TDC [2], GTD2 [2] and True Online GTD(λ) [3]. All
these algorithms have guaranteed stability (for small enough
step-size) while combining off-policy learning and linear
function approximation. When these algorithms are applied
to problems with finite amounts of data, they have the
drawback that they converge at a sub-linear rate because a
decaying step-size is necessary to guarantee convergence to
the minimizer. Leveraging recent developments in variance
reduced algorithms (particularly SVRG [4] and SAGA [5])
the work [6] presented SVRG for Policy Evaluation and
SAGA for Policy Evaluation. These algorithms can be seen
as combinations of GTD2 with SVRG and SAGA, respec-
tively, and they have the advantage over GTD2 (and the
other gradient algorithms previously mentioned) that they
have guaranteed linear convergence for the fixed data set
case. Another interesting line of work is [7] and [8]; in these
works the authors extend the TDC and GTD2 algorithms to

*This work was supported in part by NSF grants CCF-1524250 and
ECCS-1407712.

1L. Cassano and K. Yuan are with Department of Electrical Engineering,
University of California, Los Angeles, Los Angeles, CA 90095-1594, USA
{cassanolucas,kunyuan}@ucla.edu

2Ali H. Sayed with the School of Engineering, Ecole Poly-
technique Federale de Lausanne, Lausanne, Switzerland CH-1015
ali.sayed@epfl.ch

the fully decentralized multi-agent case. These algorithms
allow individual agents to converge at a sub-linear rate to
the optimal solutions through collaboration even in situations
where convergence is unfeasible without such collaboration.

The main contribution of this paper is to tackle the
problem of Policy Evaluation in a situation where data is
dispersed over a number of nodes and a fully distributed
solution is preferable. To this end we present Fast Diffusion
for Policy Evaluation, a fully decentralized multi-agent algo-
rithm for policy evaluation with a guaranteed linear conver-
gence rate to the global minimizer. The introduced algorithm
combines off-policy learning, linear function approximation
and has O(1) memory requirements. In our distributed model
a fusion center is not required and communication is only
allowed between immediate neighbors. To the best of our
knowledge, this is the first algorithm that combines all these
features. The closest papers to the work we present here
are [7] and [8], these papers consider the same distributed
model that we do. Under this model each agent follows
its own behavior policy and has access only to its own
rewards and feature vector (which represents the state),
which are independent of each other; collaboration is done
only on a local basis (i.e., agents only share information
with their immediate neighbors) and the agents have the
goal of estimating the value function of a common target
policy. This framework has several applications like for
instance in what is known as collective robot learning (see
for example [9], [10] and [11]). The algorithm we present
is superior to the ones presented in [7] and [8] for the
finite sample case because it converges with a linear rate
to the minimizer, while the prior algorithms converge in a
sub-linear fashion due to the necessity of a decaying step-
size to guarantee convergence. This work was independently
done from the recent work [12]. This paper also derives an
algorithm for distributed policy evaluation but it has two
main differences. In the first place, they only consider a
scenario in which the state is global and known to all agents,
and hence their algorithm is not suited for applications
where agents have different states which are only known
to themselves. Secondly, their algorithm is based on SAG
[13] and therefore its memory requirements scale linearly
with the amount of data (i.e., O(N)), while our algorithm’s
memory requirements are independent of the amount of data
(i.e., O(1)).

Notation: Matrices are denoted by upper case letters,
while vectors are denoted by lower case. Bold font and
calligraphic font are used to denote random variables and
sets, respectively. We denote the spectral radius of matrix A
by ρ(A). E g is the expected value with respect to distribution

g. ∥ ⋅ ∥D refers to the weighted matrix norm, where D is a
diagonal positive definite matrix. And R denotes the set of
real numbers.

II. PROBLEM SETTING

A. Markov Decision Processes and the Value Function

We consider the problem of policy evaluation within the
traditional RL framework. As usual, we model this setting
as a finite Markov Decision Process (MDP), with an MDP
defined by the tuple (S,A,P ,r,γ), where S is a set of states of
size S = ∣S ∣, A is a set of actions of size A = ∣A∣, P(s′∣s, a)
specifies the probability of transitioning to state s′ ∈ S from
state s ∈ S having taken action a ∈ A, r ∶ S ×A × S → R is
the reward function (where r(s, a, s′) = Er(s, a, s′) is the
expected reward when the agent transitions to state s′ ∈ S
from state s ∈ S having taken action a ∈ A) and γ ∈ [0,1) is
the discount factor.

Even though in this paper we analyze the multi-agent
scenario, in this section we consider the single agent case
for clarity of exposition. We consider an agent who wants
to learn the value function, vπ(s), for a target policy of in-
terest π(a∣s) while following a potentially different behavior
policy, φ(a∣s). We recall that the notation π(a∣s) specifies
the probability of selecting action a at state s. We also recall
that the value function for a target policy π, starting from
some initial state s ∈ S at time i, is defined as follows:

vπ(s) = E [
∞
∑
t=i
γt−ir(st,at,st+1)∣si = s] (1)

where st and at are the state and action at time t, respec-
tively. Note that since we are dealing with a constant target
policy π, the transition probabilities between states, which
are given by pπs,s′ = E πP(s′∣s,a), are fixed and hence the
MDP reduces to a Markov Rewards Process (MRP). In this
case, the state evolution of the agent can be modeled as a
Markov Chain with transition matrix Pπ whose entries are
given by (Pπ)ij = pπi,j .

Assumption 1: We assume that the Markov Chain induced
by the behavior policy φ(a∣s) is aperiodic and irreducible.
Due to the Perron-Frobenius Theorem, this condition guaran-
tees that the Markov Chain under φ(a∣s) will have a steady
state distribution in which every state has a strictly positive
probability of visitation [14]. ∎
Using the matrix Pπ and defining:

vπ = [vπ(1), vπ(2), ..., vπ(∣S ∣)]T (2)
rπ(s) = E [r(s,a,s′)] (3)

rπ = [rπ(1), rπ(2), ..., rπ(∣S ∣)]T (4)

we can rewrite (1) in matrix form as:

vπ =
∞
∑
n=0

(γPπ)nrπ = (I − γPπ)−1rπ (5)

The value function also satisfies the Bellman equation:

vπ = rπ + γPπvπ (6)

B. Definition of Cost Function

We are interested in applications where the state space is
too large (or even infinite) and hence some form of function
approximation is necessary to reduce the dimensionality
of the parameters to be learned. As we anticipated in the
introduction, in this work we use linear approximations.
More formally, for every state s ∈ S, we approximate vπ(s) ≈
xTs θ

⋆ where xs ∈ RM is a feature vector corresponding to
state s and θ⋆ ∈ RM is a parameter vector, such that M ≪ S.
Defining X = [x1, x2,⋯, xS]T ∈ RS×M , we can write a
vector approximation for vπ as vπ ≈ Xθ⋆. We assume that
X is a full rank matrix; this is not a restrictive assumption
since the feature matrix is a design choice. It is important
to note though that vπ need not be in the rangespace of X .
If vπ is in the rangespace of X , an equality of the form
vπ = Xθ⋆ holds exactly and the value of θ⋆ is unique and
given by θ⋆ = (XTX)−1XT vπ . For the more general case
where vπ is not in the rangespace of X , then θ⋆ has to be
defined through some cost function. One sensible choice for
θ⋆ is:

θ⋆ = arg min
θ

∥Xθ − vπ∥2
D = (XTDX)−1XTDvπ (7)

where D is some positive definite weighting matrix to be
defined later. Note that (XTDX)−1 always exists and is pos-
itive definite because XTDX is positive definite (due to the
fact that X is full rank and D is positive definite). Although
(7) is a reasonable cost to define θ⋆, it is not useful to derive
a learning algorithm since vπ is not known beforehand and
cannot be sampled. As a result, for the purposes of deriving
a learning algorithm, another cost (whose gradient can be
sampled) needs to be used as a surrogate for (7). We use
the Mean Square Projected Bellman Error (MSPBE) (first
introduced in [2]) with a regularization term:

S(θ) = 1

2
∥Π[rπ + γPπXθ] −Xθ∥

2

D
+ η

2
∥θ − θprior∥

2

U
(8)

where Π ∈ RS×S is the weighted projection matrix onto the
space spanned by X , i.e., Π = X(XTDX)−1XTD, η > 0
is a regularization parameter, U > 0 is a symmetric positive-
definite weighting matrix, and θprior reflects prior knowledge
about θ. Two sensible choices for U are U = I and U =
XTDX . The regularization term can be particularly useful
when the policy evaluation algorithm is used as part of a
policy iteration loop (since subsequent policies are expected
to have similar value functions and the value of θ learned in
one iteration can be used as θprior in the next iteration) like
for example [15]. Equation (8) can be equivalently re-written
in the following more compact form:

S(θ)=1

2
∥Aθ − b∥2

C−1 +
η

2
∥θ − θprior∥

2

U
(9)

where

A
∆= XTD(I − γPπ)X (10a)

b
∆= XTDrπ (10b)

C
∆= XTDX (10c)

Remark 1: A is an invertible matrix.

Proof: Since γ < 1 and ρ(Pπ) = 1 (because Pπ is
right stochastic) the spectral radius of γPπ is strictly smaller
than one, and hence I − γPπ is invertible. Noting that by
assumption X and D are full rank matrices concludes the
proof.
The minimizer of (9) is given by:

θo = (ATC−1A + ηU)−1(ηUθprior +ATC−1b) (11)

where the inverse (ATC−1A+ ηU)−1 exists and hence θo is
always well defined. This is because ηU and ATC−1A are
positive-definite matrices.

At this point, all that is left to fully define the surrogate
cost function S(θ) is to choose the positive definite matrix
D. The algorithm that we derive in this paper is of the
stochastic gradient type. With this in mind, we shall choose
D such that the quantities A, b and C turn out to be
expectations that can be sampled from data realizations.
Thus, we start by setting D to be a diagonal matrix with
positive entries; we collect these entries into the vector dφ

and write Dφ instead of D, i.e. D =Dφ = diag(dφ). We shall
select dφ to correspond to the steady state distribution of the
Markov chain induced by the behavior policy, φ(a∣s). This
choice for D not only is convenient in terms of algorithm
derivation, it is also physically meaningful; since with this
choice for D, the estimation error at states which are visited
more often is weighted more heavily than the error at states
which are rarely visited. As a consequence of Assumption
1 and the Perron-Frobenius Theorem [14], the vector dφ

is guaranteed to exist and all its entries will be strictly
positive and add up to one. Moreover, this vector satisfies
dφ
T
Pφ = dφT where Pφ is the transition probability matrix

defined in a manner similar to Pπ . Using this choice for D,
the matrices A, b and C can be written as expectations as
follows:

A=XTD(I − γPπ)X=∑
st∈S

dφ(st)xst(xst− γpπst,st+1
xst+1

)T

=E dφ,P,π [xt (xt − γxt+1)T]

=E dφ,P,φ [π(at∣st)
φ(at∣st)

xt (xt − γxt+1)T] (12)

b=XTDrπ

=∑
st∈S

dφ(st)xst∑
a∈A

∑
st+1∈S

π(a∣st)P(st+1∣st, a)r(st, a, st+1)

=E dφ,P,π [xtrt] = E dφ,P,φ [π(at∣st)
φ(at∣st)

xtrt] (13)

C=XTDX=∑
st∈S

dφ(st)xstxst = E dφ [xtxTt] (14)

where, with a little abuse of notation, we define xt = xst
and rt = rπ(st), where st is the state visited at time t.
We derive expressions with expectations taken with respect
to φ to derive an algorithm suitable for both on-policy and
off-policy operation.

C. Optimization Problem

Since the signal distributions are not known beforehand
and we are working with a finite amount of data, say, of size
N , we need to rely on empirical approximations to estimate

the expectations in {A, b,C}. We thus let Â, b̂, Ĉ and Û

denote estimates for A, b, C and U from data and replace
them in (9) to define the following empirical optimization
problem:

min
θ
Jemp(θ) ∆= 1

2
∥Âθ − b̂∥2

Ĉ−1 +
η

2
∥θ − θprior∥

2

Û
(15)

Note that whether an empirical estimate for U is required
depends on the choice for U . For instance, if U = I then
obviously no estimate is needed. However, if U =XTDX =
E dφ [xtxTt] = C then an empirical estimate is needed (for
this particular choice, Û = Ĉ).

To fully characterize the empirical optimization problem,
expressions for the empirical estimates still need to be pro-
vided. For the general off-policy case the following expres-
sions provide unbiased estimates of the desired quantities:

Â
∆= 1

N − 1

N−1

∑
n=1

ξnxn (xn − γxn+1)T
´¹¹¹¸¹¹¹¶

∆= Ân

(16a)

b̂
∆= 1

N − 1

N−1

∑
n=1

ξnxnrn
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

∆= b̂n

(16b)

Ĉ
∆= 1

N − 1

N−1

∑
n=1

xnx
T
n

²
∆= Ĉn

(16c)

where we defined the importance sampling weights:

ξn
∆= π(an∣sn)/φ(an∣sn) (17)

III. FAST DIFFUSION FOR POLICY EVALUATION

In this section we present the distributed framework we
consider and later we derive Fast Diffusion for Policy Evalu-
ation. The purpose of this algorithm is to deal with situations
where data is dispersed among a number of nodes and the
goal is to solve the policy evaluation problem in a fully
decentralized manner. The algorithm combines two important
tools for inference from data: diffusion strategies [16], [14]
and amortized variance-reduced techniques [17].

A. Distributed Setting

We consider a situation in which there are K agents
who want to evaluate a common target policy π(a∣s). Each
agent has N samples which were collected following its
own behavior policy φk (with steady state distribution matrix
Dφk). Note that all behavior policies are assumed to be
potentially different from each other. The goal for all agents
is to estimate the value function of the target policy π(a∣s)
leveraging all the data from all other agents in a fully
decentralized manner.

To do this, they form a network in which each agent
can only communicate with other agents in its immediate
neighborhood. The network is represented by an undirected
graph in which the nodes and edges represent the agents and
communication links respectively. The topology of the graph
is defined by a combination matrix L whose kn-th entry
(i.e. lkn) is a scalar with which agent n weights information
incoming from agent k.

Assumption 2: We assume that the network is strongly
connected. This implies that there is at least one path from
any node to any other node and that at least one node
has a self-loop (i.e. that at least one agent uses its own
information). We further assume that the combination matrix
L is symmetric and doubly-stochastic. ∎
A combination matrix satisfying assumption 2 can be gen-
erated using the Laplacian rule, Maximum-degree rule,
Metropolis rule or others (see Table 14.1 in [14]). Assump-
tion 2 is necessary for the proof of convergence.

B. Algorithm Derivation

Mathematically the goal for all agents is to minimize the
following aggregate cost:

Smulti(θ)=
K

∑
k=1

τk[
1

2
∥Π(rπ+γPπXθ)−Xθ∥

2

Dφk
+ η

2
∥θ−θprior∥

2

Uk
]

(18)

The purpose of the nonnegative coefficients τk is to scale the
costs of the different agents; this is useful since the costs of
agents whose behavior policy is closer to the target policy
might be assigned higher weights than those whose behavior
policies deviate a lot from the target policy (and hence are
subject to a higher variance). Defining:

DM ∆=
K

∑
k=1

τkD
φk UM

∆=
K

∑
k=1

τkUk (19)

equation (18) becomes:

Smulti(θ)=
1

2
∥Π(rπ+γPπXθ)−Xθ∥

2

DM
+ η

2
∥θ−θprior∥

2

UM
(20)

Note that (20) has the same form as (9), the only difference
is that in (20) the matrices DM and UM are defined by
linear combinations of the individual matrices Dφk and Uk
respectively. Note that the matrices Dφk are not required to
be positive definite, only DM is required to be a positive
definite diagonal matrix. Since the matrices Dφk are given
by the steady state probabilities of the behavior policies, this
implies that each agent does not need to explore the entire
state space by itself, but rather all the agents collectively need
to explore the state space, this is one of the advantages of
our multi-agent setting. In practice this could be useful since
the agents can divide the entire state space in sections each
of which can be explored by a different agent in parallel.

The empirical problem for the multi-agent case is given
by:

min
θ
Jemp(θ) = min

θ

1

2
∥Âθ − b̂∥2

Ĉ−1 +
η

2
∥θ − θprior∥

2

Û
(21)

where

Â=
K

∑
k=1

τk
1

N − 1

N−1

∑
n=1

Âk,n (22a)

b̂=
K

∑
k=1

τk
1

N − 1

N−1

∑
n=1

b̂k,n (22b)

Ĉ=
K

∑
k=1

τk
1

N − 1

N−1

∑
n=1

Ĉk,n (22c)

To solve problem (21) we shall judiciously combine the Ex-
act Diffusion [18] and Amortized Variance Reduced Gradient
(AVRG) [17] techniques. We do so in a similar manner as
done in the Diffusion AVRG approach [19]. Exact Diffusion
is a fully distributed algorithm that guarantees convergence
to the global minimizer, while AVRG is a reduced-variance
stochastic gradient algorithm that relies on random reshuf-
fling. With this in mind we first note that Exact Diffusion is
designed to solve problems of the following form:

min
θ

K

∑
k=1

Jk(θ) (23)

where the summation runs across the K agents and Jk(θ) is
the individual risk function of agent k. AVRG on the other
hand tackles problems of the following form:

min
θ

N

∑
n=1

Qn(θ) (24)

where the summation runs across N samples and Qn(θ) is
some loss function evaluated at θ and the n-th data point.
Hence to be able to apply both techniques we need our cost
to have the following form:

min
θ

K

∑
k=1

qk
N

∑
n=1

Qk,n(θ) (25)

where Qk,n(θ) is the loss function of the k-th agent eval-
uated for the n-th data sample and vector θ. However note
that (21) does not have the form of (25). To circumvent this
issue, we follow a similar approach as in [7] (see also [20]
and [6]), which is to formulate (21) as an equivalent saddle-
point problem. To this end, we first note that every quadratic
function can be expressed in terms of its conjugate function
as 1

2
∥Aθ − b∥2

C−1 = maxω ((Aθ − b)Tω − 1
2
∥ω∥2

C) (see [21]).
Therefore, expression (21) can be rewritten as:

min
θ

max
ω

⎛
⎝
K

∑
k=1

qk
J

∑
j=1

J

N−H ∑
n∈Jkj

Fk,n(θ,ω)
⎞
⎠

(26)

Fk,n= ∑
n∈Jkj

η

2
∥θ−θprior∥2

Ûk,n
− ωT(Âk,nθ−b̂k,n)−

1

2
∥ω∥2

Ĉk,n
(27)

where we defined qk
∆= τk/J and arranged the data in

J mini-batches (where Jkj is the j-th mini-batch of the
k-agent). Note that problem (26) has a similar form to
(25) in the sense that it is an empirical average of loss
functions. However there’s a key difference, which is that
(25) is a minimization problem while (26) is a saddle point
problem. Hence, to be able to apply Exact Diffusion to (26)
we modify the original formulation to make it suitable for
our saddle-point problem. The modification we make is to
change the gradient vector in the original formulation for
another vector (which we refer to as β) in which the gradient
with respect to the minimization variable is stacked with the
negative gradient with respect to the maximization variable.
We further apply the AVRG variance reduction scheme to
the gradients of the primal and dual variables. We refer
to this algorithm as Fast Diffusion for Policy Evaluation
(see Algorithm 1). Note that this is not an application of

Algorithm 1: Fast Diffusion for Policy Evaluation at node k
Distribute the N −H data points into J mini-batches of size ∣Jj ∣;
where Jj is the j-th mini-batch.
Initialize: θ0k,0 and ω0

k,0 arbitrarily; let ψ0
k,0 = [θ0k,0

T
, ω0
k,0

T]T ,
g0k=0; βk,n(θ0k,0, ω0

k,0)=0, 1 ≤ n ≤ N −H
For e = 0,1,2 . . .:

Generate a random permutation function of the mini-batches σek
Set ge+1k = 0
For i = 0,1, . . . , J − 1:

Generate the local stochastic gradients:
j = σek(i) (28)

βk(θek,i, ωek,i)=gek+
1

∣Jj ∣
∑
l∈Jj

(βk,l(θek,i, ωek,i)−βk,l(θek,0, ωek,0))

(29)
ge+1k = ge+1k + 1

N −H ∑
l∈Jj

βk,l(θek,i, ωek,i) (30)

Update [θek,i+1, ωek,i+1]T with exact diffusion:

ψek,i+1 = [θek,i
ωek,i

] − qk [µθ 0
0 µω

]βk(θek,i, ωek,i) (31)

φek,i+1 = ψek,i+1 + [θek,i
ωek,i

] − ψek,i (32)

[θek,i+1
ωek,i+1

] = (φek,i+1 + ∑
n∈Nk

lnkφ
e
n,i+1)/2 (33)

[θe+1k,0

ωe+1k,0

] = [θek,J
ωek,J

] (34)

Diffusion AVRG to (26), our algorithm finds the saddle point
in a primal-dual formulation while Diffusion AVRG finds
the minimizer of a strongly convex function. It cannot be
assumed that the convergence properties of Diffusion AVRG
will carry over to our saddle-point formulation, hence a new
convergence theorem and proof are required.

In the above listing, we introduced σek, Jj and βk,j(θ,ω),
where σek indicates a random permutation of the J mini-
batches of the k-th agent which is generated at the beginning
of epoch e; Jj is the j-th mini-batch and βk,l(θ,ω) is defined
as follows:

βk,l(θ,ω)=[
∇θFk,l(θ,ω)

−∇ωFk,l(θ,ω)
]=[ηÛk,l(θ−θprior)−ÂTk,lω

Âk,lθ − b̂k,l + Ĉk,lω
] (35)

Note that the choice of the mini-batch size provides a
communication-computation trade-off. As the number of
mini-batches diminishes so do the communication require-
ments per epoch, however less updates are performed per
epoch which might result in the need of more epochs to
achieve a desired tolerance. Obviously the optimal amount
of mini-batches J to minimize the overall time of the
optimization process depends on the particular hardware
availability of each implementation.

Remark 2: The saddle-point of (26) is given by

[θ
o
emp
ωoemp

]=
⎡⎢⎢⎢⎣

(ÂT Ĉ−1Â+ηÛ)−1(ηÛθprior+ÂT Ĉ−1b̂)
Ĉ−1b̂ − Ĉ−1Âθoemp

⎤⎥⎥⎥⎦
(36)

Proof: θoemp and ωoemp are obtained by equating the
gradient of (26) to zero and solving for θ and ω.

Theorem 1: If Assumption 2 is satisfied and for η > 0 and
small enough step-sizes µω and µθ, the iterates θek,0 and ωek,0
generated by Fast Diffusion for Policy Evaluation converge
linearly to (36).

Proof: The argument is demanding and lengthy and
involves several steps, we therefore omit the proof due to
length restrictions and refer to the extended arXiv version
[22].

IV. SIMULATION

In this section we illustrate a case application of Fast Dif-
fusion for Policy Evaluation to a distributed Linear Quadratic
Regulator (LQR) problem. The main point of this simulation
is to validate our theoretical results and show the linear con-
vergence rate of our algorithm versus existing approaches.

A. Linear Quadratic Regulators

We first briefly review the connection between LQR and
reinforcement learning (RL). In a standard LQR problem, the
state evolution of the system is dictated by a state equation:

st+1 = Est +Bat (37)

where st and at denote the state and input of the system
at time t, respectively, and E and B are the state and input
matrices. Matrices E and B are analogous to P in our RL
formulation. The goal of the controller (which is what in
the RL context is referred as the policy) is to minimize the
following infinite horizon discounted quadratic cost:

J1 =
∞
∑
t=0

γt (sTt Qst + aTt Rat) (38)

or equivalently to maximize:

J2 =
∞
∑
t=0

γt (− (sTt Qst + aTt Rat))
´¹¹¸¹¹¹¶

∆= rt(st,at)

=
∞
∑
t=0

γtrt(st, at) (39)

where Q and R are some positive semidefinite and positive
definite matrices, respectively. Note that − (sTt Qst + aTt Rat)
is the reward at time t in our setting. It is well known that
the feedback control law (optimal policy) that maximizes J2

is linear in the state parameters:

at = Pst (40)

where P is some matrix. The value function of some policy
(controller) is defined as:

v(sj)=−
∞
∑
t=j
γt−j (sTt Qst+aTt Rat)=

∞
∑
t=j
γt−jrt(st, at)

= rt(st, at) + γv(sj+1) (41)

Combining (37), (40) and (41) it can be shown that the value
function can be written as a quadratic function of the state
vector:

v(sj) = sTj Wsj = (sj ⊗ sj)T
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∆= xTt

vec(W)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

∆= θ

= xTt θ (42)

where we defined xt (what we referred to in the previous
sections as the feature vector) and θ in accordance with
standard RL notation. Note that (42) justifies theoretically
the use of linear function approximation for the value func-
tion. We further note that the value function matrix W is

some negative1 semi-definite matrix and ⊗ is the Kronecker
product. The value function matrix W corresponding to some
policy (at = Pst) can be found by solving the following
Lyapunov equation:

W = −Q − PTRP + γ(E +BP)TW (E +BP) (43)

And the optimal policy P ⋆ is given by:

P ⋆ = −γ(γBTW ⋆B −R)−1BTW ⋆E (44)

where W ⋆ is the corresponding value function matrix of P ⋆

and is the solution to the following discrete time algebraic
Riccati equation:

W ⋆ = − (2γ − γ2)ETW ⋆B(BTW ⋆B −R)−1BTW ⋆E

−Q + γETW ⋆E (45)

Naturally if the matrices E and B are known, the optimal
controller can easily be found using (44) and (45) and hence
RL techniques are not necessary. However, RL techniques
are useful for cases in which those matrices are not known
and a solution in which the optimal controller is learned from
samples is preferable. Furthermore, RL techniques endow the
controller with tracking abilities which are useful in time
varying environments.

B. Case Application
We consider a swarm of 100 Autonomous Underwater

Vehicles (AUV’s) running a digital control system.
We assume that the state evolution matrices E and B
are unknown and furthermore an adaptive solution is
desirable to cope with a time varying environment (for
instance, changing currents). Policy gradient algorithms
constitute one possible solution for this problem. Policy
gradient algorithms have the following general structure:

Basic Policy gradient loop
For e=0,1,... :

1- Collect batch of data following the current policy.
2- Estimate the value function (θ) of the current policy using

some policy evaluation algorithm.
3- Use the value function to improve the policy.

Note that a distributed policy evaluation algorithm is
necessary in order to implement the distributed policy
gradient algorithm.

Each AUV can decide to run its own policy gradient al-
gorithm and learn on its own without cooperation. However,
cooperation is preferable for two main reasons. In the first
place, different AUVs might be subject to slightly different
dynamics (caused by differences in the electronics due to
tolerances and also environmental differences due to the
geographical distance between the agents, like stronger or
weaker currents) hence, through cooperation, the agents can
converge to more robust controllers than without cooperation.
Secondly, through collaboration agents will converge faster
than without cooperation due to the parallelism in data col-
lection (step 1 in the basic policy gradient loop). Therefore,

1W is negative semi-definite as opposed to positive semi-definite, as it is
usually the case in optimal control, due to the fact that we are maximizing
negative rewards as opposed to minimizing positive costs.

in this case, we assume that all agents in the network want to
collaborate and do so by running a distributed policy gradient
algorithm (for example [15]). In this simulation we will not
run the entire policy gradient algorithm and only run step 3
to showcase the performance of our algorithm. We therefore
assume the AUVs have a controller (policy) for which they
want to estimate the value function (learn θ).

To model the dynamics of the AUVs we use a linearized
and discretized version of one of the axis of motion of the
model presented in [23]:

st+1 = [yt+1

zt+1
] = [1 T

0 1 + TNr(Iz −Nṙ)−1] [yt
zt

]

+ [0 0
0 T (Iz −Nṙ)−1] [0

at
] (46)

where T = 0.1s, Nr = −0.23Kgms−1, Iz = 1.41Kgm2,
Nṙ = −0.56Kgm2, s, y, z and at are the sampling period,
linear drag coefficient, moment of inertia, added mass, state
vector of the AUV, heading, angular speed and input torque
respectively. The Q and R matrices are given by:

Q = [1 0
0 0

] R = [0.01 0
0 0.01

] (47)

The goal of the controllers is to minimize
∑∞t=0 γ

t (−(yd − yt)2 − 0.01a2
t). The reward and feature

vector at time t are given by:

rt(y, a) = −(yd − yt)2 − 0.01a2
t (48)

xt = [(yd − yt)2, z2
t , ytzt] (49)

The controller implemented in each AUV is linear and given
by at = p(yd − yt + nyt) + d(zt + nzt); where nyt and nzt are
i.i.d Gaussian∼ G(µ = 0, σ = 0.05) noise terms that account
for normal observation noise, and p and d are the gains
of the error and derivative of the error, respectively which
define the controller. The p and d constants were sampled
as p ∼ G(µ = p⋆, σ = 0.1) and d ∼ G(µ = d⋆, σ = 0.1) where
p = p⋆ and d = d⋆ are the values of the optimal controller (ob-
tained using (44)). Each AUV’s initial heading is initialized
randomly following a uniform distribution between −180o

and 180o and the angular speed is initialized at zero. After
initialization each AUV runs the control system for 6 seconds
(i.e., N = 60), which is one second after the heading error
reaches steady state and stores data samples. The network
topology (Figure 1a) was generated randomly. To generate
the network we distributed the agents uniformly in a unit
square and then created connections betweens agents whose
distance is closer than 0.2, this process was repeated until
a connected network was created. The connection weights
were determined using the Metropolis rule. The discount
parameter was set to γ = 0.99.

Three algorithms were implemented to solve this problem,
Fast Diffusion for Policy Evaluation, Diffusion GTD2 [7] and
ALG2 [8] (the latter two with decaying step-sizes to guar-
antee convergence for a fair comparison). The parameters
of the Fast Diffusion for Policy Evaluation implementation
are: η = 1 × 10−4, ∣J ∣ = 2, µθ = 3 × 10−7, µω = 4 × 10−7,
qk = 1/K for all k, U = I , and θprior is the all zeros vector.

(a)

(b) (c)

Fig. 1: The blue, yellow and red curves denote Fast Diffusion for Policy Evaluation, Diffusion GTD2 and ALG2 respectively.
The dotted line in (c) depicts ∥θoemp − θo∥2.

The parameters of the Diffusion GTD2 implementation are:
µθ = 3.75 × 10−7(1 + 0.06e)−1, µω = 5 × 10−7(1 + 0.06e)−1,
where e is the epoch number. And finally the parameters of
the ALG2 implementation are: µθ = 5 × 10−7(1 + 0.06e)−1,
µω = 5 × 10−7(1 + 0.06e)−1.

Figures 1b and 1c show the squared error (∥θe0 − θo∥2)
and the Squared Empirical Error (∥θe0 −θoemp∥2), respectively.
Each curve depicts the error averaged over all agents. As
predicted, Fast Diffusion for Policy Evaluation shows great
improvement in terms of convergence speed over the other
two algorithms due to the fact that it converges linearly.

REFERENCES

[1] R. S. Sutton, H. R. Maei, and C. Szepesvári, “A convergent o(n)
temporal-difference algorithm for off-policy learning with linear func-
tion approximation,” in Proc. Advances in Neural Information Pro-
cessing Systems, Vancouver, Canada, 2009, pp. 1609–1616.

[2] R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver,
C. Szepesvári, and E. Wiewiora, “Fast gradient-descent methods
for temporal-difference learning with linear function approximation,”
in Proc. International Conference on Machine Learning, Montreal,
Canada, 2009, pp. 993–1000.

[3] H. van Hasselt, A. R. Mahmood, and R. S. Sutton, “Off-policy TD(λ)
with a true online equivalence,” in Proc. Conference on Uncertainty
in Artificial Intelligence, Quebec City, Canada, 2014, pp. 330–339.

[4] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent
using predictive variance reduction,” in Proc. Advances in neural
information processing systems, Lake Tahoe, USA, 2013, pp. 315–
323.

[5] A. Defazio, F. Bach, and S. Lacoste-Julien, “Saga: A fast incremental
gradient method with support for non-strongly convex composite
objectives,” in Proc. Advances in Neural Information Processing
Systems, Montreal, Canada, 2014, pp. 1646–1654.

[6] S. S. Du, J. Chen, L. Li, L. Xiao, and D. Zhou, “Stochastic vari-
ance reduction methods for policy evaluation,” in Proc. International
Conference on Machine Learning, Sydney, Australia, 2017, pp. 1049–
1058.

[7] S. V. Macua, J. Chen, S. Zazo, and A. H. Sayed, “Distributed policy
evaluation under multiple behavior strategies,” IEEE Transactions on
Automatic Control, vol. 60, no. 5, pp. 1260–1274, 2015.

[8] M. S. Stanković and S. S. Stanković, “Multi-agent temporal-difference
learning with linear function approximation: Weak convergence under
time-varying network topologies,” in Proc. American Control Confer-
ence, Boston, USA, 2016, pp. 167–172.

[9] B. Kehoe, A. Matsukawa, S. Candido, J. Kuffner, and K. Goldberg,
“Cloud-based robot grasping with the google object recognition en-
gine,” in Proc. International Conference on Robotics and Automation,
Karlsruhe, Germany, 2013, pp. 4263–4270.

[10] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research
on cloud robotics and automation,” IEEE Transactions on Automation
Science and Engineering, vol. 12, no. 2, pp. 398–409, 2015.

[11] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learn-
ing for robotic manipulation with asynchronous off-policy updates,”
in Proc. IEEE International Conference on Robotics and Automation,
Singapore, May 2017, pp. 3389–3396.

[12] H.-T. Wai, Z. Yang, P. Z. Wang, and M. Hong, “Multi-agent rein-
forcement learning via double averaging primal-dual optimization,”
arXiv:1806.00877, August 2018.

[13] N. L. Roux, M. Schmidt, and F. R. Bach, “A stochastic gradient
method with an exponential convergence rate for finite training sets,”
in in Proc. Advances in Neural Information Processing Systems, Lake
Tahoe, Nevada, 2012, pp. 2663–2671.

[14] A. H. Sayed, “Adaptation, learning, and optimization over networks,”
Foundations and Trends in Machine Learning, vol. 7, 2014.

[15] S. V. Macua, A. Tukiainen, D. G.-O. Hernández, D. Baldazo, E. M.
de Cote, and S. Zazo, “Diff-DAC: Distributed actor-critic for multitask
deep reinforcement learning,” arXiv:1710.10363, April 2018.

[16] A. H. Sayed, “Adaptive networks,” Proceedings of the IEEE, vol. 102,
no. 4, pp. 460–497, 2014.

[17] B. Ying, K. Yuan, and A. H. Sayed, “Convergence of variance-reduced
learning under random reshuffling,” in Proc. IEEE International Con-
ference on Acoustics, Speech and Signal Processing, Alberta, Canada,
2018, pp. 2286–2290.

[18] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact diffusion for dis-
tributed optimization and learning—part I: Algorithm development,”
IEEE Transactions on Signal Processing, vol. 67, no. 3, pp. 708–723,
2018.

[19] K. Yuan, B. Ying, J. Liu, and A. H. Sayed, “Variance-reduced
stochastic learning by networked agents under random reshuffling,”
IEEE Transactions on Signal Processing, vol. 67, no. 2, pp. 351–366,
2017.

[20] B. Liu, J. Liu, M. Ghavamzadeh, S. Mahadevan, and M. Petrik,
“Finite-sample analysis of proximal gradient td algorithms.” in Proc.
Conference on Uncertainty in Artificial Intelligence, Amsterdam, Hol-
land, 2015, pp. 504–513.

[21] S. Boyd and L. Vandenberghe, “Convex optimization,” Cambridge
University Press, 2004.

[22] L. Cassano, K. Yuan, and A. Sayed, “Multi-agent fully decentralized
off-policy learning with linear convergence rates,” arXiv:1810.07792,
October 2018.

[23] C. D. Makavita, H. Nguyen, S. G. Jayasinghe, and D. Ranmuthugala,
“Predictor-based model reference adaptive control of an unmanned
underwater vehicle,” in Proc. International Conference on Control,
Automation, Robotics and Vision, Phuket, Thailand, 2016, pp. 1–7.

