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ABSTRACT
In this paper, we develop a stochastic-gradient learning algorithm
for situations involving streaming data that arise from an underlying
clustered structure. In such settings, the variance of gradient noise
can be decomposed into the in-cluster variance σ2

in plus the between-
cluster variance σ2

bet. We develop a cluster-based online variance-
reduced method (COVER) to eliminate σ2

bet and improve the MSD
performance of stochastic-gradient descent (SGD) to the order of
O(σ2

in). We establish the convergence property of COVER and de-
rive a tight closed-form mean-square deviation (MSD) performance
expression. Our simulations illustrate the improved performance of
COVER in terms of steady-state performance.

Index Terms— Online learning, Streaming data, Internal struc-
ture, Variance reduction, SGD, SAGA.

1. INTRODUCTION AND RELATED WORKS

Stochastic optimization focuses on the problem of optimizing the
expectation of a loss function, written as

w? = arg min
w∈RM

J(w)
∆
= E[Q(w;x)], (1)

where J(w) is a risk function, x is a random variable representing
the data, and the expectation is over the distribution of x. Prob-
lems of this kind are common in many contexts, including in several
adaptation and machine learning formulations [1, 2].

When J(w) is differentiable, one of the most popular methods
to solve (1) is stochastic gradient descent (SGD) [3, 4, 5, 6]:

wi = wi−1 − µ∇Q(wi−1;xi), i ≥ 0, (2)

where xi is the realization of x at iteration i, and µ is the positive
step-size parameter. Throughout the paper, we assume µ is constant
to endow SGD with desirable adaptive and tracking abilities. When
J(w) is strongly convex and ∇J(w) is Lipschitz continuous, the
steady-state mean-square-deviation (MSD) performance of SGD is
established in [3, 6] to be on the order of µ:

lim sup
i→∞

E‖w? −wi‖2 = O
(
µσ2) , (3)

where σ2 is the variance of gradient noise.
In this paper we consider a new setting in which the data x ap-

pearing in (1) has some internal structure. By “internal structure”
we mean that the distribution of x can be expressed as a mixture
of distributions, or equivalently, data x can be grouped into various
clusters. Data with such internal structure are abundant in practice.
For example, in social media, the profiles of users can be catego-
rized by the their communities, nationalities, religions, and beyond.
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In images or videos, the pixels tend to be well clustered into mul-
tiple segments. In natural language processing, documents can be
grouped into various topics. As a typical example, it is identified in
[7] that the Covtype dataset can be grouped into 1145 clusters.

This paper seeks to exploit the internal structure to improve SGD
performance. When data can be grouped into smaller clusters, it is
shown in Section 2.1 that the variance of gradient noise in SGD can
be decomposed into

σ2 = σ2
in + σ2

bet (4)

where σ2
in is the averaged in-cluster variance and σ2

bet is the
between-cluster variance. By employing the variance-reduction
technique [8, 9, 10], we reach a cluster-based online variance-
reduced method (COVER) that eliminates the between-cluster vari-
ance and achieves an improved steady-state MSD performance as

lim sup
i→∞

E‖w? −wi‖2 = O
(
µσ2

in

)
. (5)

Expression 5 implies that when σ2
in � σ2, the proposed COVER

method converges much more accurately than SGD.
Contribution. There are three main contributions in this paper. We
propose a new COVER algorithm that exploits the internal struc-
ture of the data and attains an improved steady-state MSD perfor-
mance. We also examine the convergence property of COVER and
establish its stability range on step-sizes. Furthermore, we derive a
tight closed-form expression for the steady-state MSD performance
when µ is sufficiently small. This MSD expression is important for
two reasons. First, by comparing the MSD expressions of SGD and
COVER, we will conclude that COVER will be more accurate than
SGD when the same step-size is employed. Second, the derived ex-
pression defines confidence levels about how well the iteratewi ap-
proaches the global minimum w? and provides crucial clues on how
to choose the constant step-size µ.
Related Works in the Literature. Variance reduction is an impor-
tant technique to improve the convergence of stochastic algorithms.
There is an extensive research on variance reduction stochastic meth-
ods such as SVRG[9], SAGA[10], SAG[8], Finito[11], AVRG [12],
and beyond. Most of these methods are aimed at solving empirical
risk minimization (ERM) problems with finite-size datasets. Differ-
ent from these works, COVER is an online variance-reduced method
to solve problem (1) in the presence of streaming data.

There exist recent works [13, 14] on variance-reduced tech-
niques that can handle streaming data. However, these methods
employ decaying step-sizes to guarantee convergence. When these
step-sizes approach zero, the tracking ability of the algorithms is
lost. In contrast, the proposed COVER method employs a constant
step-size to enable continuous adaptation and tracking. In addition,
while works [13, 14] do not derive MSD performance expressions,
this article derives a tight MSD result in order to characterize ac-



Fig. 1. An illustration of the internal structure in data x (the right
part in the plot) and the way to generate data realization x(ni)

i at
iteration i. At iteration i = 4, for example, the cluster index is first
randomly generated (or sampled) and we assume ni = 3. Then, a
data realization x(3)

4 is generated according to distribution f3(x).

curately the dependence of MSD performance on the step-size
parameter.

There exist also related works [15, 7] that exploit the internal
structure of the data to improve the convergence rate of their respec-
tive learning algorithms. However, such as was the case with the
earlier variance reduced methods, these techniques focus on ERM
problems with finite data sets. One challenge in our contribution is
to handle the internal structure for streaming data.

2. PROBLEM FORMULATION

In this section, we assume the probability distribution of the data
variablex can be expressed as a mixture ofN distributions, or equiv-
alently, data x can be grouped into N smaller clusters. At iteration
i, a data realization xi is generated as follows. First, a random dis-
tribution index ni = n is randomly generated with probability pn
(where

∑N
n=1 pn = 1). This index variable ni indicates which dis-

tribution/cluster (we use distribution and cluster synonymously in
this paper) that xi arises from. Subsequently, the realization xi is
generated according to the n-th distribution fn(x). To emphasize
that the data has internal structure, we rewrite variable x in problem
(1) as x(n) where the superscript (n) indicates the cluster index x
arises from. Also, we rewrite the i-th realization xi as x(ni)

i . The
process to generate x(ni)

i is illustrated in Fig. 1. With such genera-
tion process, we express the probability distribution of x(n) as

f(x) =

N∑
n=1

fn(x)P(n = n) =

N∑
n=1

pnfn(x). (6)

Since each fn(x) is generally unknown, the overall distribution f(x)
is also unknown. However, the mixture expression (i.e., the finite
sum structure) of f(x) in (6) enables the use of variance reduction
techniques.

With (6), we rewrite the cost function in (1) as

J(w)=EQ(w;x(n))=

∫
Q(w;x)f(x)dx

(6)
=

N∑
n=1

pnJn(w) (7)

where we define

Jn(w)
∆
= EQ[w;x(n)]=

∫
Q(w;x)fn(x)dx (8)

as the n-th cluster risk function. With (7) and (8), problem (1) be-
comes

w? = arg min
w∈RM

N∑
n=1

pnJn(w). (9)

If p1 = p2 = · · · = pN , problem (9) reduces to the problem formu-
lation in [13, 14]. The finite-sum structure appearing in (9) makes it
possible to employ variance reduction techniques. Throughout this
paper, we introduce the following assumption:

Assumption 1 (CONDITIONS ON RISK FUNCTIONS). The loss
function Q(w;x(n)) is δ-Lipschitz differentiable with respect to w,
i.e., it holds for any w1 and w2 that

‖∇Q(w1;x(n))−∇Q(w2;x(n))‖ ≤ δ‖w1 − w2‖. (10)

Moreover, we assume each cluster risk Jn(w) is ν-strongly convex,
i.e., it holds for any w1 and w2 that(

∇Jn(w1)−∇Jn(w2)
)T

(w1−w2)≥ν‖w1 − w2‖2. (11)

The constants δ and ν are all positive. �

2.1. The Variance of Gradient Noise in standard SGD

When data x(ni)
i is observed, standard SGD takes the form

wi = wi−1 − µ∇Q(wi−1;x
(ni)
i ). (12)

where the gradient noise is defined as

si(wi−1)
∆
= ∇Q(wi−1;x

(ni)
i )−∇J(wi−1). (13)

This gradient noise is affected by two random variables: the random
cluster variable ni and the data realization x(n)

i within a determined
cluster n. To examine the variance of such gradient noise, we first
introduce the filtration as

F i−1
∆
= {w−1,w0,w1, · · · ,wi−1}, (14)

and the gradient noise within cluster n as

s
(n)
i (wi−1)

∆
= ∇Q(wi−1;x

(n)
i )−∇Jn(wi−1). (15)

We then introduce the following assumption on s(n)
i (wi−1).

Assumption 2 (GRADIENT NOISE CONDITIONS). It is assumed for
any n = 1, · · · , N that

E[s
(n)
i (wi−1)|F i−1] = 0, (16)

E[‖s(n)
i (wi−1)‖2|F i−1] ≤ β2

n‖w̃i−1‖2 + σ2
n, (17)

where w̃i
∆
= w? −wi, constants βn and σn are nonnegative, and

σ2
n is referred to as the magnitude of gradient noise in cluster n.

With Assumption 2, and by following the analysis argument of
Lemma 1 in [16], it is easy to reach the variance of SGD gradient
noise si at w? as

E[‖si(w?)‖2|F i−1] ≤
N∑

n=1

pnσ
2
n+

N∑
n=1

pn‖∇Jn(w?)‖2 (18)



We define the first term as the averaged in-cluster variance σ2
in and

the second term as the between-cluster variance σ2
bet. By following

the analysis in the proof of Lemma 3.1 in [6], we conclude that the
steady-state MSD performance of the SGD recursion (12) is

lim sup
i→∞

E‖w? −wi‖2 = O
(
µ(σ2

in + σ2
bet)
)
, (19)

3. VARIANCE-REDUCED ONLINE METHOD

In this section, we assume the data has an explicit internal structure.

Assumption 3 (EXPLICIT INTERNAL STRUCTURE). We assume
that each time a realization xi is observed, the value of its cluster
indexni is also observed. Furthermore, we assume P(n = n) = pn
is also known in advance. �

Assumption 3 is not restrictive since we do not assume knowl-
edge of the probability distribution of each cluster, fn(x). To cor-
rect the between-cluster variance, we propose to run SGD with a
variance-reduced stochastic gradient. Inspired by the SAGA algo-
rithm [10], we maintain N auxiliary variables {g(n)

i }
N
n=1 where

each variable g(n)
i approximates n-th cluster risk ∇Jn(wi). For

each iteration, we propose the main recursion in COVER as

wi=wi−1−µ
(
∇Q(wi−1;x

(ni)
i )−g(ni)

i−1 +

N∑
n=1

pn g
(n)
i−1

)
︸ ︷︷ ︸

variance-reduced gradient

(20)

We establish in the future Lemma 1 that the improved gradient has
less gradient noise than SGD. After recursion (20), only g(ni)

i will
be updated according to (22) and hence the averaged gradient ḡi =∑N

n=1 png
(n)
i can be updated in a recursive manner. The complete

COVER algorithm is listed in Algorithm 1. Variables α and αn are
relaxation coefficients, and quantity pmin = min{p1, · · · , pN}.

Algorithm 1. The COVER method

Initialization: w0 = 0, ḡ0 = 0, α ∈ (0, pmin), g
(n)
0 = 0, αn =

α/pn for any n = 1, . . . , N.
Repeat i = 1, 2 . . . , until convergence:

get the cluster index ni in which data xi arises from;
updatewi, {g(n)

i }
N
n=1 and ḡi as follows:

wi = wi−1−µ
(
∇Q(wi−1;x

(ni)
i )−g(ni)

i−1 +ḡi−1

)
(21)

g
(n)
i =

{
(1−αn) g

(n)
i−1+αn∇Q(wi−1;x

(n)
i ) if ni = n

g
(n)
i−1 if ni 6= n

(22)

ḡi = ḡi−1 − α
(
g

(ni)
i−1 −∇Q(wi−1;x

(ni)
i )

)
(23)

End

4. CONVERGENCE PROPERTY

In this section we establish the convergence property of the proposed
COVER algorithm. We first introduce

vi(wi−1)=∇Q(wi−1;x
(ni)
i )−g(ni)

i−1 +ḡi−1−∇J(wi−1) (24)

as the gradient noise in COVER.

Lemma 1 (COVER GRADIENT NOISE PROPERTIES). Under As-
sumptions 1–3, it holds that

E[vi(wi−1)|F i−1] = 0, (25)

E[‖vi(wi−1)‖2|F i−1] ≤ (β̄2 + 2δ2)‖w̃i−1‖2 + σ̄2

+ 2

N∑
n=1

pn‖g(n)
i−1 −∇Jn(w?)‖2, (26)

where

β̄2 ∆
=

N∑
n=1

pnβ
2
n, σ̄2 ∆

=

N∑
n=1

pnσ
2
n. (27)

Proof. The proof is omitted due to space limitation. �
By comparing (18) with (26), it is observed that COVER im-
proves the term

∑N
n=1 pn‖∇Jn(w?)‖2 to

∑N
n=1 pn‖g

(n)
i−1 −

∇Jn(w?)‖2. As iteration i → ∞ and g(n)
i → ∇Jn(w?), the

term
∑N

n=1 pn‖g
(n)
i−1 −∇Jn(w?)‖2 vanishes to zero and hence the

between-cluster variance is eliminated. This is the intuition why
COVER converges more accurately than SGD.

Lemma 2. Consider the COVER recursion in Algorithm 1. Under
Assumptions 1–3, the following two inequalities hold.

E‖w̃i‖2 ≤
(
1− 2µν + µ2(3δ2 + β̄2)

)
E‖w̃i−1‖2

+ 2µ2
N∑

n=1

pnE‖g(n)
i−1 −∇Jn(w?)‖2 + µ2σ̄2, (28)

N∑
n=1

pnE‖g(n)
i −∇Jn(w?)‖2≤(1−α)

N∑
n=1

pnE‖g(n)
i−1−∇Jn(w?)‖2

+ α
(
δ2 + β̄2)E‖w̃i−1‖2 + ασ̄2. (29)

Proof. The proof is omitted due to space limitation. �

Theorem 1 (STABILITY CONDITION). Consider wi generated by
the COVER algorithm. Under Assumptions 1–3, if the step-size µ
satisfies

µ ≤ min

{
ν

6(δ2 + β̄2)
,
α

6ν

}
(30)

where α ∈ (0, pmin), it holds that

E‖w̃i‖2+γGi ≤ (1−µν)
(
E‖w̃i−1‖2+γGi−1

)
+4µ2σ̄2 (31)

whereGi =
∑N

n=1 pnE‖g
(n)
i −∇Jn(w?)‖2 and γ = 3µ2/α.

Proof. With notationGi, recursion (29) can be simplified to

Gi ≤ (1− α)Gi−1 + α
(
δ2 + β̄2)E‖w̃i−1‖2 + ασ̄2. (32)

Combining (28) and (32), it holds that

E‖w̃i‖2 + γGi

≤
[
1− 2µν +

(
3µ2 + γα

)
δ2 +

(
µ2 + γα

)
β̄2]E‖w̃i−1‖2

+
(
2µ2 + γ(1− α)

)
Gi−1 +

(
µ2 + γα

)
σ̄2

≤
[
1− 2µν +

(
3µ2 + γα

) (
δ2 + β̄2)]E‖w̃i−1‖2

+
(
2µ2 + γ(1− α)

)
Gi−1 +

(
µ2 + γα

)
σ̄2

=
[
1− 2µν +

(
3µ2 + γα

) (
δ2 + β̄2)] ·(

E‖w̃i−1‖2 +

(
2µ2 + γ(1− α)

)
1− 2µν + (3µ2 + γα)

(
δ2 + β̄2

)Gi−1

)
+
(
µ2 + γα

)
σ̄2

≤
[
1− 2µν +

(
3µ2 + γα

) (
δ2 + β̄2)] ·(

E‖w̃i−1‖2 +
2µ2 + γ(1− α)

1− 2µν
Gi−1

)
+
(
µ2 + γα

)
σ̄2

(33)



Since µ satisfies (30), we have µ ≤ α/6ν which implies that α −
2µν > 0. This fact, along with the definition of γ, implies that

γ =
3µ2

α
≥ 2µ2

α− 2µν
⇐⇒ γ ≥ 2µ2 + γ(1− α)

1− 2µν
(34)

Also, since µ satisfies

µ ≤ ν

6(δ2 + β̄2)
, (35)

we have

1− 2µν +
(
3µ2 + γα

) (
δ2 + β̄2) ≤ 1− µν (36)

With the relations (34) and (36), inequality (33) becomes

E‖w̃i‖2 + γGi ≤ (1− µν)
(
E‖w̃i−1‖2 + γGi−1

)
+
(
µ2 + γα

)
σ̄2. (37)

�
With (31), it is easy to verify that

E‖w̃i‖2 ≤ E‖w̃i‖2 + γGi

≤ (1− µν)i
(
E‖w̃0‖2 + γG0

)
+

4µσ̄2

ν
. (38)

Recalling that w̃i = w? −wi, inequality (38) implies that

lim sup
i→∞

E‖w? −wi‖2 = O
(
µσ̄2) = O

(
µσ2

in

)
(39)

since σ2
in = σ̄2 =

∑N
n=1 pnσ

2
in. Comparing (39) and (19), it is

observed that COVER eliminates the between-cluster variance σ2
bet

asymptotically. When σ2
in � σ2

in + σ2
bet, we can expect COVER to

have a much better performance than SGD.

5. STEADY-STATE PERFORMANCE

Relation (39) establishes a rough asymptotic upper bound for
E‖w̃i‖2. In this section we derive a closed-form expression to
characterize the MSD performance for COVER more accurately. To
this end, we introduce

R(n)
s

∆
= lim

i→∞
E[s

(n)
i (w?)s

(n)
i (w?)T] (40)

as the limiting covariance matrix of the gradient noise in the n-th
cluster. We also define R̄s

∆
=

∑N
n=1 pnR

(n)
s as the averaged

limiting covariance matrix.

Assumption 4 (HESSIAN IS LIPSCHITZ CONTINUOUS). It is as-
sumed that each cluster risk function Jn(w), where n = 1, · · · , N ,
is twice-differentiable and has a Lipschitz continuous Hessian ma-
trix, i.e., there exists a constant η such that

‖∇2Jn(w1)−∇2Jn(w2)‖2 ≤ η2‖w1 − w2‖2. (41)

Theorem 2 (MSD EXPRESSION). Under Assumptions 1–4, when
step-size is sufficiently small, the MSD expression for the COVER
algorithm is

MSDcover = lim sup
i→∞

E‖w̃i‖2 =
µ

2
Tr(H−1R̄s), (42)

where H is the Hessian of the cost function J(w).

Proof. The proof is omitted due to space limitations. �
For comparison purposes, recall in [16] that the MSD expression

for SGD recursion (12) is

MSDsgd =
µ

2
Tr(H−1(R̄s +Rb)). (43)

where Rb =
∑N

n=1 pn∇Jn(w?)∇Jn(w?)T. Comparing (42) and
(43), we find it always holds that MSDcover < MSDsgd.

6. SIMULATION

We consider the application of the proposed COVER method in data
augmentation. In practice, there are scenarios in which the amount
of the available data is not enough for learning purposes. A common
technique is to shift, rotate, or add random noise to the original data
and augment the training dataset. Suppose there are N original data
in the training set. Each time a data xn is to be sampled, a perturbed
realization of xn, rather than the original xn itself, will be the value
that is used. By doing so, one can augment the dataset, reduce the
overfitting, and hence get a more robust estimator. In this scenario,
the whole augmented dataset can be infinitely large and the data has
explicit internal structure – we regard each data realization arising
from the same original data as one cluster. Furthermore, since we
actively sample data from each cluster rather than receive data pas-
sively, the cluster index where data x belongs to is explicit.

In particular, we consider a binary classification task with digits
0 and 1 in MNIST dataset. We randomly pick up 1000 training im-
ages in the digit 0 and 1 classes and let them be the original dataset.
Each image is vectorized into dimension R784 and its `2-norm is nor-
malized to 1. Next, we add Gaussian noise with variance 0.1 to each
original image and augment these 1000 training data to a total of
1000000. We then solve the problem with the following regularized
logistic regression cost function

J(w) =
ρ

2
‖w‖2 + E ln

(
1 + exp(−γhTw)

)
. (44)

We compare the proposed COVER method with SGD, S-
MISO[13] and S-SAGA[14]. Note that both S-MISO and S-SAGA
have been proposed in the literature with decaying step-size. To al-
low for a fair comparison, we adjust them to operate with a constant
step-size. The step-sizes are carefully tuned to reach the best conver-
gence performance. Also, we notice that S-SAGA is a special form
of COVER when we let α = pn = 1/N and αn = 1 in recursion
(22). All these four algorithms are listed in Fig.2. By exploiting the
internal structure, S-SAGA, S-MISO and COVER converge more
accurately than SGD. It is observed that S-MISO is slightly better
than S-SAGA, but both of them are worse than COVER. This in-
dicates the importance of the relaxation step in (22). Furthermore,
our derived MSD expression (42) shown with magenta dash line,
matches very well with the steady-state MSD performance of the
COVER method.
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Fig. 2. Convergence comparison between SGD, S-SAGA, S-MISO
and COVER.
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