
TEAM POLICY LEARNING FOR MULTI-AGENT REINFORCEMENT LEARNING

Lucas Cassano?†, Sulaiman A. Alghunaim?† and Ali H. Sayed†

?Department of Electrical and Computer Engineering, University of California, Los Angeles
†School of Engineering, École Polytechnique Fédérale de Lausanne, Switzerland

ABSTRACT

This work presents a fully distributed algorithm for learning the op-
timal policy in a multi-agent cooperative reinforcement learning sce-
nario. We focus on games that can only be solved through coordi-
nated team work. We consider situations in whichK players interact
simultaneously with an environment and with each other to attain a
common goal. In the algorithm, agents only communicate with other
agents in their immediate neighborhood and choose their actions in-
dependently of one another based only on local information. Learn-
ing is done off-policy, which results in high data efficiency. The
proposed algorithm is of the stochastic primal-dual kind and can be
shown to converge even when used in conjunction with a wide class
of function approximators.

Index Terms— Reinforcement learning, multi-agent learning,
off-policy, optimal policy, distributed algorithm

1. INTRODUCTION

We consider the problem of finding the optimal team policy in a
multi-agent reinforcement learning (MARL) scenario in a fully dis-
tributed manner. The situation under consideration is one in which
all agents form a team (to solve a common objective) and make deci-
sions independently of one another based on their local information
with the aim of maximizing the team’s performance. There are vari-
ous applications that follow this general framework. Some examples
are teams of robots whose objective might be to put out a fire, to
catch a criminal or to move a bulky item.

The contribution of this paper is the introduction of Diffusion for
Team Policy Optimization (DTPO), an algorithm that achieves state
of the art performance in team games. The algorithm is of the off-
policy kind (similar to Q-learning) and has convergence guarantees
(even when used in conjunction with a wide class of function ap-
proximators, although in this paper we only derive the tabular case
due to length constraints).

Notation: Matrices and vectors are denoted by upper case and
lower case letters, respectively. Bold font and calligraphic font are
used to denote random variables and sets, respectively. E g is the
expected value with respect to distribution g.

1.1. RELATION TO PRIOR WORK

There is a considerable body of work in MARL. Some of the no-
table works include Team Q-learning [1], Distributed Q-learning
[2], FMQ [3], Hyper-Q learning [4], OAB [5], Hysteretic Q-learning
[6], and the two algorithms presented in [7]. All these works are
based on Q-learning and unlike our algorithm can diverge when used
in conjunction with function approximation (which is fundamental

Emails: {cassanolucas,salghunaim}@ucla.edu and ali.sayed@epfl.ch.

in real world applications). Moreover, as opposed to our work, these
algorithms do not consider the possibility of communication among
agents. Furthermore, references [1, 2, 3, 5, 6] only consider the sit-
uation in which the reward is equal for all agents. Hyper-Q learn-
ing also has the inconvenience that every agent needs to have an
estimate of the parameterized and further discretized policies of all
other agents. Works [2, 6] have the limitation that they only work
in deterministic environments. The algorithms presented in [7] have
two difficulties: in the first place, precise synchronization for the
exploration periods among all agents is required, and secondly they
converge to any Nash equilibrium instead of the optimal Nash equi-
librium. Note that when there are multiple Nash equilibria, many of
these can be highly suboptimal strategies. We illustrate this possibil-
ity in the simulation. The work [15] studies a similar problem to the
one considered in this work but relies on the policy gradient theorem
and on actor-critic algorithms. These schemes work on-policy and
are data inefficient. More critically, the algorithms are only guaran-
teed to converge to equilibrium points that can be highly suboptimal
in team games where coordination is necessary — see the example
in the simulation section.

2. PROBLEM FORMULATION

We consider a team ofK decision makers (also referred to as agents)
that form a network. The network is represented by a graph in which
the edges represent the communication links. Agent k communi-
cates only with a subset of the agents in the network which we refer
to as the neighborhood of k (denoted as Nk). The topology of the
network is determined by some combination matrix C whose kn-th
entry (denoted by ckn) is a scalar with which agent n weights in-
formation incoming from agent k (note that ckn 6= 0 ⇐⇒ k ∈
Nn). We make the following assumption about the network struc-
ture (which will be used in Lemma 3).

Assumption 1. We assume that the network is strongly-connected.
This implies that there is at least one path from any node to any
other node and that at least one node has a self-loop (i.e., at least
one agent uses its own information). We further assume that the
combination matrix C is symmetric and doubly-stochastic.

The agents interact with an environment and with each other. We
model their behavior as a Markov Decision Process (MDP), which
is defined by the tuple (S,Ak,P ,rk). The symbol S is a set of global
states shared by all agents of size S = |S| and Ak is the set of
actions available to agent k of size Ak = |Ak|. We refer to A =∏K
k=1A

k as the set of team actions. Moreover, P(s′|s, a) specifies
the probability of transitioning to state s′ ∈ S from state s ∈ S hav-
ing taken team action a ∈ A and rk : S ×A×S → R is the reward
function of agent k. Specifically, rk(s, a, s′) = Erk(s, a, s′) is the
expected reward of decision maker k when the team transitions to

state s′ ∈ S from state s ∈ S having taken team action a ∈ A.
We clarify that we refer to the team’s action (i.e., the collection of
all individual actions) as a, while ak refers to the individual action
of agent k. It is important to note that the transition probabilities
and the reward functions of the individual agents depend not only on
their own actions but on the actions of all other agents. The goal of
all agents is to maximize the aggregated return defined as:

J(π) =

∞∑
t=0

γt

K

(
K∑
k=1

E π,P

[
rk(st, at, st+1)

])
(1)

where st and at are the state and actions at time t, respectively,
π(a|s) is the team’s policy and γ ∈ [0, 1) is the discount factor.
Accordingly, the value function is defined by [8]:

vπ(s)
∆
=

∞∑
t=0

γt

K

K∑
k=1

E π,P

(
rk(st,at, st+1)

∣∣s0 = s
)

(2)

which satisfies the Bellman equation [8]:

vπ(s) = E a∼π

[
1

K

K∑
k=1

rk(s,a) + γE s′∼Pv
π(s′)

]
(3)

where we defined rk(s, a) = E s′∼Prk(s, a, s′). The optimal value
function and optimal policies1 satisfy:

π•(a|s)=arg max
π(a|s)

E a∼π

[
1

K

K∑
k=1

rk(s,a)+γE s′∼Pv
•(s′)

]
(4a)

v•(s)= max
π(a|s)

E a∼π

[
1

K

K∑
k=1

rk(s,a) + γE s′∼Pv
•(s′)

]
(4b)

The max operator in equations (4) is inconvenient because it is non-
differentiable and in this paper we are interested in deriving gradient
algorithms. To circumvent this issue we use a differentiable approx-
imation to the max and define the quasi-optimal value function as:

v?λ(s)=λ(s)log

{∑
a

exp

(
K−1∑K

k=1r
k(s,a)+γE s′∼Pv?λ(s′)

λ(s)

)}
(5)

where λ(s) > 0 is a temperature parameter that controls the accu-
racy of the approximation. Note that v?λ(s) in (5) can equivalently
be defined using the conjugate of the log-sum-exp function as [9]:

v?λ(s)=max
π(a|s)

Ea∼π

[
K∑
k=1

rk(s,a)

K
−λ(s)logπ(a|s)+γE s′∼Pv

?
λ(s

′)

]
(6)

The max in (6) can easily be solved by differentiating and equating
to zero. Doing so gives the policy corresponding to (6), which we
refer to as the quasi-optimal policy:

π?λ(a|s)=
exp

[
λ(s)−1

(
K−1∑K

k=1r
k(s, a)+γE s′∼Pv?λ(s′)

)]
∑
aexp

[
λ(s)−1

(
K−1

∑K
k=1r

k(s, a)+γE s′∼Pv?λ(s′)
)]
(7)

1Note that an MDP may have many optimal policies; at least one of which
is deterministic and chooses an optimal action with probability one. Without
loss of generality, we assume that there is a unique optimal policy.

Remark 1. Note that limλ(s)→0 π
?
λ(a|s) = π•(a|s) and

limλ(s)→∞ π
?
λ(a|s) = 1/A.

We defined λ(s) as a function of the state because it provides an
effective way of trading exploration and exploitation [8]. The param-
eter λ(s) can be initialized at high values to encourage exploration
(since for high values of λ(s) expression (7) tends to the uniform
distribution) in unexplored states and slowly decays as those states
are explored.

Theorem 1. For small enough λ(s) it holds that:

arg max
a

π?λ(a|s) = arg max
a

π•(a|s) (8)

Proof. The proof is omitted due to length restrictions.

Since our main goal is to obtain the optimal policy π•(a|s), The-
orem 1 is of fundamental importance. This is because the theorem
guarantees that for small enough λ(s), an optimal action at every
state can be extracted from π?λ(a|s) (and hence an optimal policy
π•(a|s) can be extracted). The following lemma is an extension of
[10] to the multi-agent setting:

Lemma 1. v?λ(s) and π?λ(a|s) are the only pair that satisfy the fol-
lowing consistency equation:

v(s)− γE s′∼Pv(s′) =
1

K

K∑
k=1

rk(s, a)− λ(s) log π(a|s) (9)

Using (9) we can write the following quadratic optimization
problem (whose solution is π?λ(a|s)):

min
π,v

(
1

K

K∑
k=1

rk(s, a)−λ(s) log π(a|s)+γE s′∼Pv(s
′)−v(s)

)2

(10)

Unfortunately (10) cannot be used to learn π?λ(a|s) because rk(s, a)
and the transition kernel P are unknown and we want to derive a
stochastic algorithm that learns from interactions with the environ-
ment. Before we proceed to propose an alternative cost function
that relies on samples we note one key feature of (10), which is that
there is no expectation taken with respect to the policy of any of the
agents (the only expectation is taken with respect to P , which de-
pends on the MDP) and therefore transitions obtained following any
policy are useful to learn π?λ(a|s) (this is what allows us to derive
an off-policy algorithm). With this in consideration we propose the
following cost:

min
π,v

1

2
E(s,a)∼ψ

(
1

K

K∑
k=1

rk(s,a)−λ(s)log π(a|s)+γE s′∼Pv(s
′)

−v(s)

)2
(11)

where the minimization variables π and v refer to π(a|s) and v(s)
for all states and actions and ψ is some distribution under which
(s, a) pairs are sampled. Distribution ψ is determined by two fac-
tors: the individual behavior policies of the agents under which data
is collected and the experience selection strategy set for the replay
buffers [11] of each of the agents. Replay buffers store past data
collected by the agents which is later sampled by the learning algo-
rithm and have been shown to be essential to achieve stable and fast
learning [11], [12], [13]. The experience selection strategy refers to

the strategy that decides what data samples are stored in the buffer
(not all data can be stored due to the finite memory availability of the
buffer), and the strategy with which data is sampled from the buffer
for training. A uniformly sampled First In First Out (FIFO) buffer is
a popular experience selection strategy. An important characteristic
of ψ is that the behavior policies used by the agents for data col-
lection are potentially independent of one another, the only require-
ment for these policies is that every possible transition in the MDP
has a positive probability of being sampled. This is a key feature
for multi-agent learning because it means that data collection can
be done in a fully distributed manner without any communication
or synchronization requirements among the decision makers. Also
different agents can have different replay buffer sizes with different
experience selection strategies.

3. ALGORITHM DERIVATION

We now proceed to derive the algorithm. We start by expanding the
square in (11):

min
π,v

1

2
Eψ

[
2

(
1

K

K∑
k=1

rk(s,a)

)(
γEPv(s′)−λ(s)logπ(a|s)−v(s)

)

+

(
1

K

K∑
k=1

rk(s,a)

)2

+

(
γEPv(s′)−λ(s)logπ(a|s)−v(s)

)2]
(12)

Since the second term in (12) is independent of the optimization vari-
ables we can remove it without affecting the minimizer of the prob-
lem. To derive a distributed algorithm in which each agent uses only
local information, we let vk(s) and πk(a|s) denotes the local copies
of v(s) and π(a|s) available at k and instead solve the equivalent
problem:

min
πk,vk

Eψ

[K∑
k=1

rk(s,a)

(
γEPvk(s′)−λ(s)logπk(a|s)−vk(s)

)

+

K∑
k=1

1

2

(
γEPvk(s′)−λ(s)logπk(a|s)−vk(s)

)2]
s.t. π1 = · · · = πK v1 = · · · = vK (13)

As we mentioned in the previous section, we are interested in deriv-
ing a stochastic gradient algorithm compatible with function approx-
imation. Problem (13) is not suitable for this because of the squared
term. Due to such term, the gradient with respect to the variables
that parameterize the value function is a product of expectations,
and therefore a stochastic approximation of the gradient obtained
with samples by removing such expectations would be biased. To
address this issue we use the conjugate function [9] of the quadratic
and obtain the following saddle-point formulation:

min
πk,vk

K∑
k=1

Eψ

[
rk(s,a)

(
γEPvk(s′)−λ(s)logπk(a|s)−vk(s)

)
+max

ρk
ρk(s,a)

(
γEPvk(s′)−λ(s)logπk(a|s)−vk(s)

)
− 1

2
ρk(s,a)2

]
s.t. π1 = · · · = πK v1 = · · · = vK (14)

Lemma 2. The order of the expectation and max operator in (14)
can be interchanged.

Proof. The lemma can be proved by solving for both cases and
checking that both solutions are equal. We omit the calculations due
to length restrictions.

Algorithm 1: Distributed Team Policy Optimization at node k
Initialize: (vk,0, log πk,0, ρk,0) and λ(s) for all s.
For episodes e = 0, 1, 2 . . . do:

For environment transitions t = 0, 1, 2 . . . , T do:
Follow policy πk,e(at|st) and follow some store experience selection
strategy to decide whether or not to store the t-th transition
[st, at, rk(st, at), s′t]in the reply bufferRk .
Diminish λ(st)

For optimization iterations i = 0, 1, 2 . . . , I do:
Arrange transitions fromRk into subsets σk(s, a) such that transition
j belongs in σk(s, a) if (sj ,aj)=(s,a):
For every (s, a) pair do:

If σk(s, a) is not empty:

∇ρk(s,a)L =
1

|σk(s, a)|
∑

j∈σk(s,a)

[
γvk(s′j)−vk(sj)

−λ(sj)log πk(aj |sj)−ρk(sj , aj)
]

ρk,e+1(s, a) = ρk,e(s, a) + µρ∇ρk(s,a)L

For every (s, a) pair do:
If σk(s, a) is not empty:

∇log πk(a|s)L=
1

|σk(s, a)|
∑

j∈σk(s,a)

[
rk(sj, aj)+ρ

k,e+1(sj,aj)

]
φe+1
π,k (a|s) = log πek(a|s) + µπ∇log πk(a|s)L

log πk,e+1(a|s) =
∑
n∈Nk

cnkφ
e+1
π,n (a|s)

For every s do:
If σk(s) = ∪a∈Aσk(s, a) is not empty:

∇v(s)L =
1

|σk(s)|
∑

j∈σk(s)

[
rk(sj , aj) + ρk,e+1(sj , aj)

]
φe+1
v,k (s) = vk,e(s) + µv∇vk(s)L

vk,e+1(s) =
∑
n∈Nk

cnkφ
e+1
v,n (s)

Finally making use of Lemma 2 results in the following opti-
mization problem:

min
πk,vk

max
ρk

Eψ,P

K∑
k=1

[
rk(s,a)

(
γvk(s′)−λ(s)logπk(a|s)−vk(s)

)
+ρk(s,a)

(
γvk(s′)−λ(s)logπk(a|s)−vk(s)

)
− ρ

k(s,a)2

2

]
s.t. π1 = · · · = πK , v1 = · · · = vK (15)

Note that up to this point no approximations have been made and
hence problems (15) and (11) are equivalent in the sense that the
value of the optimizing variables πk and π are the same. A similar
saddle-point problem to (15) appears in [14], however, [14] deals
with a single-agent scenario and λ(s) = λ and hence cannot be used
as an efficient exploration strategy.

Lemma 3. We introduce the eigenvalue decomposition:

0.5(I − C) = UΣUT (16)

and define:

B
∆
= UΣ1/2UT (17)

v̄(s)
∆
= [v1(s), · · · , vK(s)]T (18)

π̄(a|s) ∆
= [π1(a|s), · · · , πK(a|s)]T (19)

where U is an orthogonal matrix and Σ1/2 is the element-wise
square root of Σ, which is a diagonal matrix with non-negative
entries, then under Assumption 1 it holds that [15]:

Bv̄(s) = 0 ⇐⇒ v1(s)=· · ·=vK(s) (21)

B log π̄(a|s) = 0 ⇐⇒ logπ1(a|s)=· · ·=logπK(a|s) (22)

Finally, we approximate (15) by the following penalized formu-
lation (for convenience we write it in vector form):

min
πk,vk

max
ρk

L(πk, vk, ρk)

L(πk,vk,ρk)=E
[
(r̄(s,a)+ρ̄(s,a))T

(
γv̄(s′)−λ(s)log π̄(a|s)−v̄(s)

)
− ‖ρ̄(s,a)‖2

2
+ ηv‖Bv̄(s)‖2+ ηπ‖B log π̄(s,a)‖2

]
(23)

where ηπ and ηv are two non-negative constants, the matrixB, v̄(s),
and π̄(a|s) are defined in Lemma 3 and:

ρ̄(s, a)
∆
= [ρ1(s, a), · · · , ρK(s, a)]T (24)

Using 2B2 = I − C (from Lemma 3), choosing ηπ = µ−1
π and

ηv = µ−1
v (where µπ and µv are two step-sizes that will be used

in the update equations) and applying mini-batch stochastic gradient
descent (and ascent) updates (incremental updates to π and v), we
get our proposed algorithm (see Algorithm 1). Similar arguments
to [16] can be used to prove convergence for small enough step-
sizes µv , µπ and µρ, however due to length constraints the proof is
omitted.

4. SIMULATION RESULTS

In this section we test the performance of DTPO and compare with
[17, Algorithm 1], which we refer to as Distributed Actor-critic
(DAC). Note that DAC is the only algorithm mentioned in the
introduction suitable for this problem.

We consider a simple yet challenging team game. In this game,
there are two agents (dog and monkey) who want to collect food
(steak and banana) as fast as possible with as little movements as
possible; to achieve this objective, they need to safely cross a river,
which can only be done by collaboration. Figure 1 (a) illustrates
the situation. Note that there are two buttons which when pressed a
bridge to safely cross the river appears. In the optimal strategy, the
dog presses the southern button for the monkey to cross the bridge
which in turn presses the northern button so that the dog can cross
(see Figure 1 (b)). Finally, each of the agents walks towards their
respective food. At every time step, each of the agents has five pos-
sible actions: move north, east, south, west or stay (if an agent moves
against an edge it just stays in place). When an agent falls into the
river or collects its food it spawns back in the lower left corner. The
reward structure for each of the agents is as follows: -1 is obtained
at every time step, -0.5 every time the agent moves in any direction,
-100 if it falls in the river and +50 if it collects its food (these re-
wards are additive, so if an agent moves and falls into the river it
collects a rewards equal to -101.5). There are a total of 21 positions
and 5 actions for each agent, hence the total state space for the team
is (21× 5)2 = 11025. The discount factor is set to γ = 0.97.

We implemented a game with only 2 agents because we wanted
a game that could be implemented in tabular form (note that in this
game, the state space grows exponentially with the number of agents,
hence function approximation becomes necessary to reduce the di-
mensionality of the state space) so that the optimal policy would

(a) Start state (b)

(c) (d)

Fig. 1. In (c), the dashed line is the performance of the optimal
policy, blue is DTPO and red is DAC.

be attainable by the learning agents and could be calculated exactly
to monitor the progress of the algorithm. Note that even with two
agents, this game is extremely challenging to solve for fully dis-
tributed algorithms due to the fact that there is a highly suboptimal
(yet easily attainable) Nash equilibrium, which is for both agents to
stay still at all times in the lower left corner (which where they start).
Therefore, algorithms that only guarantee convergence to equilib-
rium point are extremely likely to converge to this very poor strategy
(which is what happens with DAC).

For the DAC implementation we used βω = 10−3 and βθ =
10−4. The hyper-parameters of the DTPO implementation are as
follows. We set µρ = 1, µV = 1, µπ = 0.01 and λ(s) = 20 for
every state and subtracted 0.05 every time the state was visited until
λ(s) = 0.5. Since there are two agents, all combination weights are
given by cnk = 0.5. The constants T and I in Algorithm 1 were
set to 1200 and 1 respectively. In our experience selection strategy
transitions were included in the replay buffer if the state-action was
selected for the first time and the replay buffers of all the agents were
big enough to hold all these transitions.

The results of DTPO and DAC are shown in Figures 1 (c) and
(d). The former shows the performance of the greedy policy with
respect to the learned one for each of the algorithms for 12 time-
steps (enough to collect the food). Figure 1 (d) shows the mean
square difference between (7) (for λ(s) = 0.5 for all states) and
π1(a|s). Note that DTPO learns the optimal strategy while DAC
converges to the suboptimal Nash equilibrium. A video showing the
evolution of the policy during learning is available online2.

5. REFERENCES

[1] M. L. Littman, “Value-function reinforcement learning in
markov games,” Cognitive Systems Research, vol. 2, no. 1, pp.
55–66, 2001.

2Video available at EPFL’s Adaptive Systems Lab website
https://asl.epfl.ch/conferences/.

[2] M. Lauer and M. Riedmiller, “An algorithm for distributed re-
inforcement learning in cooperative multi-agent systems,” in
Proc. International Conference on Machine Learning (ICML),
Palo Alto, USA, 2000, pp. 535–542.

[3] S. Kapetanakis and D. Kudenko, “Reinforcement learning of
coordination in cooperative multi-agent systems,” in Proc.
AAAI/IAAI, Alberta, Canada, 2002, pp. 326–331.

[4] G. Tesauro, “Extending Q-learning to general adaptive multi-
agent systems,” in Proc. Advances in Neural Information Pro-
cessing Systems, Vancouver, Canada, 2004, pp. 871–878.

[5] X. Wang and T. Sandholm, “Reinforcement learning to play an
optimal nash equilibrium in team markov games,” in Proc. Ad-
vances in Neural Information Processing Systems, Vancouver,
Canada, 2003, pp. 1603–1610.

[6] L. Matignon, G. Laurent, and N. Le Fort-Piat, “Hysteretic Q-
learning: an algorithm for decentralized reinforcement learn-
ing in cooperative multi-agent teams.” in Proc. IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, San
Diego, USA, 2007, pp. 64–69.

[7] G. Arslan and S. Yüksel, “Decentralized Q-learning for
stochastic teams and games,” IEEE Transactions on Automatic
Control, vol. 62, no. 4, pp. 1545–1558, 2017.

[8] R. S. Sutton and A. G. Barto, Reinforcement Learning: An In-
troduction. MIT Press, 1998.

[9] S. Boyd and L. Vandenberghe, Convex optimization. Cam-
bridge University Press, 2004.

[10] O. Nachum, M. Norouzi, K. Xu, and D. Schuurmans, “Bridg-
ing the gap between value and policy based reinforcement
learning,” in Proc. Advances in Neural Information Process-
ing Systems, Long Beach, USA, 2017, pp. 2775–2785.

[11] L. Lin, “Self-improving reactive agents based on reinforcement
learning, planning and teaching,” Machine Learning, vol. 8, no.
3-4, pp. 293–321, 1992.

[12] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong,
P. Welinder, B. McGrew, J. Tobin, P. Abbeel, and W. Zaremba,
“Hindsight experience replay,” in Proc. Advances in Neural In-
formation Processing Systems, Long Beach, USA, 2017, pp.
5048–5058.

[13] T. de Bruin, J. Kober, K. Tuyls, and R. Babuška, “Experience
selection in deep reinforcement learning for control,” Journal
of Machine Learning Research, vol. 19, no. 9, pp. 1–56, 2018.

[14] B. Dai, A. Shaw, L. Li, L. Xiao, N. He, Z. Liu, J. Chen,
and L. Song, “Sbeed: Convergent reinforcement learning with
nonlinear function approximation,” in Proc International Con-
ference on Machine Learning (ICML), Stockholm, Sweden,
2018, pp. 1133–1142.

[15] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact diffu-
sion for distributed optimization and learning—part I: Algo-
rithm development,” IEEE Transactions on Signal Processing,
vol. 67, no. 3, pp. 708–723, 2018.

[16] S. V. Macua, J. Chen, S. Zazo, and A. H. Sayed, “Distributed
policy evaluation under multiple behavior strategies,” IEEE
Transactions on Automatic Control, vol. 60, no. 5, pp. 1260–
1274, 2015.

[17] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Başar, “Fully de-
centralized multi-agent reinforcement learning with networked
agents,” in Proc. International Conference on Machine Learn-
ing, Stockholm, Sweden, 2018, pp. 5867–5876.

