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ABSTRACT

We consider a distributed social learning problem where a
network of agents is interested in selecting one among a fi-
nite number of hypotheses. The data collected by the agents
might be heterogeneous, meaning that different sub-networks
might observe data generated by different hypotheses. For
example, some sub-networks might be receiving (or even in-
tentionally generating) data from a fake hypothesis and will
bias the rest of the network via social influence. This work
focuses on a two-step diffusion algorithm where each agent:
i) first updates individually its belief function using its private
data; ii) then computes a new belief function by exponentiat-
ing a linear combination of the log-beliefs of its neighbors.
We obtain analytical formulas that reveal how the agents’ de-
tection capability and the network topology interplay to in-
fluence the asymptotic beliefs of the agents. Some interest-
ing behaviors arise, such as the “mind-control” effect or the
“truth-is-somewhere-in-between” effect.

Index Terms— Social learning, weakly-connected net-
works, Bayesian update, diffusion strategy.

1. INTRODUCTION

In the network era, understanding the fundamental laws that
govern the mechanism of social learning is a challenge of
paramount importance. The social learning problem can be
broadly described as one involving interacting agents con-
structing their beliefs about a phenomenon of interest (learn-
ing process) by updating continuously their individual knowl-
edge through the exchange of information (social interaction)
with neighboring agents [1–6].

Two relevant models for social learning are the Bayesian
model [1, 7], where the agents implement Bayes’ rule to up-
date their beliefs by relying on some prior knowledge [1,8,9],
and the non-Bayesian model, where agents interact with their
neighbors and aggregate their beliefs into their own [10–13].

This work focuses on non-Bayesian learning. Several
useful distributed implementations have been proposed for
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non-Bayesian learning including, e.g., consensus implemen-
tations [13] and diffusion-type implementations, either with a
linear combination of beliefs [14] or with the linear combina-
tion of log-beliefs [4, 15]. The vast majority of works focus
on strongly-connected networks. For such networks, it is
known that all agents are able to reach a common belief about
the most likely state of nature. In contrast, the works [16, 17]
considered the case of weakly-connected graphs, which arise
over many popular social networks. Over these graphs, the
topology consists of multiple sub-networks where one first
category of sub-networks (called sending sub-networks) feeds
information in one direction to other network components
(called receiving sub-networks) without receiving back (or
being interested in) any information from them. This behav-
ior is not uncommon over social networks. For example, a
celebrity user may have a large number of followers but may
not be interested in following the beliefs of most of them.
It was shown in [17] that, over weakly-connected graphs, a
sending sub-network plays a domineering role by influencing
significantly the beliefs of the receiving agents (mind-control
effect), and irrespective of the local observations sensed by
the latter. In particular, receiving agents can be led to incor-
rect decisions, and they can also be made to disagree on their
inferences among themselves (discord effect).

The main contribution of the present work consists of ex-
tending the weak-graph analysis conducted in [17] to the class
of log-belief combination algorithms (and, as a result, we end
up extending the analysis for log-belief combination algo-
rithms conducted in [4, 15] to the case of weak graphs). We
characterize the limiting beliefs at each agent through analyt-
ical formulas that depend in a transparent manner on inferen-
tial descriptors (Kullback-Leibler divergences), and network
descriptors (limiting combination matrix). Some revealing
behaviors emerge from these formulas, which are examined
in Sec. 3 further ahead.

2. MAIN RESULT

We assume that the agents gather streaming observations,
{ξk,i}, where k is the agent index (k = 1, 2, . . . , N ) and i



is the time index (i = 1, 2, . . .). The data are assumed to
be independent across time, whereas they can be dependent
across agents. Moreover, we work under the heterogeneous
setting where the data ξk,i observed by agent k at time i are
generated according to some distribution fk(·). Following the
model proposed in [13,14], we assume that these distributions
are unknown. The main goal of the network agents is learn-
ing about a certain state of nature within a finite collection
of states Θ. To this end, each agent k possesses a family of
likelihood functions, {Lk(·|θ)}θ∈Θ, which, we remark, need
not to coincide with the true distributions fk(·). In a nutshell,
the choice of a particular state of nature will be determined by
the nominal likelihood function that gives the best match with
the observations. In order to rule out pathological cases, we
assume that all distributions and all likelihood functions of a
given agent share a common support. However, the supports
may vary across different agents.

The learning algorithm considered in this work is:

ψk,i(θ) =
µk,i−1(θ)Lk(ξk,i|θ)∑

θ′∈Θ µk,i−1(θ′)Lk(ξk,i|θ′)
, (1)

µk,i(θ) =
exp

{∑
`∈Nk

a`k lnψ`,i(θ)
}

∑
θ′∈Θ exp

{∑N
`=1 a`k lnψ`,i(θ′)

} . (2)

Each computation in the above algorithm is repeated for each
admissible hypothesis, θ ∈ Θ. We see that agent k first up-
dates its local belief, µk,i−1(θ), by incorporating the local
likelihood Lk(ξk,i|θ), which is based on the fresh private ob-
servation, ξk,i, available to agent k at time i. This step leads
to an intermediate belief ψk,i(θ).

Then, agent k aggregates the intermediate beliefs received
from its neighbors. Differently from [17], the second step
in (2) combines linearly the logarithm of the intermediate be-
liefs, lnψ`,i(θ), in the neighborhood of agent k, i.e., for all
` ∈ Nk. Finally, exponentiation and normalization are re-
quired to give back an admissible belief.

Before stating our main results, it is necessary to introduce
some useful quantities. First we introduce the combination
matrix, A, which collects the combination weights [a`k], and
describes the connection features of our problem. We assume
a limiting matrix, A• , limn→∞An, exists.

Next we introduce a quantity that describes the inference
features of our problem, namely, the Kullback-Leibler (KL)
divergence between the true distribution fk(·) and the likeli-
hood function Lk(·|θ), for all θ ∈ Θ:

Dk(θ) , Ek
[
ln

fk(ξk)

Lk(ξk|θ)

]
, k = 1, 2, . . . , N, (3)

where the expectation is computed under the statistical model
fk(·), and we write ξk in place of ξk,i to highlight identical
distribution across time.

Finally, we introduce a quantity that combines the net-

work centrality and the inference capability:

Dk(θ) ,
N∑
`=1

a•`kD`(θ) (4)

We remark that Dk(θ) depends on the particular agent k,
and represents the convex combination, through the limit-
ing weights [a•`k], of the KL divergences between the true
distributions over the various agents, f`(·), and the tentative
likelihood functions, L`(·|θ).

Motivated by the results from [14, 17], the following
lemma, whose proof is omitted for space constraints, and
the subsequent theorem, generalize the convergence results
from [15] to the case of heterogeneous data and weak graphs,
and the convergence results from [4] to the case of weak
graphs. In what follows, we always assume that, at time
i = 0, the agents have no strong confidence to reject any
hypothesis, and, hence, they assign µk,0(θ) > 0 for all θ ∈ Θ
and k = 1, 2, . . . , N .

Lemma 1 Assume that, for all θ ∈ Θ, and k = 1, 2, . . . , N :

Ek
∣∣∣∣ln fk(ξk)

Lk(ξk|θ)

∣∣∣∣ <∞. (5)

Then, for all θ, θ′ ∈ Θ, we have:

lim
i→∞

1

i
ln
µk,i(θ)

µk,i(θ′)

a.s.
= Dk(θ′)−Dk(θ) (6)

where a.s.
= denotes almost-sure convergence. �

The result of Lemma 1 is useful to determine the asymp-
totic behavior of the beliefs at the individual agents. In order
to understand why, let us consider the case that 1

i ln
µk,i(θ)
µk,i(θ′)

converges to a strictly positive quantity. This implies that
µk,i(θ

′) converges to zero (since the numerator is bounded
by 1). This property is exploited to prove the next theorem.

Theorem 1 (Belief collapse) Assume that, for each k =
1, 2, . . . , N , the function Dk(θ) admits a unique minimizer:

ϑ•k = argmin
θ

Dk(θ). (7)

Then:

lim
i→∞

µk,i(ϑ
•
k)

a.s.
= 1, for all k = 1, 2, . . . , N (8)

Proof. Since by assumption ϑ•k is the unique minimizer of
Dk(θ), from (6) we can write, for all θ 6= ϑ•k:

lim
i→∞

1

i
ln
µk,i(ϑ

•
k)

µk,i(θ)

a.s.
= Dk(θ)−Dk(ϑ•k) > 0. (9)

In light of the observation preceding the claim of this theorem,
Eq. (9) implies that µk,i(θ)→ 0 for all θ 6= ϑ•k. On the other



hand, we know that it is not possible that the belief function
vanishes at all θ’s because µk,i(θ) is a probability measure
over Θ. As a result, we conclude that, at each agent k, the
belief function converges necessarily to 1 at ϑ•k. �

We remark that, since the quantity ϑ•k depends upon the
agent index k, different agents can in principle be in discord,
since they can coalesce towards different hypotheses.

In this conference article we examine some interesting
nontrivial behaviors that emerge over weakly-connected net-
works when the assumption of a unique minimizer for Dk(θ)
holds. This assumption is not the most general case that can
be addressed. However, in view of (3), coincidence of the av-
erage divergences for two distinct values of θ requires some
ad-hoc combination of: i) conditions determined by the net-
work topology (through the limiting matrix weights, a•`k) and
ii) conditions determined by the difficulty of the detection
problem (through the KL divergences). As a result, the oc-
currence of a non-unique minimizer seems to be the exception
rather than the rule.

3. WEAKLY CONNECTED NETWORKS

We divide the network into a sending component, S ,⋃S
s=1 Ns (i.e., internally composed of S disjoint components

Ns), and a receiving component, R ,
⋃R
r=1 NS+r (i.e.,

internally composed of R components NS+r). We assume
that each of the sending sub-networks is strongly connected,
whereas each of the receiving subnetworks is assumed to be
connected (not necessarily strongly connected). Communica-
tion from the sending component to the receiving component
is permitted. In particular, we assume that each receiving
sub-network is connected to at least one sending agent. In
contrast, communication in the reverse direction is forbidden
and communication from one sending sub-network to another
is forbidden. Finally, communication among the R receiving
sub-networks is permitted.

According to the above description, the combination ma-
trix A corresponding to a weakly-connected network admits
the following block representation:

A1 0 . . . 0 A1,S+1 A1,S+2 . . . A1,S+R
0 A2 . . . 0 A2,S+1 A2,S+2 . . . A2,S+R

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.
. . .

.

.

.
0 0 . . . AS AS,S+1 AS,S+2 . . . AS,S+R
0 0 . . . 0 AS+1 AS+1,S+2 . . . AS+1,S+R
0 0 . . . 0 AS+2,S+1 AS+2 . . . AS+2,S+R

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.
. . .

.

.

.
0 0 . . . 0 AS+R,S+1 AS+R,S+2 . . . AS+R


(10)

Figure 1 offers a graphical illustration of the weakly-connected
paradigm. It has been shown in [16] that the limiting combi-
nation matrix has the following structure:

A• =

[
E EW
0 0

]
, (11)

where E = blockdiag
{
p(1)1>N1

, p(2)1>N2
, . . . , p(S)1>NS

}
is
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Fig. 1: One example of a weakly connected network.

a block diagonal matrix that stacks the Perron eigenvectors
p(s) associated with each sending sub-network As, and W =
TSR(I − TRR)−1, with TSR and TRR being the upper-right
block and the lower-right block in (10), respectively. Let us
now focus on a generic agent belonging to a receiving net-
work. Using (11), the result of Theorem 1 specializes, for all
k ∈ Ns, with s = 1, 2, . . . , S:

ϑ•k = argmin
θ

∑
`∈Ns

p
(s)
` D`(θ), (12)

and for all k ∈ R, into:

ϑ•k = argmin
θ

S∑
s=1

∑
`∈Ns

[EW ]`kD`(θ). (13)

Note that, given an agent k in the receiving sub-network
NS+r, then [EW ]`k is strictly positive for all agents ` in the
sending sub-networks Ns that are connected to NS+r.

Equation (13) reveals a remarkable analogy with what was
proved in [17]: the limiting belief, at the receiving agents, is
determined only by attributes of the sending network. How-
ever, there are also some nontrivial novel behaviors emerging
from our results. One relevant aspect pertains to the “mind
control” problem. Let us initially refer to the simplest case
of one sending network and one receiving network. For ex-
ample, the sending network might represent some big media
network, whereas the receiving network might represent the
audience of such media. Assume that the sending network is
interested in controlling the audience by leading them to cer-
tain (maybe fake) conclusions. To this end, all the agents of
the sending network generate fake data according to a distri-
bution f`(·) = L`(·|θfake), which, in view of (3), means that
D`(θfake) = 0 for all ` = 1, 2, . . . , S. Substituting this result
into (13), we see that ϑ•k = θfake for all k in the receiving net-
work, and we conclude that the sending network is successful
in controlling the “mind” of the receiving agents, irrespective
of the receiving agents’ attributes (in centrality and detectabil-
ity capacities).

However, the mind control effect can become more in-
tricate in the general case when there are more sending sub-
networks. This can be illustrated even with the simplest
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(b) Beliefs at distinct agents (time-evolution).
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(c) Limiting beliefs at distinct agents.

Fig. 2: Example over a weakly-connected network.

example of two sending agents, one receiving agent, and
three hypotheses, θ1, θ2, θ3. For the sake of concreteness,
assume that the data of sending agent 1 are drawn according
to L1(·|θ1), whereas the data of sending agent 2 are drawn ac-
cording to L2(·|θ2), which reflects the situation where the two
agents have conflicting requirements (i.e., data from distinct
hypotheses). Finally, assume that both sending agents are
connected to the receiving agent. Using this model to com-
pute the average divergence perceived by the receiving agent
3, we get: D3(θ1) = 0.5D2(θ1), D3(θ2) = 0.5D1(θ2),
and D3(θ3) = 0.5 [D1(θ3) + D2(θ3)]. Under this situation,
if D3(θ1) is the minimum, then network 1 gains the mind
control. Conversely, if D3(θ2) is the minimum, then net-
work 2 gains the mind control. However, there is a third
possibility: if D3(θ3) is the minimum, then the receiving
agent chooses an option that is not promoted by either of
the sending sub-networks. It is useful to explore how this
particular (and perhaps unexpected) behavior is possible. To
this aim, we resort to the following example. Assume that
the receiving agent wants to bet on a soccer match between
team A and team B. Assume also that a group of (send-
ing) agents promotes victory of A, whereas another group
promotes B. The receiving agent decides to manage these
conflicting observations according to the philosophy that “the
truth is somewhere in between”, namely, he bets on draw. In
other words, if the discrepancy between the two hypotheses
promoted by the sending networks is too high, the receiv-
ing agent can be driven to opt for the hypothesis that best
reconciles the discordant solicitations received from the envi-
ronment. Such enhanced capability of fighting against mind
control is in contrast with what is shown in [17] for the case
of linear combination of beliefs, where no credit is given to a

draw, since the belief function of the receiving agent assigns
some credit to the victory of A, and some (complementary)
credit to the victory of B. In a sense, this way of handling the
conflict amounts to a form of soft decision.

4. ILLUSTRATIVE EXAMPLE

We consider the weakly-connected topology displayed in the
leftmost panel of Fig. 2, where we have two sending sub-
networks (red and blue), and one receiving sub-network (ma-
genta). To keep things simple, the distributions of the data are
chosen within the same class of nominal likelihood functions
used by the agents. In particular, these likelihood functions
correspond to Gaussian distributions with possible expecta-
tions θ1 < θ2 < . . . < θ5. The true hypotheses are: θ5

for the red sending sub-network, θ3 for the blue sending sub-
network, and θ2 for the receiving sub-network.

Panel (b) illustrates the time-evolution of the beliefs of
each agent, for the exponentiated log-belief combination al-
gorithm, and for the linear-combination algorithm from [17].
In panel (c), we display the corresponding limiting beliefs.
We see that the simulated beliefs for the log-belief algorithm
match the theoretical predictions. In particular, we observe
that the sending agents converge to the true parameters that
generate their own data. For what concerns the receiving
agents, two important features emerge. First, they all collapse
to a particular hypothesis. Second, a peculiar form of discord
is observed, where agent 9 converges to θ3 (the true param-
eter of the blue sending sub-network), while agents 7 and 8
converge to θ4, which is neither the true parameter of the re-
ceiving network, nor a parameter of the sending network.
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