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LECTURE #20

LATTICE FILTERS

Sections in order: 41.1-41.3
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FORWARD AND BACKWARD ERRORS

TABLE 40.1 A listing of the time and order-update relations derived in Secs. 40.2-40.5.
All these updates are independent of data structure.

5 (i) = Aef (i — 1) + | far ()2 /3 (d)
&b (i) = Ay (i — 1) +|9M(e>| [y (i)
Enr (i) = A& (i — 1) + |bar (3)* /Am (i)

=

Enr41(1) = Ena (@) — |par (i | z’Cmi )
&by 41 (i) = €4, (i) — |8 ()] / Ly (4)
(i) = E1,(6) — 1om (3)]7 /Ch (4)

pa (i) = Apar (i — 1) + 73 (4)bar () /yaa ()
Sar(i) = Aoar (i — 1) + Far(i)bar(4) /s (4)

k(i) = pigli )/CIM'[ )
’*ﬁ{(lj = Opr (1 r"CM( )
hﬁf(lj = (1) fCﬁ{( j

ra+1(8) = rar (i) — mar(2)bar(4)
bar+1(i) = bar (i) — ﬂi{{'ijfﬁf('ij
Frasa(i) = far(i) — rhy (i)bar (3)
yar41(i) = yar () — |bar(3)]% /G (2)
yu+1(2) = Fnm(2) — | far (3)] f"‘:gf'il}
Fa41(i) = Aar (8) — |bar (8] /C3r (4)
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MOTIVATION

Figure 41.1 illustrates how the error variables {rps(7), bas(2), far(7) } are related in terms

of the reflection coefficients {xnz(7), Hif(i),ﬁif(i)}, as was described in Chapter 40. It

should be noted that the recursions listed in Table 40.1 help characterize almost fully the
operation of the structure shown in the figure. The only missing piece of information is
to know how to update the error sequence {by;(7)}. This fact is indicated schematically
in Fig. 41.1 by the boxes with question marks. It is the update of these variables that
is determined by data structure, and figuring out their update is the key to achieving an

efficient algorithm; by efficient we mean O(M ) operations per iteration for a filter of order
M.
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MOTIVATION

u(i,0)

FIGURE 41.1 Relations among the residuals {rar(¢), far (i), bar(i)}. The boxes with
question marks indicate that we still need to develop a relation between {bs (i), bar(i)}.
This relation turns out to be a function of data structure. For example, if the regressors
have shift structure, then the question marks will be replaced by pure delays, > *.
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DATA STRUCTURE

41.1 SIGNIFICANCE OF DATA STRUCTURE

To illustrate how the evaluation of bys(7) is dependent on data structure, we now focus
on the case of regressors with shift structure, i.e., we assume that the entries of s ; are
delayed versions of an input sequence {u(-)} so that

UM; = [ w(@) w(i@—-1) ... wi—M+2) u(i—M+1) ]
uprivr = | w(@i+1) u(@) w@—1) ... u(i—M +2) |

Comparing the expressions for both us ; and was ;41 we see that uz ;41 is obtained from
upr,; by shifting the entries of the latter by one position to the right and introducing a new
entry, u(i + 1), at the left. In this way, the data matrix H v ,; Will also exhibit structure,
e.g., for M = 4, it will have the form (compare with (40.18)):
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DATA STRUCTURE

w(©) 0 0 0
u(l)  u(0) 0 0
g u(2)  w(l) u(0) 0
4i = | w(3)  wu(2) u(l) u(0)

w(i) w(i—1) w(i—2) w(i—3) |
where we are assuming «(j) = 0 for j < 0. Observe that every column of H )y ; is a shifted
version of the previous column, i.e., every column is obtained from the previous column by
shifting its entries downwards by one position and by adding a zero entry. This means that

any two successive columns of Hyy ;. say {x; ;.2 ;41 |. are related by the lower triangular
shift matrix 7, i.e.,

9‘33:4_1’1' = Ziﬁjji (411)

where 7 is the (¢ + 1) x (¢ + 1) lower triangular matrix with zeros everywhere except for
unit entries on the first sub-diagonal, e.g., for z = 3,
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DATA STRUCTURE

0
I 0
1

0
I 0

Now, as in (40.31) and (40.45), we partition Hps41; as
HM—|—1,1’ — [ Lo,q HM,@' ] = [ HM,@' TN ]

to find that, in view of (41.1), the following relation holds between {HM,E-,HMJ-}:

In addition, the following relation also holds between {H s ;. Hyr -1 }:

ZHM#-—l 0 ] (41.3)
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DATA STRUCTURE

With these relations we can now relate the residual vectors E_)M,i and byy ;. Thus recall their
definitions:

7 _ 7 b - b
brvi = w4, — Huawyy by = ami — Haiwyy (41.4)
where
whr, = Puili Nivae Pri = (AN + Hyp  AiHag ) ™!
b i1 —1
wyr: = PuaHpy N P o= (NI + Hy (AiHog )

(41.5)
Substituting (41.2) and (41.3) into the expression for PM’i we obtain

1
B, i * 0 z * —
Py = ()\ I+ [ 0 Hpypooy | A [ Huroos ]) = (AN +Hyy ;g NiciHario1) !
That is,

Pyvi=Puaia
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DATA STRUCTURE

Whr 4

SO that

bar i

UCLA ELECTRICAL ENGINEERING DEPARTMENT

Substituting this result, along with (41.1), into expression (41.5) for -wim we obtain

* *TT7
Pﬂf?i_j[Hﬁf,iZ H«iZ:ITMFJ'

# I
PrricaHyy i aWicizaria

b
Wari—1

7 b
rar41, — Hapawyy

b
Zani — ZHwnwpp g
0 0 b
g Whri—1
| TAi—1 M,i—1 /

=, ]
- bari—a

and, consequently, by equating the last entries of both sides,

bar(i) = bas(i — 1) (41.6)

EE210A: ADAPTATION AND LEARNING (A. H. SAYED) 1 U




DATA STRUCTURE

In other words. we find that in the shift-structured case, the residual errors {bys(7)} are
time delayed versions of {by;(7)}. In a similar vein, it can be verified that

£8,(3)=85(c-1), Am@E)=vm(i—1) (41.7)

Interpretation of the Estimation Errors

In the shift-structured case, we can provide additional insights into the meaning of the «
posteriori estimation errors { far(2), bar (2), rar(2) }. Indeed, in this scenario, we have from
the definitions of these errors,

far(i) = (i) —upim1wly,
bar(i) = wu(i — M) — uM’iwﬁM
ra(i) = d(i) — uprawnr
where
upry = | w(i) w(i—1) ... wu(li—M+1) |
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DATA STRUCTURE

In this way, far(7) can be interpreted as the forward prediction error in estimating ()
from the M past values, while by (7) can be interpreted as the backward prediction error
in estimating u(z — M) from the M future values.
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A-POSTERIORI LATTICE FILTER

Algorithm 41.1 (A posteriori lattice fiﬂer} Let 0= A = 1 be a forgetting
factor and define Iy =y~ Ydiag{ A=, A~%, ... A~ M+ Cansider a refer-
ence sequence {d(j)} and a regressor sequence {uar ;1 with shift structure
and of dimension 1< M, say uar; = [ ulf) wij—1) ... u(j—M+1) ]
For each ¢ = 0, the M —th order a posterdon estimation error, rag(i) =
d{#) —wnr stwag i, that results from the solution of the regularized least-squares
prablem:

min [}L""lu‘fﬂumu + Zk‘ ed(F) — wargwng | ]

W o

can be computed as follows:

1. Initialization. From m =0to m = M — 1 s=t:

O —1) = pm(—1) =0, 7m(-1)=1, bn(-1]=0
-1y =n"A7" (-1 =g tam
2. Fori = 0, repeat:

* et wld) = 1, bolé) = folé) = ulé), and roli) = d(7)

# From m =0tom=M — 1, repeat:

L = ML=+ [l frmli— 1)
Chli) = AL (E— 1)+ (b () (3]
(i) = Mp(i— 1)+ 2 ()b (i — 1) f4m(i — 1)
prali) = Apm(i — 1)+ v (#) b (i) /v ()
Vet 1(i) = Ymld) = (B ()| /L (4)
mE() = dald)/Ch ()
afli) = an()/Chi—1)
Amli) = ph(d) k()
bag1(i) = boli— 1) — ki (i) fin (i)
fontl(i) = fali) = sl ()b li — 1)
Feng1(1) Frald) = Foa )b ()
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A-POSTERIORI LATTICE FILTER

d(i r1(1 ra(1 r3(1 rar(i
(i) (i) () _ (%) ~ (i)

u(1)

FIGURE 41.2 The a posteriori-based lattice filter.
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A-PRIORI LATTICE FILTER

41.3 A PRIORI-BASED LATTICE FILTER

€M i
B i
QM i
| vy =

Algorithm 41.1 relies on order-updates for the a posteriori estimation errors denoted by
{rar(i), far(2), bar(i)}. A similar algorithm can be obtained by relying instead on a priori
errors, which are defined as follows.

Refer again to Sec. 40.5 and to the data matrix H 574 ; with its equivalent partitionings:

HM+1,1‘—[$D,1' T1q - TM@} — HMt TM@}

We define the a priori residual vectors as follows:

a priori residual from projecting v; onto Hy ;

a priori residual from projecting x s ; onto Hyy ;

a priori residual from projecting xg ; onto H M,i

a priori residual from projecting x 741 ; onto H M.
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A-PRIORI LATTICE FILTER

where the projection problems for {eyy ;. 3ar.; } employ the regularization matrix NI,
while the projection problems for {a s ;, ;iu_ﬁ-}» employ the regularization matrix A*TI;.
The term a priori in the above definitions means that prior weight estimates are used in the
definition of the errors. More specifically (compare with (40.59)),

. . ] I
EMi  — Yi — HM,in,i—l AMq: = r0,; — Hm AWAri—1
. b 3 . 7 b
By = Thmi1i— HM+1,1"1UM’1'_1 Bumi = TMi1— HM,in,z’—l
where now w’ ..., for example, is the solution to a recularized least-squares problem of
: M,i—1 =
the form
- —1 R H# N . 7 — . ] ETE
min p\z u-ifﬂmu-f{f + (20-1 — Hﬂf,z‘—lug)*ﬂz'—l(«1-0,1'—1 — HMJ—W'L)
Wy
(41.8)

Comparing this cost function with (40.60) we see that z is replaced by 2 — 1. The last
entries of the above residual vectors are denoted by {eas (). aar (7). Bar(7), Bar(i)} and
they are referred to as the a priori estimation errors. They are, of course, related to the
corresponding a posteriori errors (40.61) via the associated conversion factors:
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A-PRIORI LATTICE FILTERS

ra (1) = em(i)ym (i), bar(d) = Bar(d)var (2)
(@) = oan()Fne (i),  bar(é) = Bar(i)yne (i)

By following arguments similar to what we did in Secs. 40.2-40.4, and which led to
(40.63), it can be verified that these a priori errors satisfy the following order-update rela-
tions in terms of the same reflection coefficients {x (%), ﬁ:ﬂf(i), k8, () }:

em+1(i) = em(?) —rp(i —1)Bm(2)
anry1(8) = am(i) — k(0 —1)Ba (i)
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A-PRIORI LATTICE FILTERS

Again, relations (41.9) hold irrespective of data structure. However, as was shown in
Sec. 41.1 for the variables {by;(2), bas(7)}, when the regressors possess shift structure it
will also hold that

B (i) = Ba(i—1)

[n addition, the a priori estimation errors {aps(7), Bar(i), epr(2) } will admit the following

interpretations:
an(i) = (i) —upriqwly ;4 (41.10)
Bu(i) = w(i—M)—unwi (41.11)
EM(Z) = d(i)—uM’in’i_l (4112)

[n other words, apz () denotes the forward prediction error in estimating w(7) from the M
past values using the prior weight estimate, -u.rii,‘z._l, while 35, (7) denotes the backward
prediction error in estimating «(z — M) from the M future values using the prior weight
estimate, w4, ;. The resulting a priori-based lattice filter is listed in Alg. 41.2 and shown

in Fig. 41.3.
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A-PRIORI LATTICE FILTERS

YD ¢ -0 -0l
A A A A_

ko(i)

d(i 1(7 ea(i es(i en (1
(i) (%) (i) (i) ~ (%)

(1) 3o(i)

:

FIGURE 41.3 The a priori-based lattice filter.
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4 A-PRIORI LATTICE FILTERS

Algorithm 41.2 (A prior lattice filter) Consider the same setting of Alg.
41.1. For each ¢ = 0, the M —th order 2 priori estimation error, eps(i) =
d{d) — uag swagi—1, that results from the solution of the regularized least-
squares problem

i—1
min [}L wiarwar + z}.' 1=31d(5) - Hﬂ.‘f,jiﬂ_ﬂ:flz]
§=0

can be computed as follows:

1. Initialization. From m=0to m =M — 1 set

(1) = poa(—1) =0, ypu(—1)=1, Bn(-1)=0
A1) = kb (—1) = Kpn(—1) =0
Chi-1)=n 1A% (-1 =p1A-m1

2. For i = 0, repeat:

e Set y(é) =1, foli) = ao(é) = u(é), and ep(i) = d(Z)

# Fromm =0to m=M — 1, repeat:

L) A= 1)+ Jan (8) [Pyl — 1)
Cnli) = A= 1)+ | (8 Pr)
dml(i) = Abm(d — 1)+ 05, (i)Fnli — 1)ym(i — 1)
Prmli] = Apm(i — 1)+ el () 5Fm(i)1m()
Brp1li) = Buli = 1) = rp (i = Yo(d)
i 1(i) = ald) = wL (i = 1)8n(i — 1)
Emtill] = Emli) — Kt —1)3,.04)
Yot 1) = Yonli) = [Vl ) B (D) [* /()
Foli) = i)/ CL04)
b)) = 5;(134’(:.51 i—1)
Firm (1] P i) /Ch ()
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ERROR-FEEDBACK FILTERS

TABLE 42.1 A listing of time and order-update relations for the a priori estimation errors;
these updates are independent of data structure.

(i) = NJp (i — 1) + anr (3) P00 (4)
&3r(i) = A&y (0 — 1) + 180 (8) Pyar (4)
Er(i) = AR (i — 1) + | Bar (1) 201 (4)

Em+1(i) = nfM+1 (1) — |par (3)* /CRr (4
fMJrl(ij fM () — |nr (7 )| ."“:ﬁ{ )
fM+1(?J fM () — [Ona (7 ]| /{:M i)

rm (i) = ky (i — 1) + By (@) ym()err+a(i (1)/C3y (3)
K (4) = Ky (0= 1) + B (D)m (F)anr41(7) /GM i)
ko (7) = Kby (i — 1) + aig(8)Fa (1) Brrga (i) ﬂ:M (2)
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A-POSTERIORI ERROR FEEDBACK FILTER

Algorithm 42.2 (A posteriori error-feedback filter) Let 0 = A < 1 be a
forgetting factor and define ITyy = n~tdiagf A= A%, A~ Con
sider a reference sequence {d(j)} and a regressor sequence {upg ;| with shift
structure and of dimension 1< M, sayunr; = [ w(j) ... wij—M +1) ].
For each ¢ = 0, the M —th order a posterion estimation error, rapii) =
i &) —ng stwag,;, that results from the sclution of the regularized least-squares
problem:

]11].1'1 }L'+1‘LL-M]:[M?LM + E}L' I|dy :I—HMJ?.L:MF
3=

can be computed as follows:
1. Initialization. From m=0to m = M — 1 s=t:
. L bn(=1)=0, sf(-1)=rp(-1)=ru(-1)=0
) =g N2 (1) =yt
2. Fori = 0, repeat:

e Set qo(i) = 1, bolé) = fol#) = u(z), and ro(i) = d(i)

e Fromm =0to m=M — 1, repeat:

CE = ML =0+ | fald) P i — 1)

i) = A= 1) + b () ()
Yot 1() = Yol d) — Bl /C0(3)

) _ el _(0ra(i)

i) = Lt [enti -+ O

wf (i) = "I"m+1 i—1 . ;tz_ljfml:zj

mi) Yl —1 [ }L"r'ml:z— )¢k (i —2]]

b mn@ [ g fa@beG =)

m(®) Tmli — 1) [ = Mymli — 13¢E, (2—1)]
Tatli) = Twlf) = fiml2)bm(7)

&m+1|:?.':| = &ml:?.'_l:l H?n ?':I.f |::|
frtali) = foli) = wf (510 (i = 1)
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A-PRIORI ERROR FEEDBACK FILTER

problem:

can be computed as follows:

2. For i = 0, repeat:

1. Initialization. From m=0to m =

“."ml:_lj =1
K1) = b,

Chi-1) =pia2,

Algorithm 42.1 (4 priori error-feedback filter) Let 0 < A < 1 be a for
getting factor and define Ty = p~tdiag{ A2, A%, ...
a reference sequence {d(7)} and a regressor sequence {uag ;| with shift struc-
ture and of dimension 1 » M, say war
For each @ = 0, the M —th order a priori estimation error, epr(d) = dié) —
wafitari—1, that results from the solution of the regularized least-squares

i—1

in | AT X TI1d(5) — upg g 2
min | Mewjeywar + Z (7] — wng, jrng |

§=0

ﬂr’f—].SEt:
Bm(—1) =
1) = Rm( 1) =
&) S

* Set qold) = 1, Soli] = aalé) = u(#), and eafi) = dii)
o From m =0to m=M — 1, repeat:
L) AL = 1) + [o(d)Prym(i — 1)
Cnli) = Al = 1) + | Bunl@) Pm(3)
Brtrli) = Bmli = 1) = K5, (i = Dam(?)
Op1li) = (i) — sl (i — 1)3.(i — 1)
Emtilll = enli) — a1 — 113.01)
fmli) = Kunli = 1) 4 B (i (0)/E (1)
sh(i) = wL(=1) 4+ B = (i = Damga (i)/G - 1)
(i) = (i = 1) 4 @b (@i — 1) B () /¢ 1)
Tt (i) = ol ) = (@18 () /0 (3]

[ uj)

CATIMAU Consider

ulj —M+1) ].
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NORMALIZED FILTERS

42.3 NORMALIZED LATTICE FILTER

The lattice filters studied so far require the evaluation of three reflection coefficients,
F oy b N . (a
[kdr (@), k5, (0), kar (i)}

There is another equivalent lattice form that employs only two reflection coefficients. We
denote these new coefficients by {x$,(7), k(%) }.
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ANGLE-NORMALIZED ERRORS

Define also the normalized estimation errors

Vi) = bar(i)/ 1) GG ()
biri) 2 ()3 (DG (0)
W) 2 fu()/ G 6)
(i) 2 (@) /06 6)
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NORMALIZED REFLECTION COEFFICIENTS

The normalized reflection coefficients that we are interested in are defined as follows:

0 2 0 ) S0 ) SO
RGOSR0 112(0) 2 0)

RN ) PR

W) = g amg = O Amg

for K5, (7).

UCLA ELECTRICAL ENGINEERING DEPARTMENT

That is, we scale the forward projection coefficient ﬁ,M( i) by CWQ( ) /C ffﬁ( ).

[ikewise
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| NORMALIZED LATTICE FILTER

Algorithm 42.3 (Normalized lattice filter) Consider the same setting of
Alg. 42.2. For each ¢ = 0, the M —th order a posteriori and a priari errors,
Veps(i), vag (11} can be ccmputed as follows:

1. Initialization. Set

G- =n" A7 G-l =A% B (—1)=0 form=0,... .M —1

2. Fori =0, repeat:

& Set
i) = Ah(i— 1)+ |ufi :|| Coli) = Mali — 1)+ |d(i)[*, ou(d) = o ()
Byi) = ) =u(i) /G, r(i) = did) /¢ (), Toli) =1
e From m =0to m=M — 1, repeat:
Phli) = VI [BLOF, phid) =1 [foiF
pali) = A1 [rm(0)2
Ro(i) = wa (i — Uph(i — Upl (i) + fi(i)b,t (i — 1)
Ao (i) = K (i — 1) (d)pm (i) + byt (i) lzz:I
pali) = V1—[ra(0F, phli)=v1—|ro()F
1
P I —— L L Y T L )
rhald) e ) — A DB(0)
1
" 3y = 15” z—l —.PL“ U
Y oali) Pmﬂmﬂ( ( Vot
i - . 1 L i ) ¥ i—
m+1( :I - Pﬁ,.':’ﬂ— 1:'15';(3:' (fml: :I ml: :IH |: 1:':'
Ttt(3) = Tonli) PE D)) At () = (i) (pE ()
TmgtlE) = Fgali)rm (i)
Is1'-"4+1|:3.:I = 7'm+1|:i:|.’r"f'm+1|:é:|
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ARRAY LATTICE FILTERS

an (i) £ ()R () (43.2)
a () = PGS, () (43.7)
a0 2 GGk (43.12)
kar(8) = an (4) /30 (0) (43.6)
R4 (1) = fIM(Z)/C *(4) (43.11)
k1 (1) = g8, (i) /CY2(4) (43.16)
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ARRAY LATTICE FILTERS

Algorithm 43.1 (Array lattice filter) Consider again the same setting of
Alg. 42.2. For each i = 0, the M —th order a posteriori estimation error,
rag(i) = d(i) — wpgwpg s, that results from the solution of the regularized
least-squares problem

min [}Liﬂwifnﬂfwﬂf + Y Ad(g) - wamlgl
=0

can be computed as follows:
1. Initialization. From m=0to m = M — 1 set

[P0 = VP, P =

gm(—1)=0, gl (-1)=0, (- ]' '3' bm(—1)=10
2. Fori =0, repeat:

o Set w7 (i) =1, By(i) = f(i) = uli), and #his) = d(i)
o Form =0tom =M —1, apply 2 = 2 unitary rotations 9;.-,
B, and &°

v With positive (2,2) entries, in order to annihilate
the (1,2) entries of the post-arrays below:

[Alfﬂcﬂiﬁ—zj bai-1) ]gr  _ [&fi-n 0 ]
Agfe(i—1)  fa) ] I qi:li ) i)
MAGRGE 1) Kagi) ] [ ) 0
Mg ia—l}l r@) | Bme = 2 451 (4]
0 “,rpingliijl | L E:n,,,lizjf(ﬁfz[z) £+1 (i)
[H*cﬂ%é— Do e o [¢P@ 0 }
MPgrii—1) bati-1 ] ™ L) biyali)

and set v, y1(i) = v 407 :'"I"nf-lu

UCLA ELECTRICAL ENGINEERING DEPARTMENT EE210A: ADAPTATION AND LEARNING (A. H. SAYED) 29




ARRAY LATTICE FILTERS

d(i) ri(i) ra(7)
— - -
1 12 (d) 7" (i)
R - -
E:'n,z' E:'l,i
- -~
u(i) | bo(i) bi (i) bh (1)
—— .1 I . —1 - B
- -
- -
d o 951 d g 9{1 !y
foli) fila) fali)
- - -
FIGURE 43.1 The QRD-based lattice filter.
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COMPLEXITY

TABLE 43.1 Estimated computational cost per iteration for various lattice filters.

Algorithm P + ~ | v Reference

A posteriori lattice I6M | 8M | 8M - Algorithm 41.1
A priori lattice 16M | 8M | 8M - Algorithm 41.2
A priori error-feedback lattice I8M | 8M | 2M - Algorithm 42.1
A posteriori error-feedback lattice | 16M | OM | TM - Algorithm 42.2
Normalized lattice I8M | 5M | 3M | 5M | Algorithm 42.3
QRD-based lattice 23M | 8M | 6M | 2M | Algorithm 43.1

Givens-based lattice 27M | 8M | AM | 2M Problem X.7
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COMPUTER PROJECT

Project X.1 (Performance of lattice filters in finite precision) Although equivalent from a
theoretical point of view, the performance of the varied lattice filters differ under finite-precision
conditions. The purpose of this computer project is to illustrate these differences, as well as illustrate
the recovery mechanism of some of the filters during the occurrence of impulsive interferences.

(a) Generate 10 random coefficients of a channel and normalize its energy to unity. Feed unit-
variance Gaussian input data through the channel and add Gaussian noise to its output. Set
the noise power at 30 dB below the input signal power. Choose A = 0.999 and 7 = 10°
and train the following lattice filters using the input sequence of the channel as input to the
lattice implementations and the noisy output of the channel as the reference sequence: 1. A
posteriori lattice form; 2. a priori lattice form; 3. a priori lattice form with error feedback;
4. a posteriori lattice form with error feedback; 5. normalized lattice form and 6. array lattice
form. Assume in your simulations a finite-precision implementation with B bits for signals
including the sign bit; use the routine quantize.m from Computer Project IX.1. For each
algorithm, generate an ensemble-average learning curve by averaging over 50 experiments of
duration N = 200 iterations each for the following choices: 1. B = 35 bits; 2. B = 25 bits;
3. B = 20 bits; 4. B = 16 bits and 5. B = 10 bits. Which lattice forms appear to be most
reliable in finite precision?
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COMPUTER PROJECT

(b) For this part, assume first a floating-point implementation. Introduce an impulsive interference
of unit amplitude to the input sequence at time instant 7 = 200. Generate ensemble-average
learning curves for the lattice filters over NV = 500 iterations and observe whether they recover
from the impulsive disturbance.

(c) Repeat the simulations of part (b) in finite precision using B = 20 bits and B = 10 bits.
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COMPUTER PROJECT

Project X.1 (Performance of lattice filters in finite precision) The programs that solve this project
are the following.

1. partA.m This program generates ensemble-average learning curves for the various lattice filters for
different choices of the number of bits. The results are shown in Figs. 1 through 5. All filters work well
at 35 bits, but some filters start facing difficulties at lower number of bits. It seems from the figures
that the array lattice form is the most reliable in finite precision, while the a posteriori lattice form

with error feedback is the least reliable.

2. partB.m This program generates ensemble-average learning curves for the various lattice filters in the
presence of an impulsive interference at iteration @ = 200 and assuming floating-point arithmetic.
The result is shown in Fig. 6. It is seen that all algorithms recover from the effect of the impulsive
disturbance.

3. partC.m This program generates ensemble-average learning curves for the various lattice filters in the
presence of an impulsive interference at iteration i = 200 and assuming finite-precision arithmetic with

B = 20 and B = 16 bits. The results are shown in Figs. 7 and 3.
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COMPUTER PROJECT

B=35 bits -
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Figure X.1. Ensemble-average learning curves for various lattice implemen-
tations using 35 bits.
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COMPUTER PROJECT

A posteriori lattice B=25 bits A priori lattice
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Figure X.2. Ensemble-average learning curves for various lattice implemen-
tations using 25 bits.
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COMPUTER PROJECT

B=20 bits
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Figure X.3. Ensemble-average learning curves for various lattice implemen-
tations using 20 bits.
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COMPUTER PROJECT

B=16 bits N
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Figure X.4. Ensemble-average learning curves for various lattice implemen-
tations using 16 bits.
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COMPUTER PROJECT
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Figure X.5. Ensemble-average learning curves for various lattice implemen-
tations using 10 bits.
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COMPUTER PROJECT
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Figure X.6. Ensemble-average learning curves for various lattice implemen-
tations in floating-point precision with an impulsive disturbance occurring at
iteration @ = 200.
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COMPUTER PROJECT
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Figure X.7. Ensemble-average learning curves for various lattice implementa~
tions in 20-bits precision with an impulsive disturbance occurring at iteration

t = 200.
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Figure X.8. Ensemble-average learning curves for various lattice implementa-
tions in 10-hits precision with an impulsive disturbance occurring at iteration
v = 200.
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