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LECTURE #19

ORDER-RECURSIVE LEAST-SQUARES

Sections in order: 40.1-40.5
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MOTIVATION

The recursive least-squares algorithms described so far in Parts VIII (Least-Squares
Methods) and IX (Fast RLS Algorithms), including array variants and fast least-squares
variants, are usually qualified as fixed-order algorithms. The qualification “fixed-order”
means that, from one iteration to another, these implementations propagate quantities that
relate to estimation problems of fixed-order.

In this part, we shall study RLS algorithms that are order-recursive in nature, as opposed
to fixed-order. They are widely known as lattice filters and have several desirable proper-
ties such as improved numerical behavior, stability, modularity, in addition to computa-
tional efficiency. In these implementations, least-squares problems of increasing orders
are solved successively so that, in addition to time-updates, the lattice filters rely heavily
on order-updates for various quantities.
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NOTATION

Notation for Order-Recursive Problems

To study order-recursive problems, it is necessary to adjust the notation in order to be able
to indicate both the size of a variable and the time instant at which it becomes available.
For example, when referring to a weight vector w; at time ¢, we shall write wpyr; with two
subscripts, M and 7. The first subscript, M, is used to indicate that the weight vector is of
size M or, equivalently, that it is computed as the solution to a least-squares problem of

order M, as in (40.1) and (40.3) below. The second subscript, 7, is used to indicate that the
weight vector is dependent on data up to time 7 and, therefore, becomes available at time 7.

[n a similar vein, we shall write H ;s ; instead of H; to refer to a data matrix with column
dimension M and with data up to time 7. Similarly, we shall write IT instead of II to refer
to an M x M regularization matrix. With this notation, we can now provide a brief review
of the regularized least-squares problem.
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MOTIVATION

40.1 MOTIVATION FOR LATTICE FILTERS

vector w that solves (ctf. Sec. 30.6):

min [/\Hl
war

| uMi

UM.O
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wiyrywy + (yi — Harawar ) Ai(yi — Haawar )]

Iy = T}_ldiﬂg{}'._z,ﬁ_g,...,}'._{MF_H}}

UCLA ELECTRICAL ENGINEERING DEPARTMENT

So consider a collection of (z 4+ 1) data {d(j).unr };:D and introduce the observation
vector y; and the data matrix H s ; defined by

The exponentially-weighted least-squares problem of order M seeks the M x 1 column

(40.1)

where Ily; is an M x M positive-definite regularization matrix. In the sequel, we shall
choose I in a manner similar to the fast array method of Chapter 37 (cf. (37.13)), namely,

(40.2)
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MOTIVATION

Moreover,
A; = diag{\*, N1 N 1)

is a diagonal weighting matrix, defined in terms of a forgetting factor A that satisfies
0 < A < 1. It is sometimes convenient to rewrite (40.1) more explicitly in terms of
the individual data {d(j).ups ; } as follows:

lﬂ? Az‘+1_wifﬂM-wM — Z)\i_”d(}') —'U-M,j'wM|2 (40.3)
=0

We denote the solution of (40.3) by wjr; and we already know that it is given by (cf. Thm. 29.5):

wari = PuiHyp Ny (40.4)

where

P = (N + Hyp AiHag )™t (40.5)
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MOTIVATION

The regularization term )\*'HHM guarantees an invertible coefficient matrix, i.e., an in-
vertible Par ;. In the absence of regularization (i.e., when ITp; = 0), we would need to
assume that H,y ; has full-column rank so that H {, . A; Hr ; is invertible. Observe that the
regularization matrix in (40.5) has the form |

ALy = p M diag{ AN~ 2 Y

We further let ¥, ; denote the estimate of ;.

ym: = Hywn s (40.6)

and we refer to yps; as the regularized projection (or simply projection) of v; onto the
range space of Hyy ;, written as R(Hys ;). Recall from Sec. 29.5 that, when H; ; has full-
column rank, the projection matrix onto R(Hys ;) is Py = HM@(H;{MHM@)*H;{{ .
For the regularized problem (40.1), we have yar;, = Har i PariH}, t.m-yt-. Although the
matrix s ; Par i Hjy, , is not an actual projection matrix, we shall still refer to Ynr,i as the
(regularized) pmjectidn of y; onto R(H s ;) for ease of reference.

UCLA ELECTRICAL ENGINEERING DEPARTMENT EE210A: ADAPTATION AND LEARNING (A. H. SAYED) 7




MOTIVATION

We also define two error vectors: the a posteriori and a priori error vectors:

Ty = Yi — Hyrwpg g, en,i = Yi — Harwnr i1 (40.7)

where wys ;1 is the solution to a least-squares problem similar to (40.1) and (40.3) with
data up to time ¢ — 1 and with A\**! replaced by \’, i.e.,

i—1

. 7 S X " yi—1—3 - ; ; 2 /
min Nwy My + AT () — warjwar | = Wpi—1
Pt j:D

. . . . 3
The last entries of the error vectors {7ys ;, epr ;| at time ¢ are denoted by?!

ra(t) = d(2) —uprwar (a posteriori error) (40.8)
ev(i) = d(i) —upiwari—1 (a priori error) '

and they are related by the conversion factor, v, (7),
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MOTIVATION

which is defined by

, ] 1
EAE L 11— 'ﬂf,i

Moreover, the minimum cost of the least-squares problem (40.1) is given by (cf. Thm. 29.5):

Em(?) =yiNiraa: = YiNilyi — Hariwpn i) (40.11)

We also know from Alg. 30.2 that RLS allows us to update wyy ; and &y () recursively as
follows:
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MOTIVATION

We also know from Alg. 30.2 that RLS allows us to update wy; ; and &pz(7) recursively as
follows:

(i) = 1+ A ung i Pay 1wy
guvi = AN a(@)Paricaugy
ery(i1) = d(i) — upriwari—1
{ wWai = wWari—1+ gaien(t) (40.12)
Py, = XN 'Pyiq— gn,i9n.i/ V()
ra(i) = d(i) —upriwn
(S (i) = Mp(i—1) + rar(i)ep,(2)

with initial conditions wys 1 = 0, ar(—1) = 0, and Py _y = HR}. It also holds that
9, = Pty 4

The RLS algorithm (40.12) allows us to update wps;—1 0 war ;. i.e., it only per-
forms a time-update of the weight-vector solution. Here, both wys;—1 and wyr; are
M —dimensional vectors with the former computed from data up to time 7 — 1 while the
latter is computed from data up to time .
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MOTIVATION

Now, similar to (40.1), consider a least-squares problem of order M + 1, i.e.,

i
. i+1_ % i1—7 B 2
min N wyp My pwargr + E ANTId(F) — unrgr 041
'M+1 .
g=0

[ts solution is an (A + 1) x 1 column vector that we denote by wps41 ;. Although an
order-update relation that takes wys ; to war41 ; 18 possible (recall Lemmas 32.1 and 32.2;
see also Prob. X.9), the lattice filters of this chapter are concerned with other kinds of
order-update relations.

Specifically, lattice filters are not concerned with the weight vectors themselves, but
rather with the corresponding projections {yas.;. Unr+1.: }- Solet dys(2) denote the estimate
of d(z) of order M it is the last entry of yps;, i.e., dps(i) = wpr;wprq. Likewise, let
dnr41(7) denote the estimate of d(7) of order M + 1. which is the last entry of yaz41 ;.

dyry1 (%) = uppa1 Wara1 4 (40.13)
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MOTIVATION

The corresponding a posteriori estimation errors are vy (i) = d(i)—dys(¢) and rppo1(2) =
d(i) — dpry1(2), respectively. It would seem that in order to update d;(7) to dys1(7), we
may need to order-update wyy ; to wyr4q ;. However, this is not the case. The lattice
solutions that we study in this chapter will allow us to update rp; () to rp741(2) directly
without the need to evaluate the weight vectors wyy ; and wps 41 ; or even update them. In
so doing, the lattice filters will end up being an efficient alternative to RLS; efficient in the
sense that their computational cost will be an order of magnitude smaller than that of RLS,
namely, O(M?) vs. O(M) operations per iteration.
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JOINT-PROCESS ESTIMATION

40.2 JOINT PROCESS ESTIMATION

We start our derivation of lattice filters by examining the problem of order-updating the
projection vector yyy ;. i.e., of relating yar41.; o yar ;. This problem is known as joint
process estimation. In order to simplify the presentation, and without loss of generality,
we illustrate the arguments and constructions for the case M = 3. Later, we show how the
results extend to generic M.

Thus assume M = 3 and consider the data matrix

T u(0,0) u(0,1) u(0,2) ] 3,0
w(1,0) w(1,1) w(1,2) u3,1
HSJ' = 'H-(Q-_. U) 'H-(Q'.« J—) 'H.(Q._‘ 2) — 3,2 (40 14)

u(i,0) u(i1) ui2) ugi |

The subscript 3 refers to the order of the estimation problem (i.e., to the column dimension
of the data matrix), and the subscript 7 indicates that the data matrix contains data up to
time .
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JOINT-PROCESS ESTIMATION

Observe that we are denoting the individual entries of H3 ; and, correspondingly,

of the regressors {us; }. by {u(z, )} with the first index referring to time and the second
index referring to the column position within the regression vector, namely,

uz; = [ w(i,0) w(i,1) wu(i,2) ]

In other words, we are not assuming shift-structure in ug ;, i.e., the entries of ug ; are not
assumed to be delayed versions of some input sequence. If this were the case, then Hs ;
would have been of the form

u(z) u(i — 1) (e — 2)

However, since all results in the sequel, until Sec. 41.1, will hold irrespective of any struc-
ture in ug ;, we shall proceed with our arguments by treating the general case (40.14).
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JOINT-PROCESS ESTIMATION

The (regularized) projection of y; onto R(Hj3 ;) is given by (cf. (40.6)):

Ys.i = Hs i P3 i H3 Niyi = Hsws (40.15)
where
Py = (N I3+ Hy AiHs ;)™ w3 = P3iH3 ; Niyi (40.16)
and
NHTT, = g tdiag{ A=t A2 N3] (40.17)

We say that ys ; is the third-order projection of ¥; onto R(Hs ;). Now suppose that one
more column is appended to H3 ;, which then becomes

u(0,0) u(0,1) w(0,2) u(0, 3)
uw(1,0) w(1,1) wu(1,2) u(1,3)
Hy;=[ Hsy | 23, ] = | w(20) wu(21) u(22) | u(23) (40.18)

A0 o e | s
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JOINT-PROCESS ESTIMATION

where we are denoting the last column of Hy ; by x3 ;. The (regularized) projection of the
same vector y; onto the extended range space R(Hy ;) is now given by

Yai = HyiPyiHy Niyi = Hyjwy (40.19)
where
Pyi= NIy + Hi A Hy )™ wy,; = Py HJ Ny (40.20)
and
NHT, = ptdiag{ A=t A2 \i=3 N4 (40.21)

Comparing expressions (40.15) and (40.19) for {¥3;,y4,:} we see that they differ by
virtue of the difference between the data matrices {H3 ;, Hy ,; }. However, these data ma-
trices are identical except for the last column in H, ;. Therefore, it should be possible to

relate the projections {¥s ;. ¥.; } and to obtain an order-update relation for them. This pro-
cess of order-updating the projection of the observation vector is known as joint process
estimation.
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JOINT-PROCESS ESTIMATION

We already studied such order-update problems in Sec. 32.1. Recall that in that section
we derived, both algebraically and geometrically, the relations that exist between the (reg-
ularized) projection of an observation vector onto a data matrix H and onto its augmented
version [H h|, for some column h. More specifically, comparing with the statement of
Lemma 32.1, we can make the following identifications

H — HS,z' h — r3q ‘ P — P&z‘ P, — P4,z'
T —— M\, g — pTiNi—? v — 3(7) Yo — Y4(7)
W — w3 q W, «—— wy 4 Y T3 Y, 4,4

Therefore, using the result of Lemma 32.1, we can relate the variables of the projection
problems that result in {3 ;,ya,} as follows. Let wgz denote the solution of the least-
squares problem:

mihn [ Ai+1wg*]_[3w§ + (23, — ngiwg)*ﬁi(mgi — ngg-‘wg) ] (40.22)

That is, wgi is the vector that projects x5 ; onto R(Hs ;).
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JOINT-PROCESS ESTIMATION

b
wy; = PaiH3 Nixs;

The subscript 3 refers to an estimation problem of order 3, while the subscript 7 denotes
the use of data up to time ¢. The superscript b refers to backward projection. The reason
for this terminology is that problem (40.22) amounts to estimating the last column of H, ;
from its leading columns, Hs ;. Let £5(4) denote the minimum cost of (40.22), i.e.,

£5(i) = x5 ; Aibs

where bg ; is the (backward) a posteriori error vector that results from projecting zs ; onto
R(Hz;).

_ b
b3 = x3; — HB,ingg'

We denote the last entry of bz ; by bs(7) and it refers to the estimation error in estimating
the last entry of x3 ; from the last row of Hs; (namely, us ;).
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JOINT-PROCESS ESTIMATION

Define further the scalar coefficient

A b3 i Ny p4(7)
Ly A ) _ ‘ 40.23
B0 T gD e g0 R
where
N A
p3(i) = y*A;bs; (40.24)
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JOINT-PROCESS ESTIMATION

Then from Lemma 32.1 we conclude that the following order-update relations hold:

S pS i 0 1 _'wg,i ab” 5

i [ 0 0 ] T ) [ I ] [ Twse 1] @029

Ysi = Y3+ k3(i) ba; (40.26)

ra; = 13— k3(i)bs, (40.27)
)P

&-4(1) _ 53(3) T;r'_l/\?"_él +£§(z) (4028)
. . |b3(4) |2

A — o~ _ 40.29

wa ) —wh
wy,; = [ D,% ] - ﬁ:g(z)l 13=* ] (40.30)

We therefore arrived at an order-update relation (40.27) for the a posteriori error vectors
{rs.i,7ra,}. Ittells us that in order to update r3 ; to r4; we need to know b3 ;. In the same
vein, in order to move forward and update 74 ; to r5 ; we need by ; and so on. This means
that it is necessary to know how to order-update the backward error vectors as well, which
motivates us to examine more closelv the backward estimation problem.
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BACKWARD ESTIMATION

40.3 BACKWARD ESTIMATION PROBLEM

For this purpose, we return to the data matrix 15 ; in (40.18) and partition it as
Ha;=[ wo; | Hoy ]

with xg ; denoting its leading column and H» ; denoting the remaining columns. In this
way, the extended data matrix H, ; of (40.18) can be partitioned as

Hy; = [ Ha; | wsi] = [2os Hai was | (40.31)
with {xq;, 23, } denoting its leading and trailing columns, and H»; denoting the center
columns.

We can then consider two backward estimation problems: one has order 3 and estimates
w3, from Hs ;, and the other has order 2 and estimates x3 ; from Hs ;. The first problem
is the one we considered above in (40.22) with regularization matrix AT, and it leads
to the backward residual vector bs ;.

bs; = x3,; — Hz ;u§ (40.32)

2
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BACKWARD ESTIMATION

with the corresponding coefficient matrix

PB,i = ()\H_lng + Hék?iﬁiﬂgvt')_l (40.33)

The second problem corresponds to solving the following least-squares problem:

min [/‘\iwg*ﬂgwg + (z3,: — Ezjiwg)*ﬁi(ﬁ}g,i = Eggiwg)] (40.34)
w3

with regularization matrix chosen as

NI, = n~tdiag{\'=2, \"73) (40.35)
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BACKWARD ESTIMATION

The optimal solution of (40.34) is denoted by -wg?i and is given by

wh, = Py Hj Ny (40.36)

with

Py; = (Nly 4 Hy A;Ha ;)™ (40.37)

and whose residual vector we denote by

. 7 b
bei = x3; — Hpywy ,

The resulting minimum cost of (40.34) is denoted by 55’(3’).
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BACKWARD ESTIMATION

The resulting minimum cost of (40.34) is denoted by £5(7). The reason for the notation by ;
(with an overbar) as opposed to bs ; is that in our development, bs ; would correspond to the
residual vector that results from projecting the third column of Hs ; onto the range space
of its leading two columns. More specifically, denote the columns of Hy ; generically by
Hy,; = [ m n o p } Then projecting o onto [m n| results in the residual vector by ;.
while projecting p onto [m n o] results in the residual vector bs ;. Observe that in both
cases we start from the initial column m. In contrast, projecting p onto [n o] results in
the residual vector E_)QJ-. The initial column now is n and, hence, the use of the bar notation
to distinguish between both second-order projections: o onto [m n| and p onto [n o] —
see Fig. 40.1. We shall study more closely later the relation between { Eg,i, be.i}. e.g., in
Sec. 41.1 where we show that, when the regressors have shift structure, it will hold that
ba.; is related to by ;1. For now, it suffices to proceed with by ;.
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BACKWARD ESTIMATION

M. T 0 P

FIGURE 40.1 Two second-order backward projection problems with the corresponding
residual vectors.
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BACKWARD ESTIMATION

The argument that follows for relating E_)M and bs ; 18 similar to the argument we em-
ployed in the previous section for relating 73 ; and r4 ;. Thus note that we are faced with
the problem of projecting the same vector w3 ; onto the range spaces of two data matri-
ces: one 1is Eg!z' and the other is Hs ;, which is obtained from Eg_&- by augmenting it by a
column to the left.

We already studied such order-update problems in Sec. 32.2 in some detail. Recall that
in that section we derived, both algebraically and geometrically, the relations that exist
between the (regularized) projection of an observation vector onto a data matrix A and

its augmented version [h  H|, for some column h. More specifically, comparing with the
statement of Lemma 32.2, we can make the following identifications:

H «— HQ,;' h «—— o, P — PZ_,z' Pz — -PB,E'
II — NIy o— pia! v — 72(2) Ve < 73(i)
@ — wh, ap— §— b G — bag

Therefore, using the result of Lemma 32.2, we can relate the variables of the projection
problems that result in {bo ;, b3 ; } as follows.
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BACKWARD ESTIMATION

Let w3 . denote the solution to the least-squares problem:

mifn /\i'wg*ﬂngf + (o — Hg}iwzf)*ﬂi(mg’i — Hg}iw-zf) ] (40.38)

LG

which projects the leading column z¢ ; onto R (Hs ;), namely,

f o —_— —
Wy ; = Pﬂ,iﬂﬁk,ﬁﬁimﬂ,i

The subscript 2 in wg refers to an estimation problem of order 2, while the subscript i
denotes the use of data up to time 2. The superscript f refers to forward projection. The
reason for this terminology is that the above problem can amounts to estimating the leading
column of H3 ; from its trailing columns, EM.
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BACKWARD ESTIMATION

Let 55(3’) denote the minimum cost of (40.38), i.e.,

55 (i) = fa,ﬁﬁifﬁ,i

where fo ; is the (forward) a posteriori error vector that results from projecting zq ; onto
R(Ha.;),

fQ,i — Lo — Hz,z"lﬂii

We denote the last entry of f5; by fa(7) and it refers to the estimation error in estimating
the last entry of xg ; from the last row of Hy ;.
Define further the scalar coefficient

ﬁ‘%(z) a fzjt T3, = ‘52(2) - (40.39)
TN &) AT & (4)

where

5a(i) 2 f5.MNiws, (40.40)
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BACKWARD ESTIMATION

Then from Lemma 32.2 we conclude that the following relations hold:

Jo o 1 1 -
b, = ba, _ﬁg()sz (40.42)
5i) = &) - W')F (40.43)
n—INi—1 4 5‘2’0(3)
-y 12
v3(i) = Hali) — F20)] (40.44)

n=IXi—1 4 ¢f(4)

We therefore arrived at an order-update relation (40.42) for the a posteriori backward
residual vectors { bg,i,f)g,i}. It tells us that in order to update E_)g,i to b3; we need to know
f2,:- In the same vein, in order to move forward and update E_);.-,,t- to by ; we need fs; and so
on. This means that it is necessary to know how to order update the forward error vectors
as well, which motivates us to examine more closely the forward estimation problem.
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FORWARD ESTIMATION

40.4 FORWARD ESTIMATION PROBLEM

To do so, we reconsider the data matrix Hy ; in (40.18) and now partition it as

Hyi=[20; | Hs; | = [ w0y | Hay w3 ] (40.45)
where Hj ; denotes its trailing columns. We then consider two forward estimation prob-
lems: one has order 2 and estimates xq ; from Hy ;, and the other has order 3 and estimates
xg,; from Hj ;. The first problem is the one we considered above in (40.38) with regular-
ization matrix A*Ils and leads to the forward residual vector fs ;,

J2,i = To; — szw“zfz (40.46)

with

Py; = (Nl + Hj ;A Ha ;)™ (40.47)

The second problem corresponds to solving the following least-squares problem:

wmin Nowd Tsw] + (z0; — Haw)) As(z0; — Hs wl) (40.48)

w
3
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FORWARD ESTIMATION

with regularization matrix

NIz = 5~ tdiag{A\"=2 N3, A7) (40.49)

The optimal solution of (40.48) is denoted by w:{z

wi; = Ps 03 Nizoi (40.50)

with coefficient matrix

Pgﬁ- = (/‘\il_[g + Hﬁ:iﬁiggii)_l (40.51)

The corresponding residual vector is

_ r] f
fB,z‘ — o4 — H3,z'w3,3-

and the resulting minimum cost is denoted by ggf (7).
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FORWARD ESTIMATION

Observe that we are now denoting the
residual vectors of problems (40.38) and (40.48) by f5 ; and f3 ;, respectively, without the
need for the bar notation. Thus note that if we again denote the columns of H, ; generically
by Hy; = | m mn o p |. Then projecting m onto [n o] results in the residual vector
f2,i. while projecting m onto [n o p| results in the residual vector f3 ;. In both cases, we
start from the same initial column n — see Fig. 40.2.

Again, the argument that follows for relating fo; and fs; is similar to the arguments
we employed in Secs. 40.2 and 40.3 for relating r3 ; and r4 ;, as well as b i and bs ;. Thus
note that we are faced with the problem of projecting the same column vector, ¢ ;, onto
the range spaces of two data matrices: one is Ho i and the other is Hi i» Which is obtained
from Hs ; by augmenting it by a column to the rlght.
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FORWARD ESTIMATION

We studied such order-update problems in Sec. 32.1. Recall that in that section we
derived, both algebraically and geometrically, the relations that exist between the (regu-
larized) projection of an observation vector onto a data matrix 4 and onto its augmented
version [H hl, for some column h. More specifically, comparing with the statement of
Lemma 32.1, we can make the following identifications:

H — Ez,z‘ h «— T30 P — PZ,i P, «—— PB,%‘
IT—— Ay o — p7iaid v — Foli) Ve —— 7a(i)
W — -w{z- W, «—— wé:- y— fai Y —— [34

Define further the scalar coefficient

f ) A Bg,zﬁz’i’ﬂ,é B 05 (%)
N4 &B() TN+ gh(d)

Ky (1 (40.52)
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FORWARD ESTIMATION

That is, d5(7) is also given by

UCLA ELECTRICAL ENGINEERING DEPARTMENT

Note that we are using 65 (7) in the numerator of H.%c (7)., with 99 () being the coefficient we
used in the numerator of x5(7) in (40.39). This is because

7 [7 b 1x 7 B R *
Q,iﬁz‘ﬁfﬂ,z‘ — [373,3‘ - Hz,z‘wg,i] ﬁz‘i?ﬂ,z‘ — [1173,3‘ - Hz,ipz,iﬂz,iﬁzﬂ??,,z‘] ﬂz‘ﬂ’?n,z‘

= a3 NI — Ho i Po i Hs (Ao,

= @3, Ni[xo; — Eliwg,z‘]
= m;éﬁifg,i (4053)
02 (i) = xf ;Asba g (40.54)
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FORWARD ESTIMATION

Therefore, using the result of Lemma 32.1, we can relate the variables of the projection
problems that result in { fs ;, f3 ; } as follows:

N . pQ?t' 0 1 —'?_Ugt- ] B B 5

Py, = [ 2 ] e 1o [ | b 1] (05S)

fai = foi— ()b (40.56)

Feoy — ef iy |05(7)]2 10.57

3 (%) §5 (1) N4 ) (40.57)
bo(i)|?

Y3(i) = Fa(7) — b2(0)] (40.58)

=N+ g ()
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40.5 TIME AND ORDER-UPDATE RELATIONS

We summarize the order-update relations derived so far for the case of a generic order
M.

Order-Update of Estimation Errors
Consider several equivalent partitionings of the data matrix H s ;:

HM+1,1‘ - [1170,1' L1q  ee $M,£}

= | Hy: 2mi ] = | 2woi Huyi | = | ®0i Huy-1: Tari |

where {z;;} denote the individual columns of Hys 1 ;. Let also {uasq, tar,; } denote the
last rows of Hpy,; and H g ;.
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UPDATE RELATIONS

Let further
f . . . - . .
v, = o a posteriori residual from projecting y; onto Hyy ;
< bari = a posteriori residual from projecting xpy ; onto iH M.i
Jari = aposteriori residual from projecting xo ; onto Hyy ;
\ b = aposteriori residual from projecting xa741,; onto Hyy ;

where the projection problems for {rays s, by ; } employ the regularization matrix ATy,
while the projection problems for { fas;,bar;} employ the regularization matrix A*II,;.

Hence,
b
i — Yi— HM,in,z’ bM,z' — TMi — HM,z'wM c
W p _ . = (40.59)
fM,i — Ty — HM,inﬂ- bM,i — TM41,i — HM,@'WM’Z'
where, for example, -w{f . 18 the solution to the recularized least-squares problem:
m}n ).*-wj{; Hﬂf'wj{f + (@04 — Hﬂf?i'wj{ir)*ﬂﬁ(m[],i — HJMFE-'IL{I) (40.60)
Whr

and similarly for {wny ;. w, @ wM t} These constructions are depicted in Fig. 40.3
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UPDATE RELATIONS

) o These constructions are depicted in Fig. 40.3.
The last entries of {7ar,bar i, fari E_)M?i} are denoted by

{rar(2),bar (i), far (), bar (i)} (40.61)

TN41,i

I [
1 1 1
| 1 1
l ! l

I
| 1
: i :

- I g
: iLD‘-;. Hﬁ,f_j_,i:_ : .I.‘ﬂ.f?-‘._ Wi L0z " H;u_]_‘_? LA
| | l
I I |
: : |
1

1 1 1
! I I
I

(a) Backward projection (b) Forward projection

FIGURE 40.3 Projections of {xo;, %ar,i, ar+1.:, ¥: } onto the relevant data matrices with
the resulting residual vectors { fari. bari.barinrarit.
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The derivations in the earlier sections show that these residual vectors satisfy updates of
the form:

rareti = rari— R (8)bari, barats = bari—657(8) faras farsts = fari— ( )b
(40.62)

where we still need to derive an update for B;,M. We postpone this discussion to Sec. 41.1
due to its dependence on data structure. From (40.62) we obtain the following relations for

the a posteriori estimation errors at time 2:

rv+1(2) = (i) — £ar(2)bar (2)
barg1(i) = bag(i) — w(4) far (2) (40.63)
frusa(®) = far(i) — why(2)bar (4)

where the scaling coefficients { k(7). k4, (7)), F.Z-‘;f(i)}, also called reflection coefficients,
are defined as the ratios

rv (i) = Py ('i)/(??_l)\%_M_l + &3, (7))
k(i) = O ('3')/(??_1)\1._1 +&4,(1) (40.64)
H':{I (1) = 0Oy (@)/ (=AM 531(?5—))
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UPDATE RELATIONS

and the quantities {57 (7), pas (z’),gif(z'),5%1;(1'),5}{{(3')} are defined in terms of the inner
products

pr(i) = yiNibar &) = Thghibu
q om(i) = g Mibhr; = FariNiTar4ai E(i) = Thry1,i 800
&) = xg Ml Em(d) = yiAirars

(40.65)
The quantities {ﬁﬂf(i),gif(i),ﬁj{f(i), ¢k (i)} denote the minimum costs of the projection
problems that result in {rys;,bar., fﬂf,z‘;i_)ﬂf,z‘}- Let further {~s(7).4as(7)} denote the
conversion factors associated with the projection problems {rys ;, bar,; } and { fM,z-,BM@}
(the first two have the same conversion factor ~,,(7), while the last two have the same

conversion factor 4,,(7)). That is,

' # i * —1
’}’M(Z) = 1- 'U-M,z‘PM,z'H-M’i PM?@- = P\ +1HM + HMAI\EJHM?J
~ ' w B ok ) 7 [ 7% —1
’}’M(Z) = 1- 'U-M,z‘PM,z'u-M,' PMJ = [)\ I + HM?z'ﬂz'HM,J

2
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UPDATE RELATIONS

Then the earlier discussions also established the following update relations:

( Svr1(t) = Eu(?) — lpm (D)) /(g PN M= 4 &b (4))
(@) = &) — 0a () 2/ (N + €4, (4))
(@) = &) — 00 () 2/ (N M2 1 gk (3))
£ (40.66)
41(8) = (@) — |bar (D)2 /(N TM T 4 €8, (4))
i) = (i) = [far (D)2 /(7N + €], (0))
C Aar41(i) = Aar(d) — [bar(9)° /(n _1)~i_ﬁf_2 + &3, (1))

as well as (cf. (40.30)):%2

Wh+1,i = [ wgsz ] + Kar(7) [ ’1?4,@ ] (40.67)

We still need to show how to update the factors {pas(7),0p7(7)} in (40.65) in order
to arrive at an efficient recursive scheme. The derivation in the next section shows that
time-updates for {par(7), dar(7)} are possible regardless of data structure.
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Time-Update Relations

Consider first the quantity dy; (i) = rgviAiBMTi, which appears in the numerator of Hj;f(i)
in (40.64), and introduce the data matrix

Hyrqoi = | 20 Huari st |
We partition it as

roi—1 ‘ HM,z'—l ‘ TM41,i—1
u(i,0) | uag | u(i,M+1)

Hyryoi =

where we are denoting the last entries of {xg i, #a741,: by {u(7,0),u(i, M +1)}, and the
last row of H s ; by ;. Consider further

om(t—1) =axg;_1Ni—1bpri—1
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Now recall that b 4 18 the residual vector that results from projecting @ 3741 ; onto R(E’ M.i)
with regularization matrix \“II,;. Likewise, BM,%-1 is the residual vector that results from
projecting x pr41 ;-1 onto R(H M ,i—1) With regularization matrix Ni—1TT,,. We are there-
fore faced with the problem of time-updating the inner product d;(7), which is of the same
form as the problem studied in Sec. 32.3. More specifically, comparing with the statement
of Lemma 32.3 (or with the data matrix (32.48) and its time-updated version (32.50)), we
see that we can make the identifications:

H;  «— Hpiq V(i) «— Yar () B(i) «— u(i, M + 1)
Ti_y —— T0,i—1 hi —— Unri a(i) < ful(i)
(i) < u(i,0) Zicq = TM41,i-1 B(i) «— ba(2)

and arrive at the time-update relation (cf. (32.56)):

Sa (i) = Aopr (i — 1) + Sar()bar ()

40.68
A (7) ( )
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UPDATE RELATIONS

Consider now the inner product pys(7) = vy A;bar ;, which appears in the numerator of
kg (7) in (40.64), and introduce the matrix

| vi Huai 7 |

Let us partition it as

Now recall that by ; is the residual vector that results from projecting x5z ; onto R(H s ;)
with regularization matrix AT, while bar.i—1 18 the residual vector that results from
projecting xps ;1 onto R(Hps ;1) with regularization matrix MI1,,. We are therefore
faced with the problem of time-updating the inner product py; (). which is again of the
same form as the problem studied earlier in Sec. 32.3. More specifically, comparing with
the statement of Lemma 32.3 (or with the data matrix (32.48) and its time-updated version
(32.50)), we see that we can make the identifications:
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UPDATE RELATIONS

Hi—1 — Hnpioa V(i) = v (2) B(i) —— (i, M)
Tiy —— Yi1 hi — ung a(i) «—— en(i)
(}:(Z) — d(t) Zi—1 = TM,i—1 3(3) — er (B)

and arrive at the time-update relation (cf. (32.56)):

par(i) = Apar(i — 1) + TRI(Z)E?M(E)
Yau (7)

(40.69)

We can also obtain time-updates for the minimum costs {& j{,f(z"), b (i), €5,(4)} in much
the same manner as above. Alternatively, since these variables correspond to the minimum
costs of regularized least-squares problems, and since we already know how to time-update
such minimum costs (cf. Alg. 30.2), we can readily write

@) = NG =1) + [far(8) P /A ()
Eur(i) = NG (i —1) + |bar(4)[* /. (z) (40.70)
(i) = MG —1) + |bar(d)|* /A ()
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Table 40.1 collects the various order- and time-update relations derived so far in the
chapter. We again emphasize that these relations are independent of any data structure.
For convenience of notation, and also in order to save on addition operations, we introduce
the modified cost variables:

() 2 N
) Chrld) £ nTINTE 4 gl (4) (40.71)
L &) B pINM2 g ()
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It is easy to verify from the time and order-updates for { £if(z'),$j{f(z'), ﬁif(z')} that these
modified variables satisfy similar updates, namely

() = AcM( 1) + | far ()2/ 3 (0)
Ef(i) = )\CM(E—l ) + |bas (4)]? )=/ var(4)
D) = AC(i— 1) + b (8)]2 /A ()
§ (40.72)

Cu1(i) = Car(d) — |par ()2 /<3 (2)
) = Cif(i) - |5ﬂf(i)|2/cgf(i)
(Gl () = () = 18ar (D)2 /S ()

Sy
E o
_|_

[S—
—~
-

o —
|

albeit with initial conditions
Cr(=1) == IAM=2 0 (=) =7 IA72 (=) =7 IATM=E (40.73)
while the initial values for the original variables are

-1 =¢&,(-1)=&,(-1)=0 (40.74)
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TABLE 40.1 A listing of the time and order-update relations derived in Secs. 40.2-40.5.
All these updates are independent of data structure.

5 (i) = Aef (i — 1) + | far ()2 /3 (d)
&b (i) = Ay (i — 1) +|9M(e>| [y (i)
Enr (i) = A& (i — 1) + |bar (3)* /Am (i)

=

Enr41(1) = Ena (@) — |par (i | z’Cmi )
&by 41 (i) = €4, (i) — |8 ()] / Ly (4)
(i) = E1,(6) — 1om (3)]7 /Ch (4)

pa (i) = Apar (i — 1) + 73 (4)bar () /yaa ()
Sar(i) = Aoar (i — 1) + Far(i)bar(4) /s (4)

k(i) = pigli )/CIM'[ )
’*ﬁ{(lj = Opr (1 r"CM( )
hﬁf(lj = (1) fCﬁ{( j

ra+1(8) = rar (i) — mar(2)bar(4)
bar+1(i) = bar (i) — ﬂi{{'ijfﬁf('ij
Frasa(i) = far(i) — rhy (i)bar (3)
yar41(i) = yar () — |bar(3)]% /G (2)
yu+1(2) = Fnm(2) — | far (3)] f"‘:gf'il}
Fa41(i) = Aar (8) — |bar (8] /C3r (4)
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