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LECTURE #08

STEEPEST DESCENT METHOD
Sections in order: 8.1-8.3 and 9.1-9.8
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MOTIVATION

Now there are situations where a designer may be interested in other performance crite-
ria, other than the mean-square error criterion. Several examples to this effect are provided
in the problems at the end of this part (e.g., Probs. II1.12-111.18).

~In most of these cases it
is generally not possible to describe the optimal solution & in closed-form in terms of the
moments of the underlying variables, and it often becomes necessary to approximate the
optimal solution iteratively.

The iterative procedure would start from an initial guess for
the solution and then improve upon it from one iteration to another. The purpose of this
chapter is to describe one class of iterative schemes known as steepest-descent methods,
which is at the core of most adaptive filtering techniques.
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MOTIVATION

The steepest-descent methods will be initially motivated by showing how they apply to
the already-studied case of linear least-mean-squares estimation. By focusing on a situa-
tion that is familiar to the reader, and one for which the optimal solution is already known,
we will be able to highlight some of the abilities (and deficiencies) of iterative schemes. In
particular, we will be able to show, even for the linear estimation problem, that steepest-
descent methods are of independent value in their own right.

For instance, they will help
us avoid the need to invert R, in order to determine K, in the solution of the normal equa-
tions K,R, = R,,. Such matrix inversions are challenging from a complexity point of
view (requiring of the order of N® computations for an N' x N matrix R,)); they are also
challenging for ill-conditioned matrices R,, namely, for matrices that are close to singu-
lar and that have a large ratio of largest to smallest eigenvalues. Once the main idea of
steepest-descent has been examined in the context of linear estimation, we shall then show
how to extend the technique to other estimation problems, with more involved performance
criteria.
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MOTIVATION

Steepest-descent methods are not studied in this chapter only because they provide a
mechanism for solving more involved estimation problems. In addition to this useful ob-
jective, these methods are also important because they will serve as the launching pad for
the development of adaptive filters in Chapters 10-14. It is because of this latter objective
that, from now on and until the end of this textbook, we shall adopt a notation that is more
specific, and also more suited, to the study of adaptive filters.
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NOTATION

Notation. In Parts I (Optimal Estimation) and 11 (Linear Estimation) of this book, we adopted
the {a@, y} notation, as is common in estimation theory, for the variable to be estimated and for the

observation vector. The variables {x, y } were general and they could refer to scalars or vectors. The
results of the earlier chapters are of broad interest and they are not exclusive to the study of adaptive
filters. However, from now on, we shall develop the theory of adaptive filters in greater detail. In
this context, we will be mostly interested in the case in which x is a scalar and y is a row vector,
Moreover, the {a, y} variables will have specific meanings attached to them. For instance,  will
denote the so-called ““desired signal” and we shall replace it by the letter d, which will be a scalar.
The observation vector y, on the other hand, will be a row vector and it will be denoted by u. In
this way, we are now interested in estimating d from w. Some motivation for our choice of the row
vector notation for w appears in the Notation section in the opening pages of this book.

&
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LINEAR ESTIMATION REVIEW

8.1 LINEAR ESTIMATION PROBLEM

So let d be a zero-mean scalar-valued random variable with variance o,

Ed=0, o2=E|d]

and let w be a 1 x M zero-mean random row vector with a positive-definite covariance
maltrix denoted by R,

R, 2 Eu'u (a square matrix)

The variables {d, u} are allowed to be complex-valued for generality, which, as we saw in
several examnles in Chanters 1-6. is usuallv a necessitv in digital communications appli-
cations.
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LINEAR ESTIMATION REVIEW

The M x 1 cross-covariance vector of {d, u} is denoted by

a

R, Edu® (a column vector)

We then consider the problem of estimating d from w in the linear least-mean-squares
sense as follows:

min E |d — wwl|? 8.1)
"ZLT

where w is M x 1 and is known as the weight vector.

Remark 8.1 (Row vector notation) Observe that since we choose u to be a row vector and

the unknown w to be a column vector, the inner-product between w and w is simply written as ww
with no transposition or conjugation symbols needed.

We adopt this convention throughout our treatment
of adaptive filters in this and subsequent chapters.

All vectors, from this chapter onwards, will be column vectors with the notable exception of 1,
which will be a row vector.
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SOLUTION

Using the Orthogonality Principle

Alternatively, we can solve (8.1) more directly by invoking the orthogonality principle
of linear least-mean-squares estimation. Specifically, from Thm. 4.1, we know that the
optimal weight vector w? should lead to an error variable, d — ww?, that is orthogonal to
the observation vector wu, i.e., it must hold that d — ww® 1 w or, equivalently,

Eu'(d—uww?) = 0 (8.6)

which means that w? should satisfy the normal equations R4, — R, w? = 0, and we are
back to (8.4). Likewise, the resulting m.m.s.e. can be obtained from the orthogonality
condition as follows:

m.m.s.e. = E|d— uw’|?

E(d— uw?)(d— uw®)*

E(d — uw®)d®  (because of (8.6))
= 03— Ru.R; 'Ry,
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SOLUTION

Theorem 8.1 (Optimal linear estimator) All random variables are zero-
mean. Consider a scalar variable d and a row vector «w with R, = Eu*u > 0.
The linear least-mean-squares estimator of d given u is d = uw® where

w® = R Ry,

The resulting minimum mean-square error is m.m.s.e. = U?E — RuaR7 'Ry,
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STEEPESE-DESCENT

8.2 STEEPEST-DESCENT METHOD

J(w) 2 E d — uw|®* = E(d—uw)(d — uw)* (8.7)

J(w) = 0'3 — RS w—w*Rg, + w*R,w (8.8)

We already know that J(w) has a unique global minimum at w? = R ' Rg,
with minimum value given by (8.11). Figure 4.1 shows a typical plot of .J(w) for the case
in which w is two-dimensional and real-valued.
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STEEPEST-DESCENT
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FIGURE 8.1 A typical plot of the quadratic cost function .J(w) when w is two-dimensional
and real-valued, say w = col{«, 3}.
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SEARCH DIRECTION

Now given J(w). and without assuming any prior knowledge about the location of its
minimizing argument w?, we wish to devise a procedure that starts from an initial guess
for w? and then improves upon it in a recursive manner until ultimately converging to w®.
The procedure that we seek is one of the form

(new guess) = (old guess) + (acorrection term)

or, more explicitly,

wy=w;—1+pp, 120 (8.12)

where we are writing w;_1 to denote a guess for w? at iteration (¢ — 1), and w; to denote
the updated guess at iteration z. The vector p is an update direction vector that we should
choose adequately, along with the positive scalar p, in order to guarantee convergence of
w; to w?. The scalar ju is called the srep-size parameter since it affects how small or how
large the correction term is. In (8.12), and in all future developments in this book, it is
assumed that the index 7 runs from 0 onwards, so that the initial condition is specified at
¢ = —1. Usually, but not always, the initial condition w_1 is taken to be zero.
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SEARCH DIRECTION

The criterion for selecting ;2 and p is to enforce, if possible, the condition J(w;) <
J(w;_1). In this way, the value of the cost function at the successive iterations will be

monotonically decreasing. To show how this condition can be enforced, we start by relating
J(w;) to J(w;_q). Evaluating J(w) at w; = w;_1 + up and expanding we get

J(w;) = 05— Ry, (wi—1 + pp) — (w1 + pp)* Raw + (wi—1 + pup)* Ru(wi_y + pp)
= J(wi—y) 4+ p(w; Ry — RY,)p + pp* (Rywi—y — Ray) + p1*p*Rup  (8.13)

We can rewrite this equality more compactly by observing from expression (8.8) that the
oradient vector of .J(w) with respect to w is equal to

Vet (w) =w"R, — R}, (8.14)

This means that the term w; | R,, — R}, that appears in (8.13) is simply the value of the
gradient vector at w = w;_1, i.e.,

H'T;—1Ru — :::Tu — ij('tﬂi—l)
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SEARCH DIRECTION

Similarly, the matrix R, appearing in u?p* R,p is equal to the Hessian matrix of .J(w),
L.e.,

P2p* Rup = 112p* [V2,J(wi_1)] p

We can then rewrite (8.13) as

J(w;) = J(wi_y) + 2u Re[VyJ(wi_y)p] + p?p*Ry p (8.15)

in terms of the real part of the inner product V,,.J (w;_1)p.
Now the last term on the right-hand side of (8.13) is positive for all nonzero p since
R, > 0. Therefore, a necessary condition for

J(wz) < J('wt'_l) (816)

is to require the update direction p to satisty

Re [V J(w;_1)p] < 0 (8.17)
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SEARCH DIRECTION

Re [V, J(w;_1)p] < 0 (8.17)

This condition guarantees that the second term on the right-hand side of (8.15) is strictly
negative. The selection of a vector p according to (8.17) will depend on whether V,,,.J (w; _1)
is zero or not. If the gradient vector is zero, then R,w,; 1 = Rg,, and thus w;_; already
coincides with the desired solution w®. In this situation, recursion (8.12) would have at-
tained w? and p should be selected as p = 0.

When, on the other hand, the gradient vector at w; 1 is nonzero, there are many choices
of vectors p that satisfy (8.17). For example, any p of the form

p = —B [VyJ(wi—y)]* (8.18)

for any Hermitian positive-definite matrix 5B will do (this choice will also give p = 0 when
VawJ(w;_1) = 0). To see this, note that for any such p, the inner product in (8.17) is
real-valued and evaluates to

vu! J('wz'—l)p - = [Vw J('wz'—l)] B [vw J('wi—l)]*

which 1s negcative in view of the positive-definiteness of B.
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SEARCH DIRECTION

which is negative in view of the positive-definiteness of . The special choice B = 1 is
very common and it corresponds to the update direction

P = — [VH!J('wi—l)]* — Rdu_Ru'wi—l (819)

This choice for p reduces (8.12) to the recursion

w; = w;_1 + p|Raw — Ryw;_1], >0, w_; = initial guess (8.20)

The update direction (8.19) has a useful and intuitive interpretation. Recall that the gra-
dient vector at any point of a cost function points toward the direction in which the function
is increasing. Now (8.19) is such that, at each iteration, it chooses the update direction p to
point in the opposite direction of the (conjugate) gradient vector. For this reason, we refer
to (8.20) as a steepest-descent method; the successive weight vectors {w; } are obtained by
descending along a path of decreasing cost values. The choice of the step-size p is crucial
and, if not chosen with care, it can destroy this desirable behavior. Choosing p according
to (8.19) is only a necessary condition for (8.16) to hold; it is not sufficient as we still need
to choose p properly, as we proceed to explain.
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CONVERGENCE CONDITION

Introduce the weight-error vector

. A

w; w? — w;

It measures the difference between the weight estimate at time ¢ and the optimal weight
vector, w?, which we are attempting to reach.
Subtracting both sides of the steepest-descent recursion (8.20) from w? we obtain

-

W; = Wi—1 — ,H[Rdu — Ru'wi—l]

with initial weight-error vector w_y; = w” — w_q. Using the fact that w? satisfies the
normal equations R, w® = Rg,. we replace R4, in the above recursion by R, w® and
arrive at the weight-error recursion:

w; = I — pR,|w;_y, ¢>0, w_yq= initial condition (8.21)
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CONVERGENCE CONDITION

This is a homogeneous difference equation with coefficient matrix (I — pR,,). Therefore,
a necessary and sufficient condition for the error vector w; to tend to zero, regardless of
the initial condition w_1, is to require that all of the eigenvalues of the matrix (I — pR,,)
be strictly less than one in magnitude. That is, (I — xR, ) must be a stable matrix. This
conclusion is a special case of a general result. For any homogeneous recursion of the form
y; = Ay, _q, it is well-known that the successive vectors y; will tend to zero regardless of
the initial condition y_1 if, and only if, all eigenvalues of A are strictly inside the unit disc.
The argument that we give below establishes the result for the special case A =1 — pR,,.
For generic matrices A, the proof is left as an exercise to the reader; see Prob. 111.23.

One way to establish that (I— R, ) must be a stable matrix is the following. Since R,, is
a positive-definite Hermitian matrix, its eigen-decomposition has the form (ct. App. B.1):

R, =UAU" (8.22)

where A is diagonal with positive entries, A = diag{Ax }, and U is unitary, i.e., it satisfies
UU* = U*U = 1. The columns of U. say {q }. are the orthonormal eigenvectors of R,,,
namely, each gy satisfies

Rugr = Meqr. gzl =1
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CONVERGENCE CONDITION

Now define the transformed weight-error vector

U™ w; (8.23)

Since U is unitary and, hence, invertible, x; and w; determine each other uniquely. The
vectors {x;,w; } also have equal Euclidean norms since

— p¥ a4 E o~ ~ g -
=xix; =w, UU" w; =w;w; = |w;
T T 1

I

(B I®

Therefore, if x; tends to zero then w; tends to zero and vice-versa. This means that we can
instead seek a condition on y to force z; to tend to zero. It is more convenient to work with
x; because it satisfies a difference equation similar to (8.21), albeit one with a diagonal
coefficient matrix. To see this, we multiply (8.21) by U* from the left, and replace R, by
UAU* and I by UU™, to get
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CONVERGENCE CONDITION

x; =1 — pA|z;—y, x_y =U%w_; = initial condition (8.24)

The coetficient matrix for this difference equation is now diagonal and equal to (I—uA). It
follows that the evolution of the individual entries of 2; are decoupled. Specifically, if we
denote these individual entries by x; = col{x1(i),x2(7),...,zp(7)}. then (8.24) shows
that the k-th entry of z; satisfies

Iterating this recursion from time —1 up to time z gives

zr(i) = (1 — pp) T zp(=1), >0 (8.25)

where 2, (—1) denotes the k-th entry of the initial condition 2 _1.
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CONVERGENCE CONDITION

We refer to the coefficient
(1 — puA) as the mode associated with zx (7). Now in order for x,(¢) to tend to zero
regardless of x(—1), the mode (1 — pAg) must have less than unit magnitude. This
condition is both necessary and sufficient. Therefore, in order for all the entries of the
transformed vector x; to tend to zero, the step-size p must satisfy

11— pdi| < 1, forallk=1,2,....M (8.26)

The modes {1 — puA,} are the eigenvalues of the coefficient matrix (I — pR,,) in (8.21),
and we have therefore established our initial claim that all eigenvalues of this matrix must
be less than one in magnitude in order for w; to converge to zero. The condition (8.26) is
of course equivalent to choosing y: such that

0 < p <2/ Amax

where A, denotes the largest eigenvalue of R,,.
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STEEPEST-DESCENT

Theorem 8.2 (Steepest-descent algorithm) Consider a zero-mean ran-
dom variable d with variance 02 and a zero-mean random row vector u with
R, =Eu*u > 0. Let A\, denote the largest eigenvalue of K,,. The solution
w? of the linear least-mean-squares estimation problem

min E|d — uw|?
wr

can be obtained recursively as follows. Start with any initial guess w_q,
choose any step-size i that satisfies 0 < 1 < 2/A.x, and iterate for ¢ > 0:

w; = wi—1 + p|Rgy — Ryw;_1]

Then w; — w? as i — ~c.
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GENERAL COST FUNCTIONS

8.3 MORE GENERAL COST FUNCTIONS

With the above statement, we have achieved our original goal of deriving an iterative
procedure for solving the least-mean-squares estimation problem

min E|d — uw/|? (8.27)

The ideas developed for this case can be applied to more general optimization problems,
say

min .J(w)

with cost functions .J(w) that are not necessarily quadratic in w (see, e.g., Probs. 1I1.15—
I1.18). The update recursion in these cases would continue to be of the form

Ww; = w;_1 — [Vw J(?_Ut'_l)]* (828)

in terms of the gradient vector of J(-), and using sufficiently small step-sizes.
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TRANSIENT BEHAVIOR

In order to gain further insight into the workings of steepest-descent methods, we shall
continue to examine recursion (8.20), namely,

w; = w1 + p|Raw — Ryw; 1], >0, w_; = initial guess (9.1)

which pertains to the quadratic cost function (8.8). In particular, we shall now study more
closely the manner by which the weight-error vector w; of (8.21) tends to zero. We repeat
the weight-error vector recursion here for ease of reference,

w; = I — pRyJw; 1, i>0, w_q= initial condition (9.2)

along with its transformed version (8.24):

x; =l —pA|x; v, =1 =U"w_; = initial condition (9.3)
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MODES OF CONVERGENCE

9.1 MODES OF CONVERGENCE

To begin with, it is clear from (9.3) that the form of the exponential decay of the £—th
entry of z;, namely, x4 (), to zero depends on the value of the mode 1 — puAy. For instance,
the sign of 1 — A, determines whether the convergence of x4 (7) to zero occurs with or
without oscillation. When 0 < 1 — p)A, < 1 the decay of x(7) to zero is monotonic. On
the other hand, when —1 < 1 — A, < 0 the decay of zx(7) to zero is oscillatory.

Example 9.1 (Exponential decay)

Consider a two-dimensional data vector u, i.e., M = 2 and R, is 2 x 2. Assume the eigenvalues
of Ry are Amin = 1 and Amax = 4. Then g must satisfy j1 < 2/Amax = 1/2 for convergence of
the steepest-descent method (9.1) to be guaranteed. If we choose 1 = 2/5, then the resulting modes
{1 —pAp}willbe 1 — pApax = —3/5 < 0and 1 — pA i, = 3/5 > 0. In this case, both entries of
the transformed vector x; will tend to zero; however, one entry will converge monotonically (the one
associated with Amin) while the other entry will converge in an oscillatory manner (the one associated
with Amax ). This situation is illustrated in Fig. 9.1. o
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EXPONENTIAL DECAY

Trajectories of two decaying modes

lteration
FIGURE 9.1 Two exponentially decaying modes from Ex. 9.1.

with the largest magnitude determines the entry of x; that decays to zero at the slowest
rate. The above example shows that the fastest and slowest rates of convergence are not
necessarily the ones that are associated with the largest and smallest eigenvalues of F,,,
respectively. For the numerical values used in the example, both A,,;, and A.x lead to
modes {1 — pA} with identical magnitudes (equal to 3/5). Consider the following alter-
native example.
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FASTEST RATE OF DECAY

Example 9.2 (Fastest rate of decay)

Assume again that M/ = 2 and that A5, = 1 and Ay = 3. Then g must satisfy g1 < 2/ Apax =
2/3. Choose ;1 = 7/12. Then 1 — ptAmax = —9/12 < O and 1 — ppAmin = 5/12 > 0. This shows
that the entry of x; that is associated with Ay, (rather than A\, .. ) will decay at the fastest rate.

O
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CONVERGENCE BEHAVIOR

9.3 WEIGHT-ERROR VECTOR CONVERGENCE

Let us now examine the convergence behavior of the weight-error vector. Since, as
indicated by (8.23), w; = Uux,, it follows that w; is a linear combination of the columns
of U, and the coefficients of this linear combination are the entries of x;. Using (8.25) we

then get
M M
'IETE- = Z . T;U(E) = Z(l — ;I./\;_;)z—i_l qr LI.‘-;_;(—l) (96)
k=1 k=1

This expression shows that the convergence of w; to zero is also determined by the slowest
converging mode among the {1 — A }; once the faster modes have died out relative to the
slowest mode, it is the slowest mode that ultimately determines the convergence rate of w;
to zero. Assume that this slowest mode of convergence corresponds to an eigenvalue Ay .
Then (9.6) shows that in the limit, as ¢ — oc, w; tends to zero along the direction of the
associated eigenvector, g :

Wy — (1—pde, )Mo (=1)-qr, as i —s o0
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TIME CONSTANTS

9.4 TIME CONSTANTS

It is customary to describe the rate of convergence of a steepest-descent algorithm in
terms of its time constants, which are defined as follows.
Recall that for an exponential function f(t) = e */7, the time constant is 7 and it

corresponds to the time required for the value of the function to decay by a factor of e
since

flt+7)=e DT = f(1)/e

Now, for an exponential discrete-time sequence of the form (cf. (8.25)):°

k(i) = (1= pAe)? |ze(i = D?, >0

the value of |z (7)|* decays by (1 — Ay )? at each iteration. Let 7' denote the time interval
between one iteration and another, and let us fit a decaying exponential function through
the points of the sequence {|x(i)]?}.
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TIME CONSTANTS

. Denote the function by f(¢) = e~*/™, with a time
constant 75, to be determined. Then we must have

f(t)|t:(-i_1]T — |T;b(€ — 1)|2 = E_{f_le/‘Fk
FOlmr = Q=p)® Jar(i =P = e/
Dividing one expression by the other leads to e=7/™ = (1 — pu);,)? or, equivalently,

~T
2In |1 — pAg|

11>

Tk (measured in units of time)

This value measures the time that is needed for the value of | (7)|* to decay by a factor
of e, which corresponds to a decrease of the order of 10loge ~ 4.4 dB. It is common to

normalize the value of 74 to be independent of 1". Thus let 7, = 74 /1. Then

_ A —1
 2In1 — pAg]

(measured in iterations) (9.7)
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TIME CONSTANTS

—1
Tk a STy (measured in iterations) (9.7)

This normalized value measures the approximate number of iterations that is needed for
the value of |z (7)|* to decay by approximately 4.4 dB. For sufficiently small step-sizes
(say, for uA, < 1), we have In |1 — pAg| &~ —pA, and we can approximate the expression
for 74 by

— 1 (Jt t-r )
Ti =~ iterations
g 2,&:}.&;
Usually, the largest {7,k = 1,2,..., M} is taken as indicative of the time constant of the

steepest-descent method.
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LEARNING CURVE

9.5 LEARNING CURVE

Besides modes and time constants, it is also customary to characterize the convergence
performance of a steepest-descent method in terms of its learning curve. Recall that our
original problem is to determine the vector w that minimizes .J(w) = E|d — ww|?. The
steepest-descent recursion (9.1) provides successive iterates w; with cost values J(w;) =
E |d — ww;|%. Since. by choosing the step-size p such that pz < 2/A,,,.,, We are guaranteed
a sequence {w, } that converges to the optimal solution w?, the same condition on g also

cuarantees that the successive values J(w;) will converge to the minimum value of J(w),
namely (cf. (8.11)):

J(w;) — Jpin = 03 — RygR 'Ry, a8 i —s oo
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LEARNING CURVE

[t turns out, as we now verify, that the decay of J(w;) to J;, is always monotonic. To see
this, we recall from (8.10) that

J(w) = Jpin + (w—w?)" R, (w — w) (9.8)

J(’UJI) = L)Tmin + ?_E’:Ru’lﬁi (99)

The term w! R, w; represents the excess mean-square error at iteration i and it will be
denoted by

&(w;) 2 J(w;) — Jmin = W R, W; (9.10)

It measures how far the cost at iteration z is from the minimum cost, J,,iy,.
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LEARNING CURVE

If we replace w; by Uz;, and use the eigen-decomposition (8.22), we obtain

M M
J(w;) = Jmin+;Ak|mk(i)|2 — e ;Am_mk)%“} |z (—1)?

which confirms, under the requirement 0 <y << 2/Apax, that J(w;) — Jpin as @ — o,
irrespective of the initial weight-error vector w_;. Moreover, the convergence is both

exponential and monotonic; it is monotonic since, for any k, the coefficient A\ (1 — pAz)?
1S positive.
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LEARNING CURVE

The evolution of .J(w;) as a function of 7 provides useful information about the learning
behavior of a steepest-descent algorithm. For future reference, we shall adopt the following

definition.

Definition 9.1 (Learning curve) The learning curve of a steepest-descent
method associated with a cost function .J(w) is denoted by .J(7) and defined
as J(i) = J(w;_q) for i > 0. In particular, for the quadratic cost function

J(w) in (8.7), we obtain that its learning curve is given by
J(i) = Ele(i)|* where e(i)=d—uw;_q

is the so-called a priori output estimation error. In this case, the learning
curve is also called the mean-square-error (MSE) curve.
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LEARNING CURVE

Observe that the initial value of J(7) is .J(0) = J(w_1). In general, the value of the
learning curve at an iteration ¢ is a measure of the cost that would result if we freeze the
weight estimate at the value obtained at the prior iteration. Correspondingly, in the mean-
square-error case, the learning curve is defined in terms of the variance of the a priori
error e(z) (which uses w;_1 and not w;). Figure 9.4 shows a typical learning curve for the
steepest-descent algorithm (9.1) with M = 3, Ain = 0.3, Anax = 1, and g = 1.5385.
The modes {1 — A} for this simulation are at {0.5385,0.0769, —0.5385}.

Example of a learning curve for a steepest—descent algorithm

MSE
N

Iteration

FIGURE 9.4 A typical learning curve .J(i) for algorithm (9.1).
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CONTOUR CURVES

9.6 CONTOUR CURVES OF THE ERROR SURFACE

Another useful way to examine the performance of a steepest-descent method is by
examining the contours of constant value of its cost function, .J(w). These contour curves
are more easily characterized if we perform a change of coordinates. For any w, we define
z = U*(w — w?) or, equivalently,

w=w’+Uz (9.11)

where U is obtained from the eigen-decompostion (8.22) of R,,. In other words, we replace
the w—coordinate system by a z—coordinate system. The origin of the new system, » = 0,
occurs at the point w = w? in the w—coordinate system. Likewise, the first basis vector
in the z—coordinate system, namely, z; = col{1,0....,0}, corresponds to the vector w =
w? 4+ qp in the w—coordinate system, where ¢y is the first column of UU. This means that
the first basis vector in the z—domain is obtained by shifting ¢; to w? in the w—domain.
A similar construction holds for the other basis vectors of the z—domain. This chanee of

basis is illustrated in Fig. 9.5 for the case M = 2.
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CHANGE OF COORDINAOES

" 4

-

-~ z—domain

w—domain

FIGURE 9.5
z =U"(w —w?), for the case M = 2.

UCLA ELECTRICAL ENGINEERING DEPARTMENT

Change of coordinates from the w—domain to the z—domain, defined by
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CONTOUR CURVES

Using (9.8), and the eigen-decomposition i,, = UAU™, we can express the cost func-

tion as

2
z(k)|

M
J(Z) — Jmin + 2"Az = '-Imin + Z/\k
k=1

where the {z(k)} denote the entries of 2. The contour curves of .J(z) (and, correspond-
ingly, of .J(w)), are the curves for which

J(z) = aconstant (9.12)

for different constant values. Equation (9.12) defines a hyper-ellipse in M —dimensions.
The hyper-ellipse is centered at w® and it has M principal axes. The principal axes are, by
definition, the lines that pass through the origin and are normal to the hyper-ellipse. For
J(z), its principal axes coincide with the basis vectors of the z—coordinate system. To
see this, note first that the gradient of .J(z) with respect to z* is equal to Az. Moreover,
any line passing through the origin has the form Az for some scalar A. Therefore, for any
such line to be normal to the hyper-ellipse it should satisty Az = Az. This equality is
possible only if A is an eigenvalue of A and = the corresponding eigenvector. But since A
is diagonal, this conclusion requires z to be one of the basis vectors. Therefore, the basis
vectors of the z—coordinate system are normal to the hyper-ellipse and, consequently, they
are the principal axes of the hyper-ellipse. We therefore find that the eigenvectors of R,,,
when shifted to w?, are the principal axes of the elliptic contours of J(w).
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CONTOUR CURVES

Contours of constant mean—square—error and weight vector trajectory
T T T T T
w
2| )
[u]
h
I Initial |
condition
i “"—j )
BO
1
o c—axis
FIGURE 9.6 Elliptic contours of constant mean-square error in two dimensions, where
the entries of w are denoted by w = col{«. 3} and the entries of w” are {«°,3°}. The
figure also indicates a typical trajectory starting from some initial condition w_;.
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ITERATION-DEPENDENT STEP-SIZES

9.7 ITERATION-DEPENDENT STEP-SIZES

The steepest-descent algorithm of Thm. 8.2 uses a constant step-size p. In many in-
stances, it may be desirable to vary the value of the step-size in order to obtain better
control over the speed of convergence of the algorithm.

Condition for Convergence

Starting with (8.12), the arguments of Sec. 8.2 would still hold if we replace y by an
iteration-dependent positive step-size (7). In this case, recursion (9.1) would be replaced
by

w; = w;_1 + p(2)[Rgy — Ryw;_1], w_y = initial guess (9.13)

Of course. not every choice of the step-size sequence {(z)} will guarantee convergence of
w; to w?. For example, one might be tempted to extrapolate the arguments of Sec. 8.2 and
conclude that by choosing i(7) such that j1(7) < 2/Amax for all i. the weight-error vector
w,; will converge to zero. This conclusion is generally false.
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ITERATION-DEPENDENT STEP-SIZES

Consider for illustration
purposes, a scalar recursion of the form x(7) = a(i)x(¢ — 1) fori > 0. Then

v(i) = [ [T ati) ) #(=1)
§=0

If the {a(j)} are such that |a(j)| < 1 for all finite j, it does nor necessarily follow
thatH;.:D a(j) — 0 as i — oc. That is, the product of infinitely many numbers that are
all less than one in magnitude is not necessarily zero (see Prob. I11.2). The product would
tend to zero if all the {a(7)} have their magnitudes uniformly bounded away from one, say
la(7)| < a < 1 forall j and for some @ > 0.

The following statement provides one necessary condition on z(7) in (9.13) for conver-
gence; the proof is given in Probs. II1.9 and II1.10. As explained after the statement of the
theorem, other conditions are possible.
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ITERATION-DEPENDENT STEP-SIZES

Theorem 9.1 (Convergence condition) Given a zero-mean random vari-
able d with variance 02 and a zero-mean random row vector u with R, =
Eu*u > 0, the solution of the linear least-mean-squares estimation problem

min E|d — uw!?
wr

can be obtained recursively as follows. Start with any initial guess w_q,
choose a bounded step-size sequence (i) that tends to zero, i.e., u(i) — 0,
and iterate:

w; = w; 1 + ﬂ(g)[Rdu — Ruu'fi—l]: 1> 0

Then w; — w® as i — oc if, and only if, the step-size sequence satisfies
oo 1(i) = oc. That is, if and only if, {/(¢)} is a divergent sequence.
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CONVERGENCE CONDITION

The result of Thm. 9.1 requires the sequence (7) to tend to zero but not too fast since
the sequence has to diverge as well. A typical sequence that satisfies the conditions of the
theorem is

(i) = z‘jﬁ" a>0, >0 >0

Other examples are any bounded step-size sequences that satisfy both conditions
(el o
Z,u?(z') < o and Z p(i) =
i=0 i=0

This is because the finite-energy condition on the sequence {;(7)} guarantees pu(i) —
0. Still, convergence can occur even if the conditions of the theorem are violated. For
example, in Prob. I11.4 it is shown that with

lim p(i) = a>0

T— 00

i.e., even with z2(7) tending to a nonzero limit, but as long as o < 2/Aax. then w; is
guaranteed to converge to w®.
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NEWTON’S METHOD

9.8 NEWTON'S METHOD

We mentioned in our derivation of the steepest-descent algorithm in Sec. 8.2 that any
choice for the search direction of the form (cf. (8.18)):

p=—B [V,J(w;_1)]"
for any positive-definite matrix 5, can be used to enforce the condition

Re [V (w;_1)p] <0

We chose B = I in our earlier discussions, which led to the steepest-descent variants
of Thms. 8.2 and 9.1. But other choices for B are possible and they lead to different
algorithms with different properties.
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NEWTON’S METHOD

One useul choice for B for mean-square-error costs is

B= |V, J(wi_l}_l , where V2 .J(w) 2V, [V J(w)]

in which case the search direction becomes

p=—[V2J(wi_1)] " [V (wi_y)] (9.17)

The resulting steepest-descent recursion (8.12) would be

w; = Wwi_1 — b [ViJ(wi_l)}_l (Vo J(w;_1)]*, @ >0, w_q = initial guess
(9.18)

This recursive form is known as Newton’s method.
For the quadratic cost function J(w) of (8.8), we use (8.14) to find that (9.18) reduces
to

wW; = Wi—1 + ,[LR;I [Rdu — Ru”wt'_l] (919)

We can examine the properties of this algorithm in much the same way as we did for re-
cursion (9.1). So we shall be brief.
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NEWTON’S METHOD

Convergence Properties

Subtracting both sides of (9.19) from w?, and using the fact that w? satisfies the normal
equations R, w’ = R4,, we arrive at the weight-error recursion

By = (1 — )iy (9.20)

In contrast to (9.2) and (9.14), we find that the covariance matrix R, does not appear any
longer in (9.20). In particular, convergence is now guaranteed for all step-sizes p that
satisfy O < p < 2; a condition that is independent of R,,.

Actually, the choice = 1 in (9.20) leads to immediate convergence because w; = 0
with no further iteration. This is a well-known property of Newton’s method; the method
guarantees convergence in a single iteration to the minimizing argument of a quadratic
cost function by choosing 1 = 1. This fact can also be seen from recursion (9.19), which
for 4 = 1 collapses to

w; = wi—1 + Ry Rau — wiy = wimy + w’ — w;_y = w’

Of course, applying Newton’s method (9.19) to the solution of the least-mean-squares es-
timation problem (8.1) has the same complexity as using (8.4) since both schemes require
the inversion of R,,.
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NEWTON’S METHOD

Learning Curve

Recursion (9.19) estimates the vector w that minimizes .J(w) = E|d — wwl|?. It does so
by evaluating successive iterates w; with cost values J(w;) = E|d — ww;|?. Since, by
choosing 0 < < 2, we are guaranteed a sequence {wj, } that converges to w?, this same
condition on i guarantees convergence of .J(w,) to the minimum value of J(w), namely
(cf. (8.11)),

J(wi) — Jmin = J(w°) = 5’3 - RudR;leu as 1 —— o

The decay of J(w;) to Jy,;, is again monotonic. This can be seen as follows. Using the
representation (9.9),

J(w;) = Jmin + W; R,W;
replacing w; by Uz;, where w; now evolves according to (9.20), and using the eigen-
decomposition (8.22) for R,,, we obtain

M M
J(w:) = Jmin + Y Melzk(@)? = Jmin + (1 — )2 " Ae e (1)
k=1 k=1
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NEWTON’S METHOD

This expression confirms that, under the requirement 0 < p < 2,

lim  J(w;) = Jmin

i o0
irrespective of the initial weight-error vector w_y. Moreover, the convergence is both
exponential and monotonic and, in contrast to the steepest-descent analysis of Sec. 9.5,
convergence is now governed by a single mode at (1 — y1)?. Therefore, with Newton’s
method, we need only associate a single time constant that is equal to (cf. (9.7)):

T=—-1/2In(1 —p) (iterations)

The value of 7 is an approximation for the number of iterations that is needed for ||2i;|? to
decay by approximately 4.4 dB.
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NEWTON’S METHOD

With regards to the contour curves of the error surface, they are still the same hyper-
elliptic curves that were described in Sec. 9.6 (after all we are dealing with the same
quadratic cost function J(w) from (8.8)). As shown in that section, the principal axes
of the contour curves are the eigenvectors of the covariance matrix R,, shifted to the lo-
cation of w?. Now, however, the search direction in Newton’s method is not along the
normal direction to the elliptic curves anymore, but along the line connecting w; 1 to w®.
To see this, recall that when g = 1, convergence of Newton’s method occurs in a single
step, which is only possible if the search direction is along the line connecting w; 1 to w®.
When i # 1, we are still moving along the same direction connecting w; 1 to w® but for
a shorter distance since from (9.19),

w; = wi—1 + p(w® —w;_q)
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REGULARIZATION

Remark 9.1 (Regularization) When the Hessian matrix in (9.18) is close to singular, it is
common to employ regularization, in which case Newton’s method is sometimes known as the
Levenberg-Marquardr method and it becomes

wi = wi—1 — plel + Vo J(wi—1)] ! [VJ(wi—1)]*, i>0, w_1 = initial guess

The difference relative to Newton’s recursion (9.17) is the addition of the small positive parameter
€. This algorithm can still be interpreted as a steepest-descent method of the form (8.12) with B in
(8.18) chosen as

B = [ + V&J(wi1)]”

More generally, we can employ iteration-dependent step-sizes, j(i), and iteration-dependent regu-
larization parameters, €(i) > 0, and write instead

w; = wi_y — (i) [e()I + VT (w;_1)] 7 [VJ(w;_1)]*, i >0, w_; = initial guess
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