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MAIN RESULT FROM LAST LECTURE

Theorem 5.1 (Linear estimator for linear models) Let {y, z, v} be zero-
mean random variakles that are related via the linear model y = Hx + v, for

some data matrix H of compatible dimensions. Both = and v are assumed un-

correlated with invertible covariance matrices, R, = Evv* and R, = Exzx*.

The linear least-mean-squares estimator of @ given y can be evaluated by

either expression:

ii? _ RxH* [Ri, +HR1-H*]_1y _ [R;l ‘i‘H*R;lH}_l H*Rgly

and the resulting minimum mean-square error matrix is

m.m.s.e. = [R;lJrH*R;lH]_l
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LECTURE #06

CONSTRAINED LINEAR ESTIMATION

Sections in order: 6.1-6.3
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A MATRIX RESULT

Lemma B.4 (Invertible product) Let A be N x n, with N > n. Then

A has full rank <= A" A is positive-definite

That is, every tall full rank matrix is such that the square matrix A" A is invertible
(actually, positive-definite).

Proof: Let us first show that A has full rank only if A* A is invertible. Thus assume A has full rank but that
A™ A is not invertible. This means that there exists a nonzero vector p such that A* Ap = 0, which implies
p* A* Ap = 0 or, equivalently, || Ap||2 = 0. That is. Ap = 0. This shows that the nullspace of A is nontrivial so
that A cannot have full rank, which is a contradiction. Therefore a full rank A implies an invertible matrix A™ A.

Conversely, assume A* A is invertible and let us show that A has to have full rank. Assume not. Then there
exists a nonzero vector p such that Ap = 0. It follows that A* Ap = 0, which contradicts the invertibility of
A*A. This is because A* Ap = 0 implies that p is an eigenvector of A* A corresponding to the zero eigenvalue.
Hence, the determinant of A* A is necessarily zero.

Finally, let us show that A* A is positive-definite. For this purpose. take any nonzero vector x and consider
the product * A* Az, which evaluates to || Az||2. Then, the product =* A* Az is necessarily positive; it cannot
be zero since the nullspace of A, in view of A being full rank, contains only the zero vector.
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A MATRIX RESULT

In fact, when A has full rank, not only A" A is positive-definite, but any product of the form
A" B A for any Hermitian positive-definite matrix B:

A: Nxn, N>n, full-rank | — A*BA>0 (B.1)

To see this, recall from App. B.1 that every Hermitian matrix 5 admits an eigen-decomposition of
the form

B=UAU" (B.2)

where A is diagonal with the eigenvalues of B, and U is a unitary matrix with the orthonormal
eigenvectors of B. Define the matrices

AY2 2 iag {\/Ai, Ve, ... «q./,x._.?,}, A2 \V2py

Then A* BA = A* A. Now the matrix A has full rank if, and only if, A has full rank and, in view of

the result of the previous lemma, the full rank property of A is equivalent to the positive-definiteness
of A" A, as desired.
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MOTIVATION

In Sec. 5.1 we studied the problem of estimating a random variable & from a noisy obser-
vation y that 1s related to @ via the linear model

where H 1s a known data matrix and v 1s some disturbance, with & and v satisfying
Ex=0, Ev=0, Exz"=R,, Evv' =R, Exzv' =0 (6.2)

The linear least-mean-squares estimator of @ given y was found to be given by either
expression

& =R,H"[R,+ HR,H*| 'y = [R;*+ H'R;'H| 'H'R;'y  (6.3)

with the right-most expression valid whenever R, > 0 and R, > 0.
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EXAMPLE

we estimated & from the {y(z)} and found that

N-1

UCLA ELECTRICAL ENGINEERING DEPARTMENT

measurements {y(0),y(1),...,y(N — 1)} of a random variable & with variance o
y(i) = x + v(i), i=0,1,...,N —1
le., given i ) L _ -
y(0) 1 v(0)
y(l) 1 v(l)
: = T + :
| Y(N = 1) [ 1 | v(N = 1)

. 1 :
¥~ N+1/SNR ; y (i)

In Sec. 5.5, we applied these results to a simple, yet revealing example. Given N

(6.4)

(6.5)

where SNR = crf: / crf. In (6.4), the variable x 1s assumed to have been initially selected at
random and then N noisy measurements of this same value are made — see Fig. 2.9. The
observations are subsequently used to estimate @ according to (6.5).
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UNKOWN CONSTANT

But what if we consider a different model for &, whereby it 1s assumed to be a constant
of unknown value, say x, rather than a random quantity? How will the expression for &
change? The purpose of this chapter is to study such estimators. Specifically, we shall now
consider linear models of the form

where, compared with (6.1), we are replacing the boldface letter & by the normal letter
x (remember that we reserve the boldface notation to random variables throughout this

book).
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MINIMUM-VARIANCE UNBIASED EST.

6.1 MINIMUM-VARIANCE UNBIASED ESTIMATION

Thus consider a zero-mean random noise variable v with a positive-definite covariance
matrix R, = Evv™ > 0, and let y be a noisy measurement of Hz,

y=Hzr+v (6.7)

where x 1s the unknown constant vector that we wish to estimate. The dimensions of the
data matrix H are denoted by N x n and it 1s further assumed that N > n,

H: Nxn, N>n (6.8)

That 1s, H 1s assumed to be a tall matrix so that the number of available entries in y 1s at
least as many as the number of unknown entries in z. Note that we use the canital letter
N for the larger dimension and the small letter »n for the smaller dimension.
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MINIMUM-VARIANCE UNBIASED EST.

We also assume that the matrix H in (6.7) has full rank, 1.e., that all its columns are
linearly independent and, hence,

rank(H) = n (6.9)

This condition guarantees that the matrix product H*H 1s invertible (in fact, positive-
definite — recall Lemma B.4). It also guarantees that the product H* R 1H is positive-
definite — see expression (B.1). For the benefit of the reader, Sec. B.2 reviews several
basic concepts regarding range spaces, nullspaces, and ranks of matrices.
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MVUE PROBLEM FORMULATION

We are interested in determining a linear estimator for = of the form & = Ky, for some
n x N matrix K. The choice of K should satisfy two conditions:

1. Unbiasedness. First, the estimator & should be unbiased. That is, the choice of
K should guarantee Ex = x, which is the same as KEy = x. But from (6.7) we
have Ey = Hx so that K should satisty K Hx = x, no matter what the value of =
is. This condition means that KA should satisty

KH=1 (6.10)

Note that K H 1s n x n and 1s therefore a square matrix.

2. Optimality. Second, the choice of K should minimize the covariance matrix of the
estimation error, £ = x — &. Using the condition X' H = I, we find that

r=Ky=K(Hr+v)=KHr+Kv=xr+Kv

so that # = — Kv. This means that the error covariance matrix, as a function of K,
1s given by

Ezd' = E(Kvv'K") = KR K* (6.11)
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MVUE OR BLUE PROBLEM

Combining (6.10) and (6.11), we conclude that the desired K 1s found by solving the
following constrained optimization problem:

min- KEAT - ubjectto KH =1 (6.12)

The estimator & = K,y that results from the solution of (6.12) is known as the minimum-
variance-unbiased estimator, or m.v.u.e. for short. It i1s also sometimes called the best
linear unbiased estimator (BLUE).
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INTERPRETATION

Let 7(K') denote the cost function that appears in (6.12), i.e.,
A *
J(K) = KR, K

Then problem (6.12) means the following. We seek a matrix K, satistying K,H = I such
that

J(K)—J(K,) =0 forall K satisfying KH =1

There are several ways of determining /X,. We choose to use the already known solution
of the linear estimation problem (cf. Sec. 5.1) in order to guess what the solution /K, for

(6.12) should be. Once this i1s done, we shall then provide an independent verification of
the result.
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INTUITION

Thus recall, as mentioned in the introduction of this chapter, that for two zero-mean
random variables {x, y} that are related as in (6. 1), the linear least-mean-squares estimator
of & given y 1s (cf. the second expression in (6.3)):

t=(R;'+H'R;'H)"'H*R 'y

Now assume that the covariance matrix of @ has the particular form R, = al, with a
sufficiently large positive scalar a (1.e., & — oc). That 1s, assume that the variance of each
of the entries of @ 1s infinitely large. In this way, @ can be “interpreted™ as playing the role
of some unknown constant vector, . Then the above expression for & reduces to

r=(H'R,'H)""H*R, 'y
This conclusion suggests that the choice K, = (H*R;*H)"*H* R ! solves the problem

of estimating the unknown vector = from model (6.7). We shall now establish this result
more directly; the result is known as the Gauss-Markov theorem.
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GAUSS-MARKOV THEOREM = =\

Carl F. Gauss Andrey A. Markov
(1777-1855) (1856-1922)

Theorem 6.1 (Gauss-Markov Theorem) Consider the linear model y =
Hzx + v, where v is a zero-mean random variable with positive-definite co-
variance matrix R,, and = is an unknown constant vector. Assume further
that H is a full-rank NV x n matrix with N > n. Then the minimum-variance-
unbiased linear estimator of = given y is @ = K,y, where

K,=(H'R;'H)"*H*R;!

Moreover, the resulting cost is m.m.s.e. = (H*R;'H)™'.
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ARGUMENT

Proof: Forany matrix /& that satisfies K H = 1, it is easy to verify that

JK)=KR,K" = (K - K,)R,(K — K,)"” + K,R,K, (6.13)

This 1s because
KR.K. = KRyR;,"H(H*"R;'"H)™"l| = KH(H*R,;'H)"' = (H*R;'H)™!

Likewise, K, R, K, = (H" R;iH)_i. Relation (6.13) expresses the cost 7(K') as the sum of
two nonnegative-definite terms: one is independent of K and is equal to K, [?., /. while the other
is dependent on /. It is then clear, since [2,, > 0, that the cost is minimized by choosing k' = K,
and that the resulting minimum costis K, R, K, = (H" R, 'H) —1 Note further that the matrix &,

in the statement of the theorem satisfies the constraint K, H = 1.
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CONSTRAINED OPTIMIZATION

Remark 6.1 (Constrained optimization) Sometimes in applications (see Secs. 6.4 and 6.5),
optimization problems of the form (6.12) arise without being explicitly related to a minimum-variance-
unbiased estimation problem (as in the statement of Thm. 6.1). For this reason, we also state the
following conclusion here for later reference. The solution of a generic constrained optimization
problem of the form

min KRKT Subjectto KH =1 and Ry > 0 (6.14)

is given by

K,=(H"R;*H)"'H*R;!

with the resulting minimum cost equal to

minimum cost = (H* Ry "H)™" (6.15)

<&
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EXAMPLE

6.2 EXAMPLE: MEAN ESTIMATION

Let us reconsider the example of Sec. 5.5, where we assumed that we are given N
measurements

y(i) =x + v(i), i=0,1,...,N —1
of the same random variable = with variance o2. The noise sequence v(i) was further
assumed to be white with zero mean and variance 2. The linear least-mean-squares esti-
mator (l.I.m.s.e.) of & given the {y(z)} was found to be (cf. (6.5)):

. 1 i
Lllmse — N—l—l/SNR 1:20,9(3)

where SNR = o2 /o2
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EXAMPLE

Now assume instead that we model & as an unknown constant, rather than a random
variable, say

y(i) = =+ v(i), i=0,1,...,N—1 (6.16)

In this case, the value of = can be regarded as the mean value of each y(i). If we collect
the measurements and the noises into vector form,

col{y(0). y(1),....y(N = 1)}, v = col{v(0),v(1)....,v(N — 1)}

and define the data vector h = col{1,1,...,1}. Then y = hz + v, with R, = Evv* =
o2l Invoking the result of Thm. 6.1 with H = h, we conclude that the optimal linear
estimator, or the m.v.u.e., of 7 i8S e = (H*H) " 1H*y, ie.,

imvue — ﬁ E 'y(i) (61?)
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CHANNEL AND NOISE ESTIMATION

6.3 APPLICATION: CHANNEL AND NOISE ESTIMATION

We reconsider the channel estimation problem of Sec. 5.2, except that now the channel
tap vector 1s modeled as an unknown constant vector, c, rather than a random vector, ¢, as
shown 1n Fig. 6.1.

s(1)

FIGURE 6.1 Channel and noise estimation.
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COLLECTING DATA

By repeating the construction of Sec. 5.2 we again obtain (cf. (5.7)):

y(0) s(0) v(0)
y(1) s(1) s(0) v(l)
y(2) s(2) s(1) s(0) v(2)
y3) | =] s(3) s(2) s(l) e+ | v(3)
y(4) s(4) s(3) s(2) v(4)
y(5) s(5) s(4) s(3) v(5)
Ly | [s6) s6) st ] o) ]
y:{NIl]xl H:[Nvl}xﬂrf v:{N:—rl)xl

where we are defining the quantities {y, H, v} and where H is (N + 1) x M. Using the
result of Thm. 6.1, we find that the optimal estimator of ¢ 1s now given by

emue = (H*R;YH) " 'H*R; 'y (6.18)

where R, 1s the covariance matrix of v.
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COMPARING ESTIMATORS

Covue = (H*R7YH) " 'H*R 'y (6.18)

where R, 1s the covariance matrix of v. This result 1s different from the linear least-mean-
squares estimator (I.I.m.s.e.) found in Sec. 5.2 (see (5.8)), namely,

Cimse = [R;' + H*R;YH] " H*R; 'y

which requires knowledge of the covariance matrix 2. = Ecc* when ¢ is modeled as a
random variable. The estimator (6.18) requires knowledge of only { H, R,,, y}. Actually,
if the noise sequence {v(i)} is modeled as white with variance o2, then R, = o2l and
R, would end up disappearing from the expression for ¢,e. Specifically, (6.18) would
become

emvue = (H*H)~'H*y (6.19)

[t 1s worth remarking that expression (6.19) has the form of a least-squares solution;
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NOISE POWER ESTIMATION

Note tfrom (6.19) that we do not need to know o
on the available data (namely, the measurements {y
we can estimate o2 itself as follows. Since

; the estimator 1s now only dependent
i)} and the data matrix H). If desired,

1(,

v(i) =y(i) — [ s(i) s(i—1) ... s(i—M+1) ]ec

an estimator for o2 would be

N

——— 1 e

0F = g 2 v L) sGi=1) o s = M+ 1) ] e
1=0

1.e.,

;g =~ r . oa ||yI - Jﬂr?~-"m1|.||'ue||2 (6.20)
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DECISION-FEEDBACK EQUALIZATION

consider an FIR channel with a known column tap vector ¢ of length M (i.e., with
M taps), say with transfer function

C(z) =c(0)+c(1)z7 + ...+ (M — 1)z=(M=D

Data symbols {s(-)} are transmitted through the channel and the output sequence is mea-
sured in the presence of additive noise, v(z). The signals {v(-), s(-)} are assumed uncorre-
lated. Due to the channel memory, each measurement y(z) contains contributions not only
from s(z) but also from prior symbols, since

M-1
y(i) = c(0)s(i) + Y c(k)s(i —k) + v(i)
=

A

ISI

The second term on the right-hand side describes the inter-symbol-interference (1SI); it
refers to the interference that 1s caused by prior symbols. The purpose of an equalizer 1s to
combat ISI| and to recover s(i) from measurements of the output sequence.
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CHANNEL AND EQUALIZER MODELS

As was discussed 1n Sec. 5.4, in order to achieve this t‘d,‘-}k a linear equalizer employs
current and prior measurements {y(z — &)}, say fork =0,1,..., L — 1. This is because
prior measurements contain information that 1s LDll‘Elthd mth the ISI term in y(z) and,
therefore, they can help in estimating the interference term and removing its effect. Of
course, if possible, it would be preferable to use the prior symbols {s(i — 1), s(i —2), ...}
themselves in order to cancel their effect from y(7) rather than rely on the prior measure-

ments {y(i — 1),y(i —2),...}.

|
j
j
T
T

v}
—
N
-

=

—

Z

[V u )
|

b

VAl
|

b

B(z) ——

FIGURE 6.2 A decision-feedback equalizer. It consists of a feedforward filter, a feedback
filter, and a decision device.
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Decision-feedback equalizers (DFE) attempt to implement this strategy and are there-
fore better suited for channels with pronounced ISI. In addition to using an FIR filter in the
feedforward path, as in linear equalization, a DFE employs a feedback filter in order to feed
back previous decisions and use them to reduce |S|. The DFE structure is shown in Fig. 6.2
for estimating a delayed version of s(z), with the transfer functions of the feedforward
and feedback filters denoted by { F'(z), B(z)}. respectively. It is seen from the figure that
the input to the feedback filter comes from the output of the decision device, denoted by
5(z — A). The purpose of this device is to map the estimator s(i — A ), which is obtained
by combining the outputs of the feedforward and feedback filters, to the closest point in
the symbol constellation. Now in linear equalization, the feedforward filter reduces IS| by
attempting to force the combined system C'(z)F'(z) to be close to

C(2)F(z) = 272

In general, this objective is difficult to attain, especially for channels with pronounced IS,
and C'(z)F (=) will have a nontrivial impulse response sequence (we say that C'(z)F'(z)
will have trailing inter-symbol interference). The purpose of the feedback filter in a DFE
implementation is to use prior decisions in order to cancel this trailing IS|.
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EQUALIZER DESIGN

Assume the feedforward filter has L taps and denote its transfer function by

F(z) = f(0) + f(1)z7' +...+ f(L —1)z~&~D

with coefficients { f(7)}. Likewise, assume the feedback filter has () taps with a transfer
function of the form

B(z) = —b(1)z=t = b(2)z72 — ... = b(Q)z=%

with coefficients denoted by { —b(7)} for convenience. Note that this filter is strictly causal
in that it does not have a direct path from its input to its output (i.e., b(0) = 0). This is
because previous decisions are being fed back through B(z).
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EQUALIZER DESIGN

The criterion for designing the equalizer coefficients { f(i),b(7)} is, as usual, to mini-
mize the variance of the error signal, (i — A) = s(2 — A) — 8(z — A). In so doing, the
designer expects that s(: — A) will be sufficiently close to s(z — A) so that the decision
device would be able to map s(i — A) to the correct symbol in the signal constellation.
Therefore, the { f(7). b(:)} will be determined by solving

min E [5(i - A)P?
{ F(O), F(1), ..., f(L —1) } 6.21)
b(1),b(2), ..., b(Q)

The presence of the decision device makes (6.21) a nonlinear optimization problem. This
is because s(i — A) will be a nonlinear function of the measured data {y(i)}. In order to
facilitate the design of { F'(z), B(z)}, it is customary to assume that

The decisions {s(z — A)} are correct and equal to {s(i — A)} (6.22)

That 1s, we assume that the decision device gives correct decisions.
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EQUALIZER DESIGN

To solve (6.21) we first examine the dependence of the error variance on the unknown
coefficients { f(z),b(7)}. From Fig. 6.2 we have

s(i—A) = [fO)yl)+f(Dy(i =1 ...+ f(L - Dyli = L+1)]
—[b(1)s(i —A—1)+b(2)s(i —A—=2)+ ...+ bQ)s(i — A —Q) ]

where we used assumption (6.22) to replace () by s(7). We can rewrite this expression
more compactly in vector form as follows. We collect the coefficients of F'(z) into a row
vector:

[ f(0) f(1) ... f(L-1)]

and the coefficients of —B(z) into another row vector with a leading entry that is equal to
one,

b 2 [ 1 b(1) b2) ... bQ)]

UCLA ELECTRICAL ENGINEERING DEPARTMENT EE210A: ADAPTATION AND LEARNING (A. H. SAYED) 29




EQUALIZER DESIGN

We also define the following column vectors of observations and data symbols:

y(i) [ s(i—A)
y(i—1) s(i—A—1)
y, = | wli—=2) | sa=| sli-A=2) (6.23)
Lwi-z+1) | Lsi-a-q |
Lyl (O+1)x1

and denote their covariances and cross-covariances by

A SA Sﬁ*-& RS RS
R = E — &
[yz][yz] [Rys Ry]

where Rs 18 (Q + 1) x (Q + 1) and Rg, 18 (Q + 1) x L.

UCLA ELECTRICAL ENGINEERING DEPARTMENT EE210A: ADAPTATION AND LEARNING (A. H. SAYED) 30



ASSUMPTIONS

where Ry is (Q + 1) x (Q + 1) and Ry, 1s (Q + 1) x L. We assume that the processes
{s(:),y(-)} are jointly wide-sense stationary so that the quantities { R, R,,, R} are in-
dependent of 2. We further assume that the covariance matrix R 1s positive-definite and,
hence, invertible. The positive-definiteness of R guarantees that both R, and the Schur
complement of R with respect to [, are positive-definite matrices as well (see Sec. B.3),
1e.,

R, > 0  and Rs 2 R, — Ry R;'Rys > 0 (6.24)

where we are denoting the Schur complement by Fs. Hence, { R,,, Rs} are also invertible.
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PROBLEM FORMULATION

With these definitions, the error signal 8(i¢ — A) can be written as
s1t—A) = s(i—A)—58(i—A) = b'sa— f'y,
so that the optimization problem (6.21) becomes

n}igl E |b"saA — f““yi|2 (6.25)

We shall denote the optimal vector solutions by f7¢ and b;,.. Rather than minimize the
variance of b*sa — f*y, simultaneously over { f, b}, we shall minimize it over one vector
at a time. Thus assume that we fix the vector b and let us minimize the error variance
over f. To do so, we introduce the scalar &« = b*sa so that the error signal becomes
3(i—A) = a— f*y,. Inthis way, (¢ — A) can be interpreted as the error that results from
estimating « from y; through the choice of f. In other words, we are reduced to solving

m}n E|a— ffy,]? where o =b"sp

which 1s a standard linear least-mean-squares estimation problem.
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FORWARD FILTER

which 1s a standard linear least-mean-squares estimation problem. From Thm. 3.1, we
know that the optimal choice for f 1s

‘o = RayR; = bR, R! (6.26)

opt
where we used the fact that
A % % % %
R., = Eay; =Eb'sany;, =b" R,

The resulting minimum mean-square error 1s, again from Thm. 3.1,

1%

m.m.s.e. Elo— f1u,)°

= Ro—RoR;'R,,

= b'Rb—b"Ry R R,.b
= bRy — Ry Ry ' Ryelb

=  b*Rsb (6.27)
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Substituting this expression into (6.25), we find that we now need to solve

111';111 b* Rsb (6.28)

Butrecall that the leading entry of b 1s unity, so that (6.28) 1s actually a constrained problem
of the form

mgn b Rsb subject to b*eg = 1

where eq is the first basis vector, of dimension (Q + 1) x 1,

11

€o col{1,0,0...,0}
Using the result stated in Remark 6.1, we find that the optimal choice of b 1s

Tp—1

opt TpH—1
eg R5 “eo
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The term that appears in the denominator is the (0, 0) entry of Rﬁ_l, while the term in the
numerator 1s the first row of Rﬁ_l. This means that the optimal vector b7, 1s obtained by
normalizing the first row of R_l to have a unit leading entry. Substituting the above ex-
pression for b}, opt into b* Rsb we find that the resulting m.m.s.e. of the original optimization
problem (6.21) 1s

m.m.s.e. = # (6.29)

T p—1

In summary, under assumption (6.22) that the decisions {s(i — A)} are correct, the
optimal coefficients { f(i), b(i)} of the DFE can be found as follows:

Tnp—-1
bi, = ﬂ and Fo=b R, R7? (6.30)
p GE]I-R:S_ €o P P y

bbk

opt

The entries of { £ } provide the desired tap coefficients {b(z), f(7)}.

pt?
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1
m.m.s.e. = — (6.29)
EEREIED
T -1
. eg R f o q —1
bopt = m and fc:-pt = boptRS’B’Ry (630)

The expressions (6.29)—(6.30) for {b5 ;. fope, m.m.s.e.} are in terms of the covariance and
cross-covariance matrices { Rg, Ry, 7, }, which can be evaluated from the channel model
C’'(z) and from the given statistical information about {s(-),v(-)}. To do so, we proceed
as in Sec. 5.4.

We first express the observation vector y, in terms of the transmitted data. Assume for
the sake of illustration that L = 5 (i.e., a feedforward filter with 5 taps) and M = 4 (a
channel with four taps). Then we can write
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CHANNEL MODEL

We first express the observation vector y; in terms of the transmitted data. Assume for
the sake of illustration that L = 5 (i.e., a feedforward filter with 5 taps) and M = 4 (a
channel with four taps). Then we can write

" s) ]
- . - 1 | s(z—1
y(i) o(0) e(1) e(2) o3) R

y(i —1) c(0) (1) (2) <(3) s(i — 3)

yli=2) | = c(0) (1) e(2) c(3) s(i — 4)

(i —3) «0) (1) e(2) «3) S
Lvi-w ] L o0) o) o) o) ]| 207

y,:Lx1 H:Lx(L+M—1) s(i—T) |
gz.:{L—I—lef}—lxl
(i)
v(i —1)
+ | v(i —2)
v(i —3)
| v(i—4)
vi:}jxl
UCLA ELECTRICAL ENGINEERING DEPARTMENT EE210A: ADAPTATION AND LEARNING (A. H. SAYED) 3 7




CHANNEL MODEL

That 1s,

y, = Hs, + v;

(]

where, for general {L, M},

s(7) | v(i)
s(i— 1) v(i—1)
s(i —2) , v, v(i —2) (6.31)

>
1%

s(i—L—-M+2) | v(ii—L+1) |

and H is the L x (L + M — 1) channel matrix. We therefore find that there is a linear
relation between the vectors {y;, s,} and this relation can be used to evaluate R, as

R,=E(Hs,+v;)(Hs, +v;)" = HR;H" + R,

where

R. 2 Es;s? (L+M—1)x(L+M—1)) and R, 2 Evjv' (L xL)
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Likewise,
Ry, =Esa(Hs; +v;)" = (Esas;)H"

since {v(-), s(-)} are uncorrelated. We still need to evaluate E sas?, where {sx, s,} are
defined by (6.23) and (6.31) in terms of the transmitted symbols. Of course, the value of
E sas! depends on the assumed correlation between the transmitted symbols.

[t 1s common that A be chosen such that all the entries of s fall within the entries of
8. This condition requires the channel and filter lengths, as well as the delay A, to satisty

A+Q<L+M~—2 (6.32)

With this LDHditiDI’l if the {s(-)} are assumed to be independent and identically distributed
with variance o2, then it can be seen that

Esas, = [0 ... 0 o241 O ... 0] ((Q@+1)x(L+M-1))

with A leading zero columns, followed by a () + 1) x () + 1) identity matrix scaled by
crg, followed (or not) by zero columns.

UCLA ELECTRICAL ENGINEERING DEPARTMENT EE210A: ADAPTATION AND LEARNING (A. H. SAYED) 39




CHANNEL MODEL

We can express the above Esa s’ more
compactly as

ES&§: = [ U{Q—I—l)x& J?IQ_|_1 () }

Likewise,

R, = 0%1g41 and Rs =cIp4nm—1

We continue with the assumption of i.i.d. symbols {s(-)} for simplicity of presentation.
But it should be noted that the derivation applies even for correlated (but stationary) data.
In a similar vein, we assume that the noise sequence {v(-)} is white with variance o2 so
that R, = o?I. Again, the development applies even for correlated (but stationary) noise.

We thus find that

R, =0*HH* + 021} and Ry =| Oo4nyxa 02lgpr 0 | H* | (6.33)

and
Rs = 01— R, (c2HH" +0211) 'Ry,
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This latter expression can be rewritten, by virtue of the matrix inversion lemma (5.4), as

1 1 -1
Rs = @ (—21 1 —EH*H) P+ (6.34)
JS J’U

where
© =1 0griy«a Ior1 0]

Expressions (6.33) and (6.34) can now be used with (6.29)—(6.30) to determine the optimal
equalizer coefficients and the resulting m.m.s.e.
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EXAMPLE

Example 6.1 (Numerical illustration)

Let us reconsider Ex. 4.1 and design a DFE equalizer rather than a linear equalizer for the channel
C(z) =1+ 0.52:_1, for which M = 2. We select a feedforward filter with 3 taps (i.e., L = 3) and

a feedback filter with one tap (1.e., @ = 1). We also select A = 1. The resulting structure 1s shown
in Fig. 6.3.

v(i)

¥ ]
~——

[ N
L

0.5

—x-zi—r-CT)—)-(g | z L1

FIGURE 6.3 A DFE structure for the channel 1 - 0.5271.
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For this exampleﬁ, Jf = 1 JE = 1. and
105 '
H = 1 0.5
1 05

so that from (6.33) and (6.34)

9/4 1/2 0 - 100

I B B B e
0 1/2 9/4 ) —u. SN R

Using (6.30) we obtain

bopt = [ 1.0000 0.2354 ] , fioe = [ 0.1176  0.4706  0.0000 ]
and the resulting m.m.s.e. is

m.m.s.e. = bops 505, = 0.4705
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That is, Bopi(z) = —0.23542"1 and Fopi(z) = 0.1176 4+ 0.4706z 1. Had we selected insteac
A =0, as we did in Ex. 4.1, then the only quantity that changes is the cross-covariance [7,, whick
becomes

s _ ,
Ry = I 0 0 sothat  Rs — (0.5312 (0.1248
0.5 1 0 —0.1248 0.4992
and, therefore,
bopt = [ 1 0.2500 } ; fopt = [ 0.5000 0.0000 0.0000 ]
That is, Bopi(z) = —0.2527" and F,,,¢(z) = 0.5. The resulting m.m.s.e. in this case is
m.m.s.e. = by, Rsbope = 0.5000

We see that for this example with A = 0, the DFE results in a smaller mean-square error than the
linear equalizer designed in Ex. 4.1, which resulted in m.m.s.e. = 0.5312. A more noticeable differ-
ence in performance between decision-feedback equalizers and linear equalizers can be observed for
channels with more pronounced inter-symbol interference. The performance of DFEs is examined
in greater detail in a computer project at the end of this part. o
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Project 1.3 (Decision feedback equalization) In this project we study the performance of de-
cision feedback equalization for the channel

C(z)=05+1.2:" 41572 - 277

The symbols {s(i)} that are transmitted through C'(z) are i.i.d. and chosen from a QPSK constella-
tion, i.e., each s(7) is selected randomly from the set

{i? + jg} j=v—-1

The noise sequence {wv (i)} is assumed i.i.d. and complex-valued; its real and imaginary parts are
uncorrelated Gaussian random variables with variances 0.039 each, so that JE = 0.078 and the SNR
ratio at the input of the equalizer is approximately 18 dB. We start with L = 13 and @) = 2,

(a) Plot the impulse response, as well as the magnitude of the frequency response, of the channel.
Is the channel minimum phase?

(b) Generate N = 2000 QPSK data points {s(¢)} and transmit them through the channel. Plot
the scatter diagrams of the transmitted sequence {s(7)} and the received sequence {y(i)}.
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(c) Compute the optimal filters { f5,¢. b5 } for values of A in the interval 0 < A < 15 and
generate the sequences {§(i — A)} and {&(i — A)} at the input and output of the decision
device, which is defined by the equation

dec[z] = g {sign[ Re(x) ] + jsign[Im(x) ]}
Plot the number of erroneous decisions as a function of A. For A = 5, plot the scatter

diagrams of the received sequence {y(i)} and of the input to the decision device, {8(i — 5)}.

(d) For each A, compute the theoretical m.m.s.e. by using m.m.s.e. = ]_/EE-]I_—REIE’L and plot its
value as a function of A. Using the actual data, estimate the m.m.s.e. by computing

N

J,-\ri& Z |S("E)_*§(ij|2

i=A41

Compare the resulting values with the theoretical values. Can you explain why there is a bad
fit between theory and practice for smaller values of A? Plot also for A = 5, the following
sequences on three separate subplots:

(1) The channel impulse response sequence.

(11) The impulse response sequence of the cascade combination of the channel and the feed-

forward filter.
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(111) The impulse response sequence of the feedback filter delayed by the value of A.

You will observe that the sequence in part (11) has an almost unit-magnitude sample at time
instant 5, followed by two nonzero samples that correspond to what we call post inter-symbol
interference. This interference should be cancelled by the feedback filter. Any residual IS|
prior to the peak sample at time instant 5 will not be equalized. Compare the coefficients of
the feedback filter in (iii) to the values of the post ISI.

(e) Fix A = 5 and let us now examine the effect of changing the length of the feedforward filter.
Generate a plot showing the number of erroneous decisions as a function of L., for L varying

between 1 and 15. Keep ) fixed at () = 2. Which value of L results in the smallest number
of errors?
(f) Now fix A = 5 and L = 6, and let us vary ). Generate a plot showing the number of

erroneous decisions as a function of ), for () varying between 1 and 6. Which value of )
results 1n the smallest number of errors?

(g) Nowfix A =5, L = 6, and Q = 1. That is, the feedforward filter has 6 taps and the feedback
filter has a single tap. In all derivations and simulations so far we assumed o2 = 0.078. Now
let o2 vary between 0.12 and 0.78, say in increments of 0.001. Write a program that generates
a plot showing how the symbol error rate (SER) varies with SNR.

UCLA ELECTRICAL ENGINEERING DEPARTMENT EE210A: ADAPTATION AND LEARNING (A. H. SAYED) 47




COMPUTER PROJECT

|

(h) Let us now compare the performance of the DFE with that of a linear equalizer for the same
channel. Recall that we studied linear equalizers in Computer Project II.1. Write a program
that determines the optimal linear equalizer for L varying between 1 and 10. The output of the
equalizer is fed into the decision device. Generate a plot that shows the number of erroneous
decisions as a function of L. Use o2 = 0.078 and A = 4 for the linear equalizer. Fix L = 4
for the linear equalizer and plot the scatter diagrams of the received sequence {y(i)} and
of the input to the decision device, {4(i — 4)}. For this particular channel, do you see any
advantage in using the DFE structure over the linear structure?

(i) Now assume the channel C'(z) and the noise variance o are not known beforehand but that

we know the first 200 transmitted symbols {s(7)}, in addition to the entire received data record
{y(i)}. Use the initial 200 data {s(7), (i)} to estimate C'(z) and o2, as explained in Sec. 6.3.
Note that while the coefficients of the actual channel C'(z) are real-valued, the estimated
coefficients will in general be complex-valued. You may use the complex-valued estimates,
or you may keep only their real parts. If the estimates are good enough, their imaginary
parts should be small compared to the real parts. Plot the impulse and frequency responses of
the estimated channel and compare them with that of the actual channel. Repeat the design
of the DFE equalizer by using the estimates of C'(z) and o7 instead. Use o2 = 0.078.
L=6,Q=1,and A = 5. Compare the number of errors in this case with the one obtained
in part (g) using the exact channel model and the exact noise variance.

(j) Now repeat part (1) using a linear equalizer of length 4, followed by the nonlinear decision
device. Compare the number of errors you get in this case with that obtained in part (h) and
also with the DFE.
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Project 11.3 (Decision feedback equalization) The programs that solve this project are the

following.
1. partA.m This program solves part (a) and generates a plot showing the impulse response se-
C(e?“)| over [0.7]. Its

quence and the magnitude of the frequency response of the channel,

output 1s shown i Fig. 21.

Impulse response Freguency response

1.5 ; o
1 O
[}
T 0.5
E
g ol B RN DR
< 5
- ____________________________
0 1 2 3 0 1 2
Tap index © (rad/sample)

Figure 11.21. Impulse and frequency response of the channel C'(z) = 0.5 +
1.2271 41,5272 — 273,
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2. partB.m This program solves part (b) and gencrates a plot showing a scatter diagram of the
transmitted and received sequences {s(i),y(i)}. A typical output is shown in Fig. 22.

Transmitted sequence Received sequence
4 ; 4
2 2
+ 0
E 0 Eo
L L
-2 - -2
-4 . : . 4 . :
-4 -2 0 2 4 -4 -2 0 2 4
Re Re

Figure I1.22. BScatter diagrams of the transmitted (left) and received se-
quences (right), {s(7),y(7)}, for QPSK transmissions.
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3. partC.m This program solves parts (c¢) and (d) and generates three plots. Omne plot shows

scatter diagrams for the received sequence {y(i)} and the sequence at the input of the decision
device (for the case A = 5) — see Fig. 23. A second plot shows the munber of erroneous
decisions as a function of A, as well as the m.m.s.e. (both theoretical and measured) as a
function of A — see Fig. 24. A third plot shows the impulse response sequences of the channel.
the combination channel-feedforward filter. and the feedback filter delayed by A — see Fig. 25.
The unpulse response of the feedback filter has also been extended by some zeros in the plot in
order to match i1ts length with the convolution of the channel and the feedforward filter for ease
of comparison. Observe how the taps of the feedback filter cancel the post IS|. The number of
errors for this simulation was zero.

Received sequence Input of decision device

Figure I1.23. Scatter diagrams of the received sequence (input of the equal-
izer) and the sequence at the input of the decision device for A = 5 and QPSK
transmissions.
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1500 : T 8
. : i}

2 a a 0
E 1nﬁn ............ .............. ...............
S
] . .
L . .
E s00f------- R R TR R LR EREE
— ' .
3 . .

L2006 000000000

1 5 10 15

Delay (A)

Figure 11.24. The plot on the left shows the number of erroneous decisions
as a function of A, while the plot on the right shows the m.m.s.e. as a function
of A as deduced from both theory and measurements.
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Channel

channel.

delayed by A (bottom).
UCLA ELECTRICAL ENGINEERING DEPARTMENT

G

Tap index

Channel convolved with
15 f-;eedfﬂrward ﬁ!ter

o oo PostISI.........

-T-J-o 0000009

-0.5 : :
0 5 10 15
Tap index
0.5 Dela:yed feedl.‘rack: filter
o000 ar -0‘-0 ﬂé-o-o-a o9
% . i A .
=
'_E-_D 5 ....................... .\: ................
E
T
T P TR .'
-1.5 :
0 5 10 15
Tap index

Figure II1.25. The top left plot shows the impulse response sequence of the

The two plots on the right show the convolution of the channel
and feedforward filter impulse responses (top) and the feedback filter response
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4. partE.m This program generates a plot showing the number of erroneous decisions as a function
of the length of the feedforward filter, L. — see the plot on the left in Fig. 26.

partF.m This program generates a plot showing the number of erroneous decisions as a function
of the length of the feedback filter. ¢ — see the plot on the right in Fig. 26.

E'_,'-'[

6. partG.m This program solves part (g) and generates a plot showing the symbol error rate as
a function of the SNR level at the mput of the equalizer. Each point in the plot i1s measured
using 2 x 10* transmissions. A typical output is shown in Fig. 27.

15007
o ¥ 2
e o
s 1000+ =
° © 0 ® ® ® ® E
. )
- o
£ 500 £
= =]
< =z
0 O - . . .
1 5 10 15 1 2 3 4 5 6
Feedforward filter length Feedback filter length

Figure II.26. Number of erroneous decisions as a function of the feedforward
filter length using A = 5 and @@ = 2 (left), and as a function of the feedback
filter length using A =5 and L = 6 (right).
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SER

8 9 10 11 12

Figure I1.27. The plot shows the symbol error rate as a function of the SNR
level at the input of the equalizer. The simulation assumes A =5, L = 6 and

Q=1
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7. partH.m This program solves part (h) and generates a plot that shows the scatter diagrams of
the received sequence and of the sequence at the mput to the decision device (for L = 4 and
A = 4). The plot also shows the number of erroneous decisions as a function of L, as well as
the theoretical and estimated values of the m.m.s.e. for various L. A typical output 1s shown
m Fig. 28, The number of errors in this simulation was zero.

8. partl.m This program solves part (1) and generates a plot that shows the impulse and frequency
responses of both the actual channel and 1ts estimate, as well as scatter diagrams of the received
sequence {y(i)} and the sequence at the input of the decision device — see Fig. 29.

9. partJ.m This program solves part (j) and generates a plot that shows the impulse and frequency
responses of the actual channel and 1ts estimate, as well as scatter diagrams of the received
sequence {y(i)} and the sequence at the input of the decision device — see Fig. 30.
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Received sequence Input of decision device
4 . 2
. st + : +
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Feedforward filter length Feedforward filter length

Figure II.28. The plots in the first row show the scatter diagrams of the
received sequence and of the sequence at the input of the decision device for
L =4 and A = 4, using a linear equalizer structure. The plots in the second
row show the number of erroneous decisions as a function of the feedforward
filter length (L), as well as the theoretical and estimated values of m.m.s.e. for
various values of L.
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Impulse responses of Frequency responses of
original and estimated channels original and estimated channels
2 10 I I
= = Original
—— Estimate
i) -1 ...................................... -
o
=
=
E
=T ot-----o-- R LR
_1 1 9 4 1 1 1
1 2 3 4 0 1 . 2 3
Tap index o (rad/sample)
Received sequence Input of decision device
4 - H : 2 T T T
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' DFE :
_2 ' H H
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Re

Figure 11.29. The plots in the first row show the impulse and frequency
responses of the channel and its estimate. The plots in the second row show
the scatter diagrams of the received sequence and the sequence at the input of
the decision device. This simulation pertains to a DFE implementation with

L=6,0 =1, and A =5.
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Impulse responses of
original and estimated channels

Amplitude

Tap index

Received sequence

dB

Im

Frequency responses of
original and estimated channels

10

= = Jriginal
—— Estimate

1
o (rad/s amp?e}

Input of decision device

. Linear egualization -

-1 0 1 2
Re

Figure I1.30. The plots in the first row show the impulse and frequency
responses of the channel and its estimate. The plots in the second row show
the scatter diagrams of the received sequence and the sequence at the input of
the decision device. This simulation pertains to a linear equalizer with L = 4

and A = 4.
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