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Abstract—In this work, we consider the problem of estimating
the coefficients of linear shift-invariant FIR graph filters. We
assume hybrid node-varying graph filters where the network is
decomposed into clusters of nodes and, within each cluster, all
nodes have the same filter coefficients to estimate. We assume
that there is no prior information on the clusters composition and
that the nodes do not know which other nodes share the same
estimation task. We are interested in distributed, adaptive, and
collaborative solutions. In order to limit the cooperation between
clustered agents sharing the same estimation task, we propose
an extended diffusion preconditioned LMS strategy allowing
the nodes to perform automatic network clustering. Simulation
results illustrate the effectiveness of the proposed unsupervised
method for clustering nodes into clusters and collaborative
estimation.

Index Terms—Graph signal processing, graph filter, node-
varying, diffusion LMS, clustering.

I. INTRODUCTION

Shift-invariant FIR graph filters are defined as polynomials
in a given graph shift linear operator such as the Laplacian
matrix [1], or the adjacency matrix [2], [3]. Since graph shift
operators capture local network topology, FIR graph filters
naturally admit distributed implementations. A standard class
of FIR graph filters includes node-invariant graph filters where
all nodes in the graph share a common set of filter coefficients.
An extension of this model involving node-variant graph filters
is considered in [4]. A hybrid node-varying filter model, which
assumes clusters in the graph and common filter coefficients
within each cluster is also proposed in [5]. Finally, besides
FIR graph filters, IIR extensions are also considered in [6],
[7].

Most of these works consider filtering static input signals.
Several other works consider time-varying graph signals. For
example, in [8], the authors analyze the behavior of FIR and
ARMA graph filters for random time-varying graph signals.
In [9], a time-vertex framework is proposed for joint harmonic
analysis of time-varying graph signals. In [10], a causal
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model based on graph filters is used to characterize graph
signal processes. Several methods have also been proposed
to estimate filter coefficients. In particular, in [11], [12], the
authors show how to estimate the coefficients of node-invariant
graph filters from streaming graph signals.

In this work, we consider the problem of estimating the
filter coefficients of hybrid node-varying graph filters in a
cooperative manner from streaming graph signals. We propose
an unsupervised clustering strategy where nodes are able to
select from among their neighbors those other nodes that
may share the same filter coefficients. This allows them
to collaborate efficiently on a shared estimation task. The
remainder of paper is organized as follows. In Section II, we
introduce the filter and data models. In Section III, we briefly
review how to estimate the coefficients of node-invariant graph
filters in a distributed and adaptive manner. An online learning
algorithm for clustering nodes and estimating filter coefficients
is provided in Section IV. Simulation results are given in
Section V.

Notation: We use normal font letters to denote scalars, bold-
face lowercase letters to denote column vectors, and boldface
uppercase letters to denote matrices. We use diag{x1, . . . , xN}
to denote a diagonal matrix consisting of diagonal entries
x1, . . . , xN and diag{P } to denote a vector collecting the
diagonal entries of matrix P . The symbol λmax(·) denotes
the maximum eigenvalue of its matrix argument. The m-th
entry of a vector x is denoted by [x]m, the (m,n)-th entry
of a matrix X is denoted by [X]mn, and the k-th row of a
matrix X is denoted by [X]k,•.

II. PRELIMINARIES

Consider an undirected weighted graph G that consists of a
set N of N nodes, and a set E of edges such that if node k
is connected to node `, then (k, `) ∈ E . We denote by Nk the
neighborhood of node k with respect to E , including node k.
Assume that the graph is endowed with a graph-shift operator
defined as an N × N shift matrix S whose entry sk` can
be non-zero only if k = ` or (k, `) ∈ E . Popular choices
include the adjacency matrix, the graph Laplacian matrix, and



their normalized counterparts [13]. We consider linear shift-
invariant FIR graph filters defined by the linear operator [2]:

Hni ,
M−1∑
m=0

hmS
m, (1)

with ho = {hm}M−1m=0 denoting the filter coefficients and M
its order. Model (1) is referred to as the node-invariant graph
filter since the coefficients ho are the same for all nodes. Graph
signals are defined as x = [x1, . . . , xN ]> ∈ RN where xk is
the signal sample at node k. Let x(i) denote the graph signal at
time i. One common filtering model assumes that the filtered
graph signal y(i) is generated from the input graph signal x(i)
as follows [10], [12]:

y(i) =

M−1∑
m=0

hmS
mx(i−m) + v(i), i ≥M − 1. (2)

where v(i) is an i.i.d. zero-mean noise with covariance ma-
trix Rv . With this model, each shift Sm is carried out in m
time slots. By retaining the following shifted signals at each
node ` at time i− 1:{

x`(i− 1), [Sx(i− 2)]`, . . . , [S
M−2x(i−M + 1)]`

}
,

only one graph shift is required at each time i to determine
the filtered signal. From model (2), sample yk(i) at node k
can be written as:

yk(i) = z
>
k (i)h

o + vk(i) (3)

with i ≥M − 1, where zk(i) is given by

zk(i) , col
{
[x(i)]k, [Sx(i−1)]k, . . . , [SM−1x(i−M+1)]k

}
.

(4)
The input vector zk(i) at each node k can be computed from
its one-hop neighbors using the retained shifted signals. In
order to estimate ho from {yk(i), zk(i)} in a collaborative,
distributed, and adaptive manner, diffusion LMS strategies can
be employed [14]–[16] as already explained in [12]. However,
since the shift matrix S is not energy preserving in general
[17], this may result in a large eigenvalue spread and reduce
the convergence rate of LMS type strategies. A preconditioned
diffusion LMS strategy was proposed in [18] to address this
issue.

A more flexible model than (1) is introduced in [4]. It
is referred to as a node-variant graph filter and allows the
coefficients to vary across nodes:

Hnv ,
M−1∑
m=0

diag
{
h(m)

}
Sm, (5)

with h(m) ∈ RN , an N × 1 vector. By setting h(m) = hm1N
for all m, model (5) reduces to the node-invariant model (1).
If the entries of h(m) are different, each node applies different
weight to the shifted graph signal Smx. This model introduces
additional degrees of freedom but more complexity into the
design of the filter. To get a trade-off between flexibility

and complexity, the authors of [5] propose the hybrid node-
varying graph filter:

Hhv ,
M−1∑
m=0

diag
{
CQh

(m)
Q

}
Sm, (6)

with CQ ∈ {0, 1}N×Q a tall binary matrix with only one
non-zero entry at each row and zeros elsewhere, h(m)

Q ∈ RQ
a Q × 1 vector, where 1 < Q < N . This model indicates
that there are Q clusters Cq of nodes in the graph and, within
each cluster Cq , there is a common filter coefficient vector
hoq ,

{
[h

(m)
Q ]q

}M−1
m=0

. Therefore, the corresponding filtered
signal yk(i) in (3) can be re-written as:

yk(i) = z
>
k (i)h

o
k + vk(i), i ≥M − 1, (7)

and, for each node k, the coefficients satisfy:

hok = hoq, if k ∈ Cq. (8)

In this paper, we consider unsupervised scenarios where there
is no prior information on the clusters composition. We also
assume that the nodes do not know which other nodes share the
same filter coefficient vector. The only available information
is that clusters may exist in the network but their structures
are unknown.

III. GRAPH DIFFUSION LMS

Let us first describe the graph diffusion LMS strategy with
preconditioning from [18], which allows us to estimate ho

in (3) in a fully distributed and adaptive manner. Consider the
mean-square-error cost Jk(h) at node k:

Jk(h) = E|yk(i)− z>k (i)h|2, (9)

with the aggregate cost given by

J(h) =

N∑
k=1

Jk(h). (10)

Several strategies exist that can be used to minimize costs
of the form (10) in a distributed manner, e.g., incremental,
consensus and diffusion techniques — see [16]. Taking into
account the non-energy preserving property of the graph shift
operator S, the diffusion preconditioned LMS strategy takes
the following form at each node k and time instant i [18]:

ψk(i+ 1) = hk(i) + µk(εI + P k)
−1zk(i)ek(i) (11a)

hk(i+ 1) =
∑
`∈Nk

a`kψ`(i+ 1) (11b)

where ek(i) = yk(i) − z>k (i)hk(i), hk(i) is the estimate
of ho at node k and iteration i, ψk(i) is an intermediate
estimate, µk > 0 is a step-size parameter, ε ≥ 0 is a small
regularization parameter, P k is an M ×M preconditioning
matrix constructed locally prior to the filtering procedure
according to:

P k , diag
{
‖[S(m−1)]k,•‖2

}M
m=1

(12)



and {a`k} are non-negative combination coefficients chosen
to satisfy:

a`k > 0,

N∑
`=1

a`k = 1, and a`k = 0 if ` /∈ Nk. (13)

In the adaptation step (11a), each node k uses the data from
its one-hop neighbors to compute zk(i), then updates its local
estimate hk(i) to an intermediate estimate ψk(i + 1). In the
combination step (11b), node k aggregates all the intermediate
estimates ψ`(i + 1) from its neighbors to obtain the updated
estimate hk(i+1). When algorithm (11a)–(11b) is applied to
estimate filter coefficient vectors arising from different data
models (7), automatic network clustering strategies should be
used to inhibit cooperation between clustered agents [19]–
[22] in order to avoid bias resulting from combining estimates
in (11b) corresponding to different data models. In the follow-
ing, we introduce an unsupervised clustering rule to address
this issue and mitigate the estimation bias.

IV. UNSUPERVISED CLUSTERING METHOD

We first introduce an N ×N clustering matrix Ei at time
instant i, whose (`, k)-th entry is given by:

[Ei]`k =

{
1, if ` ∈ Nk and k believes that hok = ho` ,

0, otherwise.
(14)

At each time i, node k can infer which neighbors belong
to the same cluster based on the non-zero elements of the
k-th column of Ei. We collect these indices into the set
Nk,i , {` | [Ei]`k = 1}. Then, node k will only combine
the intermediate estimates from its neighbors in Nk,i and the
combination rule (13) becomes:

a`k > 0,

N∑
`=1

a`k = 1, and a`k = 0 if ` /∈ Nk,i. (15)

Since the clustering information is not known beforehand,
we propose to learn Ei in an online manner by evaluating
the `2-norm distance between the estimates at two different
nodes. If the distance is smaller than a predefined threshold,
the two nodes are assigned to the same cluster. At each time
instant i, node k runs a stand-alone adaptation step (11a) and
then computes a Boolean variable within its neighborhood Nk:

b`k(i) =

{
1, if ‖ψ`(i+ 1)− hk(i)‖2 ≤ α,
0, otherwise,

(16)

where α is a predefined threshold. Depending on the spectrum
of matrix S, the variance of the shifted signal Smx in some
eigen-subspaces of S may dramatically increase or tend to zero
as m increases. This numerical ill-conditioning may affect the
estimation accuracy of some entries of ψ`(i + 1), and result
in poor clustering performance as illustrated in the sequel. To
address this issue, we propose to evaluate the distance in (16),
in the subspace spanned by the dominant principal components
of the local input data. To evaluate the relative contribution of

each principal component to the whole data space, one can
compute the proportion of total variance [23] given by:

πk,m ,
λm(Rz,k)

Tr(Rz,k)
, (17)

where Rz,k , E{zk(i)z>k (i)} is the covariance matrix of the
input data zk(i), Tr(·) is the trace of its matrix argument, and
λm(·) is its m-th eigenvalue. Since Rz,k is usually unknown
beforehand, we propose to approximate (17) as follows:

π̂k,m =
[pk]m

Tr(P k)
, (18)

where P k denotes the diagonal preconditioning matrix defined
in (12), and pk is the vector collecting the diagonal entries
of P k. The rationale behind (18) is that matrix P k can be used
to approximate the covariance matrix (up to a scaling factor)
of the observations zk(i); see [18] for details. In practice, it is
common to use some predefined percentage of total variance.
We propose to use the following rule to identify the first Mk

principal components:

minimize Mk

subject to
Mk∑
m=1

π̂k,m ≥ τ,
(19)

where parameter τ denotes a threshold in [0, 1]. Since P k

is diagonal, expression (19) then represents the ratio of total
inertia explained by the first Mk principal components of the
observations. Once Mk is computed, each node k uses the
following rule to compute the Boolean variable b`k(i) instead
of the rule (16):

b`k(i) =

1, if

∥∥∥[ψ`(i+1)−hk(i)]1:Mk

∥∥∥2∥∥∥[hk(i)]1:Mk

∥∥∥2 ≤ α′,

0, otherwise,
(20)

where α′ is a small positive value. Compared with (16), note
that we suggest to use a normalized distance in order to
simplify the choice of α′. To reduce the influence of noise,
we further introduce a smoothing step:

t`k(i) = νt`k(i− 1) + (1− ν)b`k(i), (21)

where 0 < ν < 1 denotes a forgetting factor and t`k(i) is
a trust level. Once t`k(i) exceeds a given threshold θ, node
k sets [Ei]`k = 1, i.e., it believes that node ` belongs to
its cluster. In this way, the clustering matrix Ei and the
neighborhood set Nk,i = {` | [Ei]`k = 1} are learned in an
online and distributed manner. Note that the set Nk in the
combination step (11b) is replaced by Nk,i which contains
only the neighbors ` ∈ Nk that node k believes they belong
to its cluster. Parameters a`k must satisfy (15) and have to
be modified accordingly in an online manner. The proposed
strategy is summarized in Algorithm 1.



Algorithm 1 Unsupervised clustering for graph diffusion LMS
with preconditioning.
Initialize: hk(1) = 0, ψk(1) = 0, bkk(1) = 1, tkk = 1 for
k ∈ {1, . . . , N}, E1 = I . Compute P k according to (12) and
Mk according to (19) for all k.

1: for i ≥ 1 do
2: for k = 1 : N do
3: compute zk(i) according to (4)
4: adaptation:

ψk(i+ 1) = hk(i) + µk[εI + P k]
−1zk(i)ek(i)

5: for ` ∈ Nk do
6: compute the Boolean variable according to (20)
7: smoothing step according to (21)
8: update [Ei]`k = 1 if t`k(i) > θ
9: end for

10: choose a`k according to (15)
11: combination: hk(i+ 1) =

∑
`∈Nk,i

a`kψ`(i+ 1)
12: end for
13: end for

V. SIMULATION RESULTS

We tested the proposed clustering algorithm over an undi-
rected weighted graph of N = 60 nodes. In particular, we con-
sidered a sensor network generated by GSPBOX [24] where
each node is connected to its 5 nearest neighbors. The graph
shift operator was chosen as the normalized adjacency matrix
S = A

1.1λmax(A) , with A the adjacency matrix and λmax(A)

its largest eigenvalue. The graph signal x(i) was i.i.d. zero-
mean Gaussian with covariance matrix Rx = diag{σ2

x,k}Nk=1.
The variances σ2

x,k were randomly generated from the uniform
distribution U(1, 1.5). The noise v(i) was zero-mean Gaussian
with covariance matrix Rv = diag{σ2

v,k}Nk=1. The variances
σ2
v,k were randomly generated from the uniform distribution
U(0.1, 0.15). The filter degree was set to M = 3. The
simulation results were averaged over 100 Monte-Carlo runs.

In the first experiment, we compared the proposed algorithm
with the ground truth algorithm where the clusters are assumed
to be known a priori, the non-cooperative algorithm (where
a`k = 1 if k = ` and zero otherwise), the diffusion pre-
conditioned LMS (PLMS) algorithm in (11a)–(11b) without
clustering, and algorithm (11a)–(11b) with the clustering rule
that updates the Boolean variable according to (16) where the
entries of the estimates are used (Mk = M for all k). Note
that all algorithms used the preconditioned LMS (PLMS) in
the adaptation step. The nodes were decomposed into three
clusters Cq with C1 = {1, . . . , 20}, C2 = {21, . . . , 40}, and
C3 = {41, . . . , 60}. The optimal graph filter coefficients hok
were set to [0.5 0.4 0.9]> if k ∈ C1, [0.3 0.1 0.4]> if k ∈ C2,
and [0.9 0.3 0.7]> if k ∈ C3. The parameters {τ, α′, θ, ν} were
set to {0.9, 0.01, 0.5, 0.98}. As shown in Fig.1, the proposed
algorithm performed well compared to the ground truth and
other methods. Figure 2 (Top) shows the topology of the
graph given by the adjacency matrix A (and the shift matrix
S). Figure 2 (Bottom) shows the clusters inferred by the

proposed method. These clusters perfectly match the ground
truth clusters.
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Fig. 1. Network MSD performance for different algorithms.
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Fig. 2. (Top) Topology of the graph (adjacency matrix). (Bottom) Inferred
cluster matrix at steady-state.

In the second test, we considered the scenario where the
model assignments changed while the structure of each cluster
remained unchanged. The nodes were decomposed into two
clusters with C1 = {1, . . . , 30} and C2 = {31, . . . , 60}. The
optimal coefficients changed for both clusters at time instant
i = 1000. Simulation shows that the proposed method tracked
well the changes as shown in Figure 3.

VI. CONCLUSION

We considered the problem of estimating the filter coeffi-
cients of hybrid node-varying graph filters, in an adaptive and
cooperative manner, in the case where nodes do not know the
composition of their own cluster. We proposed a decentralized
clustering scheme, based on a graph diffusion LMS strategy
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Fig. 3. Network MSD performance with models change.

and approximate principal components, to address this issue.
This strategy provides each node the ability to select, among
its neighbors, those that share the same set of filter coefficients
to estimate. Simulation results were presented to demonstrate
the effectiveness of the proposed clustering strategy compared
to other methods.
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