INFERENCE OVER
NETWORKS

LECTURE #9: Optimization by
Single Agats

ooooo EE210B
Spring Quarter 2015

Proc. IEEE, vol. 102, no. 4, pp. 460-497, April 2014.
Foundations and Trends in Machine Learning, vol. 7, no. 4-5, pp. 311-801, July 2014.

Part Il
Single-Agent Adaptation
And Learning

Course EE210B
Spring Quarter 2015

Proc. IEEE, vol. 102, no. 4, pp. 460-497, April 2014.
Foundations and Trends in Machine Learning, vol. 7, no. 4-5, pp. 311-801, July 2014.

Reference

3 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Chapter 2 (Optimization by Single Agents, pp. 319-337):

A. H. Sayed, ““Adaptation, learning, and optimization over

networks," Foundations and Trends in Machine Learning, vol. 7,
issue 4-5, pp. 311-801, NOW Publishers, 2014.

Setting ;\&:

4+ [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

In this chapter we review the class of gradient-descent algorithms,
which are among the most successful iterative techniques for the so-
lution of optimization problems by stand-alone single agents. The pre-
sentation summarizes some classical results and provides insights that
are useful for our later study of the more demanding scenario of op-
timization by networked agents. We consider initially the case of real-
valued arguments [207] and extend the results to the complex domain
as well. We also consider both cases of constant step-sizes and decaying
step-sizes.

Risk and Loss Functions

Course EE210B
Spring Quarter 2015

Proc. IEEE, vol. 102, no. 4, pp. 460-497, April 2014.
Foundations and Trends in Machine Learning, vol. 7, no. 4-5, pp. 311-801, July 2014.

Risk and Loss Functions {J

s [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Thus, let J(w) € R denote a real-valued (cost or utility or risk) function
of a real-valued vector argument, w € R™. It is common in adaptation
and learning applications for J(w) to be constructed as the expectation
of some loss function, Q(w;x), where the boldface variable x is used
to denote some random data, say,

J(w) = E Q(w; x) (2.1)

and the expectation is evaluated over the distribution of x [208].

Risk and Loss Functions

Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Fol-
lowing the notation introduced in Appendices A and B, we denote the
gradient vectors of J(w) relative to w and w' by the following row and
column vectors, respectively, where the first expression is also referred
to as the Jacobian of J(w) relative to w:

V., J(w) A oJ(w) 0J(w) 0J(w) (2.9)
v Dw1 Owr, Owy '
V,rJ(w) = [V Jw)" (2.3)

Risk and Loss Functions

s [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

These definitions are in terms of the partial derivatives of J(w) relative
to the individual entries of w:

w 2 col{wy, wa, ..., wpr} (2.4)

Likewise, the Hessian matrix of J(w) with respect to w is defined as
the following M x M symmetric matrix:

V2 J(w) 2 V1V JW)] = Vu[V,rJ(w)] (2.5)

which is constructed from two successive gradient operations.

Example #2.1

9 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Example 2.1 (Mean-square-error costs). Let d denote a zero-mean scalar ran-
dom variable with variance 03 = Ed* and let w denote a zero-mean 1 x M
random vector with covariance matrix R, = Eu"u > 0. The combined quan-
tities {d,u} represent the random variable x referred to in (2.1). The cross-
covariance vector is denoted by 74, = Edu'. We formulate the problem of
estimating d from w in the linear least-imean-squares sense or, equivalently, the
problem of seeking the vector w? that minimizes the quadratic cost function:

J(w) = (d—uw)® =02 —=2r) w+w'R,w (2.6)

Example #2.1

~ 10 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

This cost corresponds to the following choice for the loss function:

a

Q(w; x) (d—uw)? = d* —2duw + w'u uw (2.7)

Such quadratic costs are widely used in estimation and adaptation problems
(107, 133, 206, 207, 263]. They are also widely used as quadratic risk functions

in machine learning applications [37, 234]. The gradient vector and Hessian
matrix of .J(w) are easily seen to be:

Ve J(w) =2(Ryw—rg) . V2 J(w) =2R, (2.8)

Example #2.1

1 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Figure 2.1 illustrates the mean-square-error cost (2.6) for the two-
dimensional case, M = 2. The individual entries of w € RM are denoted
by w = col{wy,w2}. The plot is generated by using o2 = 0.5, a diagonal
covariance matrix, R,, whose entries are generated randomly from within
the interval [1, 10], and a cross-covariance vector, r4,, whose entries are also
generated randomly within the range [0, 1].

Example #2.1

Lecture #9: Optimization by Single Agents

EE210B: Inference over Networks (A. H. Sayed)

quadratic risk function contour curves

| S35 757575

o ; KROAY 257547

A : GO 2r %]

A . . ““‘:" """:‘:' : [IN 2
TR W A

! e, 2 S

e B 7 75

[~
4 @536%0‘ R — SN
wy -4 -2 0 2 4

Wy

Figure 2.1: lllustration of the mean-square-error cost (2.6) for the two-
dimensional case, M = 2 (left), along with the corresponding contour curves
(right). The plots are generated by using o5 = 0.5, and randomly-generated
diagonal covariance matrix, i, and cross-covariance vector rg,.

Example #2.2
11 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Example 2.2 (Logistic or log-loss risks). Let « denote a binary random variable
that assumes the values +1, and let h denote an M x 1 random (feature) vector
with R, = Ehh'. The combined quantities {~,h} represent the random
variable @ referred to in (2.1). In the context of machine learning and pattern
classification problems [37, 115, 234], the variable v designates the class that
feature vector h belongs to. In these problems, one seeks the vector w? that
minimizes the regularized logistic risk function — see Appendix G:

J(w) & gnwn2 I E {m (1+e—7hTw)} (2.9)

Example #2.2

14 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

where p > 0 is some regularization parameter, In(-) is the natural logarithm

function, and ||w||? = wTw. The risk (2.9) corresponds to the following choice
for the loss function:

Q(w; x) 2 g||w||2 + In (1—|—e_7h’T“’) (2.10)

Once w? is recovered, its value can be used to classify new feature vectors, say,
{h/}, into classes +1 or —1. This can be achieved, for example, by assigning
feature vectors with h, w® > 0 to one class and feature vectors with h, w® < 0
to another class.

Example #2.2

15 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Assuming the distribution of {7, h} is such that it permits the
exchange of the expectation and differentiation operations, it can be verified
that for the above J(w):

T f T e Vv
VwJ(w) = pw' —E<~h T (2.11)
(—’)’h,wa
V2 J(w) = ply+ELhh' ((‘)2)} (2.12)
\ € v

Example #2.2

16 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Figure 2.2 illustrates the logistic risk function (2.9) for the two-
dimensional case, M = 2, and using p = 10. The individual entries of w € R?
are denoted by w = col{w;, wy}. The plot is generated by approximating the
expectation in (2.9) by means of a sample average over 100 repeated real-
izations for the random variables {7, h}. Specifically, a total of 100 binary
realizations are generated for . where the values £1 are assumed with equal
probability, and 100 Gaussian realizations are generated for h with mean

vectors +1 and —1 for the classes v = +1 and v = —1, respectively.
|

Example #2.2

Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

‘ 7
' D7 LA
Sy o

LT 77z
227

Figure 2.2: Illustration of the logistic risk (2.9) for A/ = 2 and p = 10. The
plot is generated by approximating the expectation in (2.9) by the sample
average over 100 repeated realizations for the random variables {~, h}.

r =

Recall#1: Big and Little-O Notation :

18 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

4 N

a(i) = O(b(i)) means |a(i)| < ¢|b(i)| for some constant ¢ and large . Example:

a(i) = O(1/i) = a(i) decays asymptotically at a rate comparable to 1/i

o J
\
a(i) = o(b(i)) means that asymptotically the sequence a(i) decays faster than
b(i), or |a(i)|/|b(7)| — 0 as ¢ — co. Example:
9 a(i) = o(1/i) = a(i) decays asymptotically at a faster rate than 1/i y

{ a = O(p) = |al is in the order of u

a = o(u) = |al is some higher power in p

Conditions on
Risk Function

Course EE210B
Spring Quarter 2015

Proc. IEEE, vol. 102, no. 4, pp. 460-497, April 2014.
Foundations and Trends in Machine Learning, vol. 7, no. 4-5, pp. 311-801, July 2014.

[] [] [] []
Conditions on Risk Function
20 [Lecture #9: Optimization by Single Agents ~_________________EE210B: Inference over Networks (A. H. Sayed)

Stochastic gradient algorithms are powerful iterative procedures for
solving optimization problems of the form

o

w’ = argmin J(w) (2.13)

w

Strong Convexity {J

22 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

While the analysis that follows can be pursued under more relaxed
conditions (see, e.g., the treatments in [32, 191, 192, 244]), it is suffi-
cient for our purposes to require J(w) to be strongly-convex and twice-
differentiable with respect to w. Recall from property (C.18) in the
appendix that the cost function J(w) is said to be vr—strongly convex

if, and only if, its Hessian matrix is sufficiently bounded away from
zero [29, 45, 178, 191]:

J(w) is v—strongly convex <= V2 J(w) > viy >0 (2.14)

for all w and for some scalar v > 0.

Strong Convexity {Q

22 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Strong convexity is a useful con-
dition in the context of adaptation and learning from streaming data
because it helps guard against ill-conditioning in the algorithms; it also
helps ensure that J(w) has a unique global minimum, say, at location
w?; there will be no other minima, maxima, or saddle points. In addi-
tion, as we are going to see later in (2.23), it is well-known that strong
convexity endows gradient-descent algorithms with geometric (i.e., ex-

ponential) convergence rates in the order of O(a'), for some 0 < o < 1
and where i is the iteration index [32, 191].

Convexity L‘

2 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

For comparison purposes,
when the function J(w) is only convex but not necessarily strongly
convex, then from the same property (C.18) we know that convexity is
equivalent to the following condition:

J(w) is convex <= V2 J(w) >0 (2.15)

for all w. In this case, while the function .J(w) will only have global
minima, there can now be multiple global minima. Moreover, the con-

vergence of the gradient-descent algorithm will now occur at the slower
rate of O(1/17) [32, 191].

f]

(] o | %
Regularization AP

] Lecture #9: Opfimization by Single Agents ______________ EE210B: Inference over Networks (A. H. Sayed) _

In most problems of interest in adaptation and learning, the cost

function J(w) is either already strongly convex or can be made strongly
convex by means of regularization. For example, it is common in ma-

chine learning problems [37, 234] and in adaptation and estimation
problems [133, 207] to incorporate regularization factors into the cost
functions; these factors help ensure strong convexity automatically. For
instance, the mean-square-error cost (2.6) is strongly convex whenever

R, > 0. If R, happens to be singular, then the following regularized
cost will be strongly convex:

J(w) 2 gku? 1+ E(d— uw)? (2.16)

Lipschitz Gradient

25 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Besides strong convexity, we also require the gradient vector of J(w)
to be 0—Lipschitz, namely, that there exists 0 > 0 such that

IV J(w2) = Vi J(wi) || < 0fJwz —wn| (2.17)

for all wi,wy. It follows from Lemma E.3 in the appendix that for

twice-differentiable costs, conditions (2.14) and (2.17) combined are
equivalent to

0<wviy < V%U J(w) < ol (2.18)

Conditions on Risk Function

2 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

For example, it is clear that the Hessian matrices in (2.8) and (2.12)
satisfy this property since

2/\min(Ru)IJW < V%U J(’IU) < 2)\maX(Ru)IJ\4 (219)
in the first case and
plvy < Vo J(w) < (p+ Amax(Bn))u (2.20)

in the second case. In summary, we will be assuming the following
conditions on the cost function.

Conditions on Risk Function

Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Assumption 2.1 (Conditions on cost function). The cost function J(w) is
twice-differentiable and satisfies (2.18) for some positive parameters v < J.
Condition (2.18) is equivalent to requiring .J(w) to be v—strongly convex and
for its gradient vector to be d—Lipschitz as in (2.14) and (2.17), respectively.

Summary | {,»? |

2 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Assumptions (can be relaxed):

a) J(w) twice-differentiable

b) J(w) is v—strongly convex <= V2 J(w) > viy >0

€) V., J(w)is d—Lipschitz <= ||V, J(ws) — Vo J(w1)|| < §|
— V. J(w) < 6lu

wo — w1 |

Example: conditions are satisfied by quadratic or logistic risks.

Single Unified Condition {;

2 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

The conditions can be combined into a single statement:

[0< vy < Vi, J(w) < 513'-,{]

Quadratic risks: 2\min(Bu) v < V2 J(w) < 2 max(Ro) v

Logistic risks: ply < V2 J(w) < (p 4 Amax(Bn))In

Benefits of Strong Convexity

o J Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

T

We will devise iterative [

min .J(w)]

procedures for solving:

Strong convexity = useful for adaptation & learning:

@ Ensures a unique global minimum (denoted by w?).

@ Guards against ill-conditioning in the algorithms.

@ Ensures geometric convergence rates, O(a*), 0 <a <1,
=

Usually guaranteed by regularization.

Comparison with Convexity -

a1 [Lecture #9: Optimization by Single Agents

EE210B: Inference over Networks (A. H. Sayed)

In comparison, with convexity alone:

@ Multiple global minima can be present.

@ lll-conditioning can occur.
@ Convergence occurs at slower rate, O(1/i).

/

o

\

e = 107% (desired accuracy)
O(1/¢€) ~ 10° iterations <«
O(In(1/€)) ~ 6 iterations «—

—— (with convexity)
____ (with strong convexity)

J

Gradient-Descent
Algorithms

Course EE210B
Spring Quarter 2015

Proc. IEEE, vol. 102, no. 4, pp. 460-497, April 2014.
Foundations and Trends in Machine Learning, vol. 7, no. 4-5, pp. 311-801, July 2014.

Gradient Descent {Q

2 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

There are many techniques by which optimization problems of the form
(2.13) can be solved. We focus in this work on the important class of
gradient descent algorithms. These algorithms require knowledge of the
actual gradient vector and take the following form:

w; — Wi—1 — ;Lv,wTJ(wi_l), 22 0 (2.21)

where ¢ > 0 is an iteration index (usually time), and p > 0 is a constant
step-size parameter. The following result establishes that the successive

iterates {w;} converge exponentially fast towards w? for any step-size
smaller than the threshold specified by (2.22).

Geometric Convergence

3 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Lemma 2.1 (Convergence with constant step-size: Real case). Assume the cost
function, J(w), satisfies Assumption 2.1. If the step-size y is chosen to satisfy

2v
then, it holds that for any initial condition, w_q, the gradient descent algo-
rithm (2.21) generates iterates {w;} that converge exponentially fast to the

global minimizer, w?, i.e., it holds that

l@lI* < o fl@i-y]? (2.23)

o
Geometric Convergence
>] Lecture #9: Opfimization by Single Agents _____________ EE210B: Inference over Networks (A. H. Sayed) _

where the real scalar a satisfies 0 < a < 1 and is given by
o = 1—2uw+ ;?6* (2.24)

and w; = w? — w; denotes the error vector at iteration i.

Gradient-Descent Algorithms $

3 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Traditional gradient-descent algorithm: min J(w)

w

[wi = wi—1 — pVyrJ(wi—1), @2 0] [wi = w" — ug]

A

a(p)
Lemma 2.1: For small-enough step-sizes, the error \
. ~ 112 ~ 2 L ;
converges exponentially as |[w; || < o [|w;—1]|5, ;
Ry
where o = 1 — 2ur + 1° 5% ’ i
X 2IV [
37 5=

Recall#2: Convex Functions

Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Table C.1: Useful properties implied by the convexity, strict convexity, or strong
convexity of a real-valued function g(z) € R of a real argument z € RM.

g(z) convex = [V, g(z2) — V. g(z1)] (22 — 21) >0
g(z) strictly convex = [V, g(z2) — V. g(z1)] (22 — 21) >0
g(z) v—strongly convex = [V. g(22) — V. g(z1)] (22 — 2z1) > v||z2 — 71 |?

& =
\ e "'
= y
4

Recall#3: Mean-Value Theorems ©

EE210B: Inference over Networks (A. H. Sayed)

38 [Lecture #9: Optimization by Single Agents

Lemma D.1 (Mean-value theorem: Real arguments). Consider a real-valued

and twice-differentiable function ¢g(z) € R, where z € RM is real-valued.
Then, for any M —dimensional vectors z, and Az, the following increment

equalities hold:

9z + A2) — g(z,) (fo 1 V. g(z, +tAz)dt) A- (D.S)

V.g(zo+A2) — Vogl(z) = (A2) (/ v g<z0+mz>dr) (D.9)

15 Proof

3 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Proof. We provide two arguments. The first derivation is perhaps more tra-
ditional, while the second derivation is based on arguments that are more
convenient when we extend the results to optimization over networked agents.
We start by subtracting w® from both sides of (2.21) and use the fact that
Vot (w?) = 0 to write

?IJJ?; = ‘lﬁi}’@'_l -+ M [vaJ(wi_l) — VwTJ(wO)] (225)

Computing the squared Euclidean norms (or energies) of both sides of the
above equality gives

15 Proof

o] Lecture #9: Oprimization by Single Agents __________________________EE210B: nference over Networks (A. H. Sayed)_
l@ill* = @ill” + 1 [V T (wim1) = Ve T (w) | +

2;14 [va(’wi_l) — va(’wO)] ’Z:Uvq;_l

1
(f V2. J(w° — t{ﬁ,;_l)dt) Wi_1
0
(b)

< ||"&77;—1H2 + M252 ||’557;—1||2 - 2#”“@-1“2

= al@iP

(a)

2
< i [P 4 p?

= 2| ;-1 |

(2.26)

where step (a) uses the mean-value relation (D.9) and the strong-convexity

property (C.17) from the appendices, while step (b) uses the upper bound in
(2.18) on the Hessian matrix.

st P .
1% Proo
a1 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

We next verify that condition (2.22) ensures 0 < v < 1. For this purpose,
we refer to Figure 2.3, which plots the coefficient «(p) as a function of p. The
minimum value of a(u), which occurs at the location 1 = /6 and is equal
to 1 — ©% /62, is nonnegative since 0 < v < 4. It is now clear from the figure
that 0 < o < 1 for p € (0, 2%).

15 Proof

a2 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

v

Figure 2.3: Plot of the function a(g) = 1—2wpu+u26% given by (2.24). It shows
that the function a(y) assumes values below one in the range 0 <y < 2v/52.

Recall#4: Spectral Radius & Norm's'

43 [Lecture #9: Optimization by Single Agents

EE210B: Inference over Networks (A. H. Sayed)
Consider an N x N matrix A. Its spectral radius is defined by:

p(A) £ max_ |\(A)

1<k<N

The following two properties hold:

(a) For any induced matrix norm:

p(A) < [lA]lp, p=1

(b) When A is symmetric:

p(A) = || Al

nd p £
2"° Proo
a4 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Alternative proof. We can arrive at the same conclusion by using an alternative
argument, which may seem to be more demanding at first sight. However,
it turns out to be more convenient for scenarios involving optimization by
networked agents, as we are going to study in future chapters — see, e.g., the

derivation in Sec. 8.4.
We again subtract w? from both sides of (2.21) to get

’ZEZ' — ’Z‘Ez‘_l + ,uV,wTJ(w@-_l) (227)

2"d Proof

a5 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

We then appeal to the mean-value relation (D.9) from the appendix to note
that

1
V,wTJ(w@-_l) = — (/ V?U J(wo - tﬁi_1)dt) ?Efi—l
0

CH i (2.98)

I

where we are introducing the symmetric time-variant matrix H,_q, which is
defined in terms of the Hessian of the cost function:

1
H,, 2 / V2, J(w — tw_q)dt (2.29)
0

2"d Proof

4 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Substituting (2.28) into (2.27), we get the alternative representation:

’EEZ' — (I]\/[— MHi—l)'sz'—l (2.30)
Note that the matrix H;_; depends on w;_1 so that the right-hand side of the
above recursion actually depends on w;_1 in a nonlinear fashion. However,
we can still determine a condition on p for convergence of w; to zero because
we can determine a uniform bound on H;_y as follows [191]. Using the sub-
multiplicative property of norms, we have

0l < (1 ar = pHia || (@i |12 (2.31)

2"d Proof

But since .J(w) satisfies (2.18), we know that
(1 —]LL(S)LM ﬁ IMf — ;LHi_l i (1 — ;U/)IMf (2.32)

for all 2. Using the fact that Iy; — pH;_1 is a symmetric matrix, we have that
its 2—induced norm is equal to its spectral radius so that

2
1Tar — pHia P = [p(Ing — pHizy)]
(2.32)
< max{(1 —pd)?, (1 - pv)*}
= max{1—2p6—|—,u262, 1—2,uz/—|—,u21/2}

(a)
< 1= 2uw + pPé?
= a (2.33)

2"d Proof

a4 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

where we used the fact that & > v in step (a). Combining this result with
(2.31) we again conclude that (2.23) holds and, therefore, condition (2.22) on
the step-size ensures w; — 0 as i — oo.

Actually, the argument that led to (2.33) can be refined to conclude that
convergence of w; to zero occurs over the wider interval

< 2/5 (2.34)
than (2.22). This is because condition (2.34) already ensures
max{(1 — nd)?, (1 —puv)?} <1 (2.35)

We will continue with condition (2.22); it is sufficient for our purposes to know

that a small enough step-size value exists that ensures convergence.
[]

Example #2.3

4 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Example 2.3 (Optimization of mean-square-error costs). Let us reconsider the
quadratic cost (2.6) from Example 2.1. We know from (2.19) that 6 =
2 max (Ry) and v = 2\ (R,). Furthermore, if we set the gradient vector
in (2.8) to zero, we conclude that the minimizer, w?, is given by the unique
solution to the equations R,w’ = r4,. We can alternatively determine this
same minimizer in an iterative manner by using the gradient descent recursion
(2.21). Indeed, if we substitute expression (2.8) for the gradient vector into
(2.21), we find that the iterative algorithm reduces to

w; = wi_1 + 2u(rgy — Ryw;_1), i >0 (2.36)

.
4

Example #2.3

5o [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

We know from condition (2.22) that the iterates {w;} generated by this re-
cursion will converge to w? at an exponential rate for any step-size u <

Amin(R) /A2 (R,). Using condition (2.34) instead, we actually have that
convergence of w; to w? is guaranteed over the wider range of step-size values
(< 1/Amax (Fy,). This conclusion can also be seen from the fact that, in this
case, the matrix H;_; defined by (2.29) is constant and equal to 2R, (i.e., it
is independent of w;_1). In this way, recursion (2.30) becomes

’lﬁ,{}’@' = (IM’ — QuRu)ﬁJJé_h 1 2 0 (237)
from which it is again clear that w; converges to zero for all p < 1/Anax(Ry).

Decaying Step-Sizes

Course EE210B
Spring Quarter 2015

Proc. IEEE, vol. 102, no. 4, pp. 460-497, April 2014.
Foundations and Trends in Machine Learning, vol. 7, no. 4-5, pp. 311-801, July 2014.

[[
Decaying Step-Sizes |
2] Lecture #9: Opfimization by Single Agents ____________ EE210B: Inference over Networks (A. H. Sayed) _

It is also possible to employ in (2.21) iteration-dependent step-size se-
quences, (i) > 0, instead of the constant step-size p, and to require

1(7) to satisfy the two conditions:

D u(i)=oc, lim p(i) =0 (2.38)
i—0 71— 00
For example, sequences of the form
ui) = ——, i>0 (2.39)

Decaying Step-Sizes ¥

s [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

satisfy conditions (2.38) for any finite positive constant 7. It is well-
known that, under (2.38), the gradient descent recursion, namely,

w; — W;i—1 — M(Z) V,wTJ(wZ-_l), 22 0 (2.40)

continues to ensure the convergence of w; towards w®

, as explained
next [32, 191, 244]|. However, the convergence rate will now be slower
and in the order of O(1/i?*7). That is, the convergence rate will not
be geometric (or exponential) any longer. For this reason, the constant

step-size implementation is preferred. Nevertheless, we will still discuss

Decaying Step-Sizes " {I ,

52 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

the decaying step-size case in order to prepare for our future treat-
ment of stochastic gradient algorithms where such step-sizes are more
relevant. A second issue with the use of decaying step-sizes is that con-
ditions (2.38) force the step-size sequence to decay to zero; this feature
is problematic for scenarios requiring continuous adaptation and learn-
ing from streaming data (which will be the main focus of our treatment
starting from the next chapter). This is because, in many instances, it
is not unusual for the location of the minimizer, w?, to drift with time.
With (i) decaying towards zero, the gradient descent algorithm (2.40)
will stop updating and will not be able to track drifts in the solution.

Statement

55 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Lemma 2.2 (Convergence with decaying step-size sequence: Real case). Assume
the cost function, J(w), satisfies Assumption 2.1. If the step-size sequence
i(7) satisfies the two conditions in (2.38), then it holds that for any initial
condition, w_y, the gradient descent algorithm (2.40) generates iterates {w, }
that converge to the global minimizer, w®. Moreover, when the step-size
sequence is chosen as in (2.39), then the convergence rate is in the order of

|w;]|? = O(1/i%7) for large enough 1.

Proof

56 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Proof. We first establish the convergence result for step-size sequences satis-
fying (2.38). The argument that led to (2.26) will similarly lead to

Jw]|* < ali)||wi—1|? (2.41)

where now a(i) = 1 — 2vpu(i) + 62p*(i). We split 2v4(i) into the sum of two
factors and write

ofi) = 1—vu(i)—vu(i)+ 62 u2(i) (2.42)

Now, since p(i) — 0, we conclude that for large enough 7 > i,, the sequence
12 (i) will assume smaller values than p(i). Therefore, a large enough time
index, 7,, exists such that the following two conditions are satisfied:

Proof

vu(i) > 0%p?(i), 0<1—wu(i) <1, i>i, (2.43)
It follows that
a(t) < 1—vu(i), >1, (2.44)
and, hence,
l@ill* < (1= wvu() ll@all?, i > (2.45)

[terating over ¢ we can write (assuming a finite i, exists for which |[|w; || # 0,
otherwise the algorithm would have converged) [165, 206]:

Proof

5o | Lecture #9: Optimization by Single Agents —____________________EE210B: Inference over Networks (A. H. Sayed) _
I [kl - .
lim (=) < [] 1—wu@) (2.46)
i—oo \ [|ws, | Mt
— Yo

. s)
lim In (In (1 —wpu(i)) (2.47)

i—=i,+1

Now using the following easily verified property for the natural logarithm
function:

In(l—y) < —y, forall0<y<1 (2.48)

Proof

59 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)
and letting y = vu(7), we have that

In(l —wvpu(i) < —vpli), i>i, (2.49)
so that
Z (1 —rp(i)) < Z vu(i) = —1/(Z }u(z)) = —oo (2.50)
i=i,+1 i=io+1 i=io+1

since the step-size series is assumed to be divergent in (2.38). We conclude

that S ,

i—00 [0z, ||?

so that w; — 0 as 1 — oc.

e« [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

We now examine the convergence rate for step-size sequences of the form
(2.39). Note first that these sequences satisfy the following two conditions

Eooj,u(i) = 00, Soj,u?(@') = 72 EOO 12 _ I < 00 (2.52)
) 6
i=0 =0

1=1

Again, since u(i) — 0 and p?(i) decays faster than (i), we know that for
some large enough ¢ > 71, it will hold that

2up(i) > 6% 1 (i) (2.53)

and. hence,
0<a() <1, i>1 (2.54)

Proof

ot [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

We can now repeat the same steps up to (2.51) using y = 2vu(i’) — 62p2(i’)
to conclude that

@’ : . .
In (‘l% |:|2) < Z In (1 —2vpu(i") + 52;L2(?,’))
1

' =11+1
< = > [2upi) = 8 pR()]
' =11+1
_ zu(3 u(f’))+52(3 /ﬁ(é'))
i'=114+1 i =1i1+1

Proof

o2 [Lecture #9: Optimization by Single Agents

<

(2.55)

Proof

o2 [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

where in step (a) we used the following integral bound, which reflects the fact

that the area under the curve f(x) = 1/x over the interval x € [iy + 2,7+ 2] is
upper bounded by the sum of the areas of the rectangles shown in Figure 2.4:

i+21 i+1 1
f —dr <) = (2.56)

€T [/
1+2 ,é.r:il_i_g

Proof

o[Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

fa)=1/z

'

b 1 g

v

i+ 2 i+1
Figure 2.4: The area under the cnrve f(x) = 1/x over the interval = €

[i1 + 2,i + 2] is upper bounded by the sum of the areas of the rectangles
shown in the figure.

Proof

s [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

We therefore conclude from (2.55) that

N In 114_2 2vT 521_2172 " . .
la]? < ({ : })nwiln?, .

= O(1/i*7) (2.57)

as claimed.

Complex Domain

Course EE210B
Spring Quarter 2015

Proc. IEEE, vol. 102, no. 4, pp. 460-497, April 2014.
Foundations and Trends in Machine Learning, vol. 7, no. 4-5, pp. 311-801, July 2014.

Recall#5: Real vs Complex ¥

Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Consider a function J(w), with w = x + jy, v = col{z, y}:

/ Hw) = ViJ@) = D* [V, J(w)] D\

SV J@ID* = [Vi d(w) (Vur Jw)T] L

D - I jlu . ~ S~
Iy —jlm —

K DD* = 2l /

Recall#6: Real vs Complex {,;

e[Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Consider a v—strongly convex function J(w):

174

{J(Oz’wl + (1 — a)ws) < aJ(wy) + (1 — a)J(ws) — 504(1 — a)ljwy — ’UJ22}

w real : V2 J(w) > viy >0
%

2

] [{ w complex : V2 J(w) > =Iap >0

Recall#7: Real vs Complex

o[Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Consider a convex function J(w):

w real : V2 J(w) < 6y < ||V J(w1) — VJ(wo)|| < 8 |wr — ws
w complex : V2 J(w) < gIQM — ||V J(wy) — VJ(ws)| < gle — wa|

Complex Domain

Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

We now extend the results of the previous two sections to the case
in which the argument w € CM is complex-valued while J(w) € R
continues to be real-valued. We again focus on the case of strongly-
convex functions, J(w), for which the minimizer, w®, is unique. It is
explained in (C.44) in the appendix that, in the complex case, condition
(2.14) is replaced by

J(w) is v—strongly convex <= V2 J(w) > gIQM > () (2.58)

Strong Convexity 56\

Lecture #9: Optimization by Single Agents

EE210B: Inference over Networks (A. H. Sayed)

with a factor of % multiplying v, and with I, replaced by Io)s since the
Hessian matrix is now 2M x 2M . Note that we can capture conditions

(2.14) and (2.58) simultaneously in a single statement for both cases of
real or complex-valued arguments by writing

J(w) is v—strongly convex <= V2 J(w) > %IhM > 0 (2.59)

where the variable A is an integer that denotes the type of the data:

A 1, when w is real
h = ’ 2.60
{ 2, when w is complex ()

Notation: Type Factor ' {;

Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Observe that h appears in two locations in (2.59); in the denominator
of ¥ and in the subscript indicating the size of the identity matrix.
We shall frequently employ the data-type variable, A, throughout our
presentation, and especially in future chapters, in order to permit a
uniform treatment of the various algorithms regardless of the type of

the data.
Likewise, the Lipschitz condition (2.17) is replaced by
o
IV J(w2) = Vo J(wi)[| < o flwz — wi (2.61)

for all wq, ws, where again a factor of h = 2 would appear on the right-
hand-side in the complex case.

Lipschitz Condition

Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

It follows from the result of Lemma E.7
in the appendix that for twice-differentiable costs, conditions (2.59)
and (2.61) combined are equivalent to

0 < %Ih]\/[< V%U J(w) < %Ih]\{ (2.62)

We therefore assume that the cost function J(w) is twice-differentiable
and satisfies (2.62) for some positive parameters v < 0.

Example #2.4
Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Example 2.4 (Complex Hessian matrices). Let us reconsider the context of
Example 2.1 with complex data. Let d be a scalar zero-mean random variable
with variance o3 = E |d|? and let u be a 1 x M zero-mean random vector with
covariance matrix R, = Eu*u > 0. The cross-correlation vector between d
and u is denoted by rg4, = Edu*. The mean-square-error cost function is now

defined as

1>

E|d — uw|?
= 07 — (rau)fw — wrg, + w*R,w (2.63)

Example #2.4 S
Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

The complex gradient vectors of J(w) relative to w and w* are given by —
see Example A.3 in the appendix:

Vo J(w) = (Ryw —7144)", VerJ(w) = Row— 14, (2.64)

and the 2M x 2M Hessian matrix of J(w) can be verified to be block diagonal
in this case and given by — see (B.36) in the appendix:

(2.65)

viaw=| o |

0 RT

It is instructive to compare expressions (2.64) and (2.65) with (2.8) in the real

case.
H

[]
Gradient Descent |

In the complex case, the gradient descent algorithm (2.21) is re-

placed by
w; = W;—1 — ,qu*J(wi_l), ZZ 0 (266)

in terms of the complex gradient vector relative to w*. Since J(w) is
real-valued, it holds that

VerJ (Wic1) = [V (wie1)]* (2.67)

Gradient Descent

Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Comparing with (2.21) we see that transposition of the gradient vector
is replaced by complex conjugation. The above recursion can be mo-
tivated from (2.21) as follows. We express the complex variable w in
terms of its real and imaginary components as

w=x+Jjy (2.68)

We then treat J(w) as the function .J(v) of the 2M x 1 extended real

variable:
v = col{x,y} (2.69)

[]
Gradient Descent |

and consider instead the equivalent optimization problem

min, J(v) (2.70)
We already know from (2.21) that the gradient descent recursion for
minimizing J(v) over v, using the step-size i/ = u/2, has the form:

1
V; = UViji—1 — ENVUTJ(Ui—l)a ?:ZO (2.71)

Gradient Descent

Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

The reason for introducing the factor of % into ;1 will become clear
soon. We can rewrite the above recursion in terms of the components
of v; = col{z;, y;} as follows:
rio| | w1 | lﬂ Vot (@i—1,yi-1)
Yi Yi—1 2

Vi J(wio1,yi-1)

(2.72)

Gradient Descent

o J Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

where we used relation (C.29) from the appendix to express the gradient
vector of J(v) in terms of the gradients of the same function .J(x,y)
relative to = and y. Now, if we multiply the second block row of (2.72)
by 517, add both block rows, and use w; = x; + jy;, we can rewrite
(2.72) in terms of the complex variables {w;, w; _1}:
1 .
wi = wi-1 — i [vaJ(xi—la yi—1) + JVyrd (@i, yz—l)]

2
(0231) w;—1 — Mvw*J(’wi_l) (273)

Gradient Descent

o[Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

The second relation above agrees with the claimed form (2.66); it is
seen that the factor of 1/2 is used in transforming the combination of
gradient vectors relative to x and y into the gradient vector relative
to w. The next statement establishes the convergence of (2.66); in the
statement, we employ the data-type variable, h, so that the conclusion
encompasses both the real and complex-valued domains.

=2 [Lecture #9: Optimization by Single Agents

Geometric Convergence

Lemma 2.3 (Convergence with constant step-size: Complex case). Assume the
cost function J(w) satisfies (2.62). If the step-size p is chosen to satisfy

- (2.74)

then, it holds that for any initial condition, w_q, the gradient descent algo-
rithm (2.66) generates iterates that converge exponentially fast to the global
minimizer, w®, i.e., it holds that

1@]* < o flwi-1]? (2.75)

EE210B: Inference over Networks (A. H. Sayed)

o
Geometric Convergence
o] Lecture #9: Opfimization by Single Agents _________________ EE210B: Inference over Networks (A. H. Sayed) _

where the real scalar « satisfies 0 < a < 1 and is given by

0= 1-—2 (%) + o2 (%)2 (2.76)

Proof

[Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Proof. We are only interested in establishing the above results in the complex
case, which corresponds to h = 2, since we already established these same
conclusions for the real case in Lemma 2.1. Rather than establish the claims
by working directly with recursion (2.66) in the complex domain, we instead
reduce the problem to one that deals with the equivalent function .J(v) of the
extended real variable v = col{x,y} and then apply the result of Lemma 2.1.

Proof

s [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

To begin with, we already know from (E.39) in the appendix that if J(w)
is v—strongly convex, then .J(v) is v—strongly convex as well. We also know
from (E.22) and (E.56) in the same appendix that the gradient vector function
of J(v) is Lipschitz with factor § when the gradient vector function of J(w) is
Lipschitz with factor /2. We further know from (2.71)—(2.73) that a gradient
descent recursion in the w—domain (as in (2.73)) is equivalent to a gradient
descent recursion in the v—domain (as in (2.71)) if we use p/ = pu/2:

v, — Uij—1 — M,VUTJ(U,;_1), 220 (277)

Proof

[Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Lemma 2.1 then guarantees that the real-valued iterates {v;} will converge to
v° when i/ < 2v/62. Consequently, the gradient descent algorithm (2.66) will
converge for 1 < 4v/6%, which is condition (2.74) with 2 = 2 in the complex
case. We note that from the argument that led to (2.34) we can conclude that
convergence actually occurs over the wider interval p/ < 2/9 or, equivalently,
pu/h < 2/4. Either way, we find that relation (2.75) holds by noting that
|w;]|* = ||7;]|? and using the result from Lemma 2.1 to conclude that

Tll? < o floi-al® (2.78)

where v; = v? — v; and
a=1—=2v+ (1)*s5° (2.79)

[]

Decaying Step-Sizes

Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

We can also study gradient descent recursions with decaying step-
size sequences satisfying (2.38), namely,

w; — Ww;—1 — u(?,) vw*J(wZ’_l), 22 0 (280)

Decaying Step-Sizes

Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Lemma 2.4 (Convergence with decaying step-size: Complex case). Assume
the cost function J(w) satisfies (2.62). If the step-size sequence (i) satisfies
(2.38), then it holds that for any initial condition, w_y, the gradient
descent algorithm (2.80) generates iterates {w;} that converge to the global
minimizer, w?. Moreover, when the step-size sequence is chosen as in (2.39),
then the convergence rate is in the order of ||w;||? = O(1/i®?*7/M) for large

enough 1.

Proof

o [Lecture #9: Optimization by Single Agents EE210B: Inference over Networks (A. H. Sayed)

Proof. We apply Lemma 2.2 to the following recursion in the v—domain:
v; = vig — W) Vyrd(vi_y), i>0 (2.81)

where p/(2) = p(i)/2.
[]

End of Lecture

Course EE210B
Spring Quarter 2015

Proc. IEEE, vol. 102, no. 4, pp. 460-497, April 2014.
Foundations and Trends in Machine Learning, vol. 7, no. 4-5, pp. 311-801, July 2014.

	Slide Number 1
	Slide Number 2
	Reference
	Setting
	Slide Number 5
	Risk and Loss Functions
	Risk and Loss Functions
	Risk and Loss Functions
	Example #2.1
	Example #2.1
	Example #2.1
	Example #2.1
	Example #2.2
	Example #2.2
	Example #2.2
	Example #2.2
	Example #2.2
	Recall#1: Big and Little-O Notation
	Slide Number 19
	Conditions on Risk Function
	Strong Convexity
	Strong Convexity
	Convexity
	Regularization
	Lipschitz Gradient
	Conditions on Risk Function
	Conditions on Risk Function
	Summary
	Single Unified Condition
	Benefits of Strong Convexity
	Comparison with Convexity
	Slide Number 32
	Gradient Descent
	Geometric Convergence
	Geometric Convergence
	Gradient-Descent Algorithms
	Recall#2: Convex Functions
	Recall#3: Mean-Value Theorems
	1st Proof
	1st Proof
	1st Proof
	1st Proof
	Recall#4: Spectral Radius & Norms
	2nd Proof
	2nd Proof
	2nd Proof
	2nd Proof
	2nd Proof
	Example #2.3
	Example #2.3
	Slide Number 51
	Decaying Step-Sizes
	Decaying Step-Sizes
	Decaying Step-Sizes
	Statement
	Proof
	Proof
	Proof
	Proof
	Proof
	Proof
	Proof
	Proof
	Proof
	Proof
	Slide Number 66
	Recall#5: Real vs Complex
	Recall#6: Real vs Complex
	Recall#7: Real vs Complex
	Complex Domain
	Strong Convexity
	Notation: Type Factor
	Lipschitz Condition
	Example #2.4
	Example #2.4
	Gradient Descent
	Gradient Descent
	Gradient Descent
	Gradient Descent
	Gradient Descent
	Gradient Descent
	Geometric Convergence
	Geometric Convergence
	Proof
	Proof
	Proof
	Decaying Step-Sizes
	Decaying Step-Sizes
	Proof
	Slide Number 90

