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Traditional Kronecker Form
complex Valued matrlces respectlvely, whose individual (i, j)—th en-
tries are denoted by a;; and b;;. Their Kronecker product is denoted
by K = A® B and is defined as the nm x nm matrix whose entries are
given by [104, 113]:

be n x n and m x m possibly

_CLHB algB alnB

anB a»B ... a,B
Ae@B=| = TFT (F.1)

|

i anlB angB amB ]
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Let {\i(A),7 = 1,...,n} and {N;(B),j = 1,...,m} denote the
eigenvalues of A and B, respectively. Then, the eigenvalues of A ® B
will consist of all nm product combinations {A;(A)A;(B)}. A similar
conclusion holds for the singular values of A ® B in relation to the
singular values of the individual matrices A and B, which we denote
by {0i(A).0;(B)}. Table F.1 lists some well-known properties of Kro-
necker products for matrices {A, B,C, D} of compatible dimensions
and column vectors {z,y}."
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Table F.1: Properties of the traditional Kronecker product definition (F.1).

1. (A+B)eC=(AaC) + (Ba(l)
2. (A@B)(C’@D) (AC ® BD)

3. (AeB)T=AT®BT

4. (A®B)* = A*® B*

5. (Ae@B)yt=A"1gpB!

6. (Ao B)'=A"® B

7. AMA® B} = { (AN (B)}Zy
8. {o(A@B)} ={0i(A)o;(B)};2] ;-
9. det(A® B) = (det A)™ (det B)"

10. Tr(A® B) =Tr(A)Tr(B)

11. Tr(AB) = [VGC(BT)]TVGC(A) [vee(B*)]" vec(A)
12.  vec(ACB) = (BT @ A)vec(C)

13. vec(ry') =y®x
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Block Kronecker Form

Let A now denote a block matrix of size np x np with each block having
size p X p. We denote the (7,7)—th sub-matrix of A by the notation
A it is a block of size p x p. Likewise, we let B denote a second block
matrix of size mp X mp with each of its blocks having the same size
p x p. We denote the (i, j)—th sub-matrix of B by the notation B;;: it is
a block of size p x p. The block Kronecker product of these two matrices
is denoted by K = A ®;, B and is defined as the following block matrix

of dimensions nmp? x mnp? [146]:
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Kll K12 . .. Kln
A Ko1 Koo ... Koy
K= A®,B= . . . ) (FQ)
L Knl Kn2 . . Knn _

where each block Kj;j; is mp? x mp® and is constructed as follows:
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Aij @By Ajj®@Bra ... A @By
Aij @ Bay  Ajj @ Baa ... Ajj @ Bay,
Kij = . . . . (F.3)
| Aij ®Bm1 Aij ® Bja ... Aij ® Byum |

Table F.2 lists some useful properties of block Kronecker products for
matrices { A, B,C, D} with blocks of size p x p. The last three properties
involve the block vectorization operation denoted by bvec: it vectorizes
each block entry of the matrix and then stacks the resulting columns
on top of each other, i.e.,
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bvec(.A) = col {vec(A11),vec(Az1),...,vec(A,1).
vec(Asr), vec(Ags), ..., vec(Ayn),

: (F.4)
vec(Ary), vec(Aan), ... . vec(Ann) }
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Table F.2: Properties of the block Kronecker product definition (F.2).

(A+B) @, C=(A®,C) + (B, C)

(A®pB)(C®, D) =(AC ®, BD)

(A®B)®, (C®D)=(AcC)® (B® D)

(A ®p B)T = A" @, BT

(A®, B)* = A* ®, B*

{AMA @, B)} = {\ (A)T)\j (B)}iEi %

Tr(AB) = [bvec(BT)| " bvec(A) = [bvec(B*)]" bvec(A)
bvec(ACB) = (B" @, A)bvec(C)

bvec(zy') = y @y

LN ook W=
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Figure F.1 illustrates one of the advantages of working with the
bvec operation for block matrices [279]. The figure compares the
effect of the block vectorization operation to that of the regular vec
operation. It is seen that bvec preserves the locality of the blocks from
the original matrix: entries arising from the same block appear to-
gether followed by entries of the other successive blocks. In contrast, in
the vec construction, entries from different blocks are blended together.
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0O0AA]
vec(A) 00 A A bvec(A)

g gk x [T
_Qo**_

Figure F.1: Schematic comparison of the regular and block vectorization op-
erations. It is seen that the bvec operation preserves the locality of the blocks
from the original matrix, while the entries of the blocks get mixed up in the
regular vec operation.

B¢ DD 266> 00 000000
X6 D> > 0000 0000
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For any vector z of size N x 1 and entries {2}, any of the definitions
listed in Table F.3 constitutes a valid vector norm.

Table F.3: Useful vector norms, where the {z} denote the entries of # € CV,

R
lell 2 Jal (1-norm)
k=1
A
x|l = max |z (oo—norm)

1<k<N

[l

N 1/2
(Z |, 2) (Euclidean norm)
k=1

N L/p
(Z |:13kp) (p—norm, for any real p > 1)
k=1

[l
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There are similarly many useful matrix norms. For any matrix A of
dimensions N x N and entries {as}, any of the definitions listed in
Table F.4 constitutes a valid matrix norm. In particular, the 2—induced

norm of A is equal to its largest singular value:

HAHQ — UmaX(A) (F5)
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Table F.4: Useful matrix norms, where the {ay.} denote the entries of A €
(CNXN.

| All4 2 nax (Z |agk|) (1—morm, or maximum absolute column sum)
l

1<k<N
| Al oo 2 ( |ag;€|) (co—norm, or maximum absolute row sum)
k=1
|Allr = 2 /T Tr(A*A) (Frobenius norm)
1Al 2 m;x()]\ ( Ji"p) (p—induced norm for any real p > 1)
* P
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A fundamental result in matrix theory is that all matrix norms in finite
dimensional spaces are equivalent. Specifically, if || A||, and ||A||, denote
two generic matrix norms, then there exist positive constants ¢, and ¢,
that bound one norm by the other from above and from below such as
1104, 113]:

cel[Alle < [[Alla < cul[Allo (F.6)

The values of {cs, ¢, } are independent of the matrix entries though
they may be dependent on the matrix dimensions. Vector norms are

also equivalent to each other.
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Let B denote an N x N matrix with eigenvalues {\x}. The spectral
radius of B, denoted by p(B), is defined as

a
p(B) =  max, Ak | (F.7)

We introduce the Jordan canonical decomposition of B and write

B =TJT~!, where T is an invertible transformation and .J is a block
diagonal matrix, say, with ¢ blocks:

J = diag{J1, Jo, ..., J,} (F.8)
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Each block .J, has a Jordan structure with an eigenvalue A\, on its diag-
onal entries, unit entries on the first sub-diagonal, and zeros everywhere
else. For example, for a block of size 4 x 4:

)\Q
— 1 Aq
Jy = Yo (F.9)

1 A
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Let € denote an arbitrary positive scalar that we are free to choose and
define the N x N diagonal scaling matrix:

D 2 diag {6,62,...,€N} (F.10)

Following Lemma 5.6.10 from [113] and Problem 14.19 from [133], we
can use the quantity 7" originating from B to define the following matrix
norm, denoted by || - ||,, for any matrix A of size N x N:

|All, 2 HDT—lATD—lH (F.11)

1
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in terms of the 1—norm (i.e., maximum absolute column sum) of the
matrix product on the right-hand side. 1t is not difficult to verify that
the transformation (F.11) is a valid matrix norm, namely, that it sat-
isfies the following properties, for any matrices A and C' of compatible
dimensions and for any complex scalar «:
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( (a) ||A]l, > 0 with ||A], = 0 if, and only if, A =0

(a)

b) ||laAll, = |a|||A
(b) lladll, = [al[[All, (F.12)
(c) |1 A+, <|All, + IC]|, (triangular inequality)

(

L (d) [JACY|, < [|A]], IC]], (sub-multiplicative property)
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One important property of the p—norm defined by (F.11) is that when
it is applied to the matrix B itself, it will hold that:

p(B) < [|Bll, < p(B)+e¢ (F.13)

That is, the p—norm of B will be sandwiched between two bounds
defined by its spectral radius. It follows that if the matrix B is stable
to begin with, so that p(B) < 1, then we can always select ¢ small
enough to ensure ||B||, < 1.
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The matrix norm defined by (F.11) is also an induced norm relative
to the following vector norm:

A —
lzll, = 1DT~ )y (F.14)

That is, for any matrix A, it holds that

Ax
4], = mox (” ”P) (F.15)

1l
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Proof. Indeed, using (F.14), we first note that for any vector x # 0:

|Axll, = [IDT~ Az,
DI 'A.TD'DT . 2|4

< ||DT7*ATD™|, - ||DT x|,

= [Allp - 1=l (F.16)
so that

max (M) < |4}, (F.17)

w20\ ll,
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To show that equality holds in (F.17), it is sufficient to exhibit one nonzero
vector x, that attains equality. Let k&, denote the index of the column that at-
tains the maximum absolute column sum in the matrix product DT—*AT D1,
Let e denote the column basis vector of size NV x 1 with one at location k,

and zeros elsewhere. Select
v 2 TD e (F.18)

Then, it is straightforward to verify that

A _ (F.18)
lzoll, = DT aolly =" flex,lh = 1 (F.19)
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and
A —1
|Azoll, 2 DT A,
= DT~*A-TD'DT~ . x|
F.18
LY prtATD ey |y
_ All, (F.20)
so that, for this particular vector, we have
| Az, |
—— = = [lAll, (F.21)
ol

as desired.
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Let © = col{x1,x9,...,2x5} now denote an N x 1 block column vector

whose individual entries are themselves vectors of size M x 1 each.
Following [32, 209, 231, 233], the block maximum norm of x is denoted
by [|z]/p.co and is defined as

A
S F.22
boo = A, || (F.22)

|
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That is, |||/ is equal to the largest Euclidean norm of its block
components. This vector norm induces a block maximum matrix norm.
Let A denote an arbitrary N x N block matrix with individual block
entries of size M x M each. Then, the block maximum norm of A is
defined as

L

270\ |2 llb,00

[Allp,c0 = max (”Axb’m) (F.23)

The block maximum norm has several useful properties — see [209].
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Lemma F.1 (Some useful properties of the block maximum norm). The block
maximum norm satisfies the following properties:

(a) Let U = diag{U;,U,, ..., Uy} denote an N x N block diagonal matrix
with M x M unitary blocks {U.}. Then, the block maximum norm is

unitary-invariant, i.e., ||Uz||p.co = ||||p.co and [|[UAU*||p.co = || Allp.co-

(b) Let D = diag{ D1, D3, ...,Dy} denote an N x N block diagonal matrix
with M x M Hermitian blocks { Dy }. Then, p(D) = ||D||p.00-
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(¢) Let A be an N x N matrix and define 4 = A ® I5; whose blocks are
therefore of size M x M each. If A is left-stochastic (as defined further ahead

by (F.46)), then ||AT||p.0o = 1.

(d) Consider a block diagonal matrix D as in part (b) and any left-stochastic
matrices A; and A, constructed as in part (¢). Then, it holds that

p(A; DA ) < p(D) (F.24)
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There are several variations and generalizations of Jensen’s inequal-
ity. One useful form for our purposes is the following. Let {wy} de-
note a collection of N possibly complex-valued column vectors for
k=1,2,...,N. Let {a;} denote a collection of nonnegative real coef-

ficients that add up to one:

N
Y oap =1, 0<op <1 (F.25)
k=1
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Jensen’s inequality states that for any real-valued convex function
f(x) € R, it holds [45, 126, 172]:

N N
f (Z Ofkwk:) < Zakf(wk) (F.26)
k=1 k=1

In particular, let

N
: 2 Zakwk (F.27)
k=1



Jensen’s Inequality

If we select the function f(z) = ||z]|? in terms of the squared Euclidean

norm of the vector z, then it follows from (F.26) that

2

N
Z LW
k=1

N
<3 el ? (F.28)
k=1
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There is also a useful stochastic version of Jensen’s inequality. If a €
RM is a real-valued random variable, then it holds that

f(Ea)
f(Ea)

where it is assumed that a and f(a) have bounded expectations. We
remark that a function f(x) is said to be concave if, and only if, — f(x)

IV IA

E(f(a)) (when f(xz) € R is convex) (F.29)
E(f(a)) (when f(x) € R is concave)  (F.30)

IS convex.
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The first result, known as Weyl’s Theorem [113, 260], shows how the

eigenvalues of a Hermitian matrix are disturbed through additive per-
turbations to the entries of the matrix. Thus, let {A", A, AA} de-
note arbitrary N x N Hermitian matrices with ordered eigenvalues

{Am (A, A (A), A (AA) ], e,
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and similarly for the eigenvalues of {A’, AA}, with the subscripts 1
and N representing the largest and smallest eigenvalues, respectively.
Weyl’s Theorem states that if A is perturbed to

A=A+ AA (F.32)
then the eigenvalues of the new matrix are bounded as follows:

M(A) + AN(AA) < N\(A) < M(A) + M (AA) (F.33)
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for 1 < n < N. In particular, it follows that the maximum eigenvalue
is perturbed as follows:

Amax(fél) + ArniIl(A14) S Amax(flv) S )\max(A) + )\maX(AA) (F34)

In the special case when AA > 0, we conclude from (F.33) that
M(A) > Ao(A) foralln =1,2,...,N.
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The second result, known as Gershgorin’s Theorem [48, 94, 101, 104,
113, 254, 264], specifies circular regions within which the eigenvalues
of a matrix are located. Thus, consider an N x N matrix A with scalar
entries {ag. . With each diagonal entry ay, we associate a disc in the
complex plane centered at ayy and with

N

A
ry =— Z |agk| (F35)

kA0 k=1
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That is, rp is equal to the sum of the magnitudes of the non-diagonal
entries on the same row as agy. We denote the disc by Dy; it consists of

all points that satisfy

D, = {z c CY such that |z — ape] < ?“g} (F.36)
The theorem states that the spectrum of A (i.e., the set of all its eigen-
values, denoted by A(A)) is contained in the union of all N Gershgorin

discs:

N
AA) c | D, (F.37)
/=1
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A stronger statement of the Gershgorin theorem covers the situation in
which some of the Gershgorin discs happen to be disjoint. Specifically,
if the union of L of the discs is disjoint from the union of the remaining
N — L discs, then the theorem further asserts that L eigenvalues of A
will lie in the first union of L discs and the remaining N — L eigenvalues
of A will lie in the second union of N — L discs.
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In this section, we introduce two particular Lyapunov equations and
list some of their properties. We only list results that are used in the
text. There are many other insightful results on Lyapunov equations.
Interested readers may consult the works [132, 133, 149, 150] and the
many references therein for additional information.
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Given N x N matrices X, A, and (), where () is Hermitian and non-
negative definite, we consider first discrete-time Lyapunov equations,
also called Stein equations, of the following form:

X - A*XA=Q (F.38)

Let Ak (A) denote any of the eigenvalues of A. In the discrete-time case,
a stable matrix A is one whose eigenvalues lie inside the unit disc (i.e.,
their magnitudes are strictly less than one).
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Lemma F.2 (Discrete-time Lyapunov equation). Consider the Lyapunov
equation (F.38). The following facts hold:

(a) The solution X is unique if, and only if, A (A)A7(A) # 1 for all
k.0l =1,2,...,N. In this case, the unique solution X is Hermitian.

(b) When A is stable (i.e., all its eigenvalues are inside the unit disc), the

solution X is unique, Hermitian, and nonnegative-definite. Moreover, it admits
the series representation:

X = i(A*)nQAn (F.30)
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Proof. We call upon property 12 from Table F.1 for Kronecker products and
apply the vec operation to both sides of (F.38) to get

(I — AT @ A*)vec(X) = vec(Q) (F.40)

This linear system of equations has a unique solution, vec(X), if, and only
if, the coefficient matrix, I — AT ® A*, is nonsingular. This latter condition
requires A (A)A\;(A) # 1 for all k. ¢ = 1,2,...,N. When A is stable, all
of its eigenvalues lie inside the unit disc and this uniqueness condition is
automatically satisfied. If we conjugate both sides of (F.38) we find that X*
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satisties the same Lyapunov equation as X and, hence, by uniqueness, we
must have X = X*. Finally, let ' = AT ® A*. When A is stable, the matrix
I is also stable since p(F') = [p(A)]? < 1. In this case, the matrix inverse
(I — F)~! admits the series expansion

I—F)y ' '=T+F+F+F° 4. .. (F.41)

so that using (F.40) we have
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vec(X) = (I —F) 'vec(Q)

= ) vec((A")"QA") (F.42)

from which we deduce the series representation (F.39).
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A similar analysis applies to the following continuous-time Lyapunov
equation (also called a Sylvester equation):

XA* + AX +Q =0 (F.43)

In the continuous-time case, a stable matrix A is one whose eigenvalues
lie in the open left-half plane (i.e., they have strictly negative real
parts).
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Lemma F.3 (Continuous-time Lyapunov equation). Consider the Lyapunov
equation (F.43). The following facts hold:

(a) The solution X is unique if, and only if, A\p(A) + Aj(A) # 0 for all
k.0 =1,2,...,N. In this case, the unique solution X is Hermitian.

(b) When A is stable (i.e., all its eigenvalues lie in the open left-half plane),
the solution X is unique, Hermitian, and nonnegative-definite.
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Proof. We call again upon property 12 from Table F.1 for Kronecker products
and apply the vec operation to both sides of (F.43) to get

(A" @)+ (I ® A)]vec(X) = —vec(Q) (F.44)

This linear system of equations has a unique solution, vec(X), if, and only if,
the coefficient matrix, (A*® 1)+ (I ® A), is nonsingular. This latter condition
requires A\, (A) + Aj(A) # 0 for all k. ¢ = 1,2,...,N. To see this, let ' =
(A*®@1)+ (I ® A) and let us verify that the eigenvalues of I’ are given by all
linear combinations Ay (A) 4+ A;(A). Consider the eigenvalue-eigenvector pairs
Az = M (A)xy, and A% ye = A (A)ye. Then, using property 2 from Table F.1
for Kronecker products we get
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Flye@xy) = [(A"@ D)+ T @A) (ye @)

= (A%yr @) + (ye @ Axy,)
= AN (A)(ye @ ) + A (A) (ye @ )
= (M\e(A) +X(A) (ye @ 1) (F.45)

so that the vector (yy ® xy) is an eigenvector for F with cigenvalue A\, (A) +
A;(A), as claimed. If we now conjugate both sides of (F.43) we find that X*

satisfies the same Lyapunov equation as X and, hence, by uniqueness, we
must have X = X*,

[]
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Consider N x N matrices A with nonnegative entries, {ag > 0}. The
matrix A = |ag] is said to be left-stochastic if it satisfies

ATl =1 (left-stochastic) (F.46)

where 1 denotes the column vector whose entries are all equal to one.
It follows that the entries on each column of A add up to one. The
matrix A is said to be doubly-stochastic if the entries on each of its
columns and on each of its rows add up to one, i.e., if

Al =1, AM1=1 (doubly-stochastic) (F.47)
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Lemma F.4 (Properties of stochastic matrices). Let A be an N x N left or
doubly-stochastic matrix:

(a) The spectral radius of A is equal to one, p(A) = 1. It follows that all
eigenvalues of A lie inside the unit disc, i.e., |A(A)| < 1. The matrix A may

have multiple eigenvalues with magnitude equal to one.
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(b) If A is additionally a primitive matrix (cf. definition (6.1)), then A will
have a single eigenvalue at one (i.e., the eigenvalue at one will have multiplicity
one). All other eigenvalues of A will lie strictly inside the unit circle. Moreover,
with proper sign scaling, all entries of the right-eigenvector of A corresponding
to the single eigenvalue at one will be strictly positive, namely, if we let p
denote this right-eigenvector with entries {p;} and normalize the entries to
add up to one, then

Ap=p. 1'p=1, p.>0, k=12.....N (F.48)

We refer to p as the Perron eigenvector of A. All other eigenvectors of A
associated with the other eigenvalues will have at least one negative or
complex entry.
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We prove the result for right stochastic matrices; a similar argument applies to left or
doubly stochastic matrices. Let A be a right-stochastic matrix. Then, AL = 1, so that A = 1 is
one of the eigenvalues of A. Moreover, for any matrix A, it holds that p(A) < ||A||s, where || - ||
denotes the maximum absolute row sum of its matrix argument. But since all rows of A add up to
one, we have ||Al|cc = 1. Therefore, p(A) < 1. And since we already know that A has an eigenvalue

at A = 1, we conclude that p(A) = 1.

The above result asserts that the spectral radius of a stochastic matrix is unity and that A
has an eigenvalue at A = 1. The result, however, does not rule out the possibility of multiple
eigenvalues at A = 1, or even other eigenvalues with magnitude equal to one.

- Strong primitiveness ensures a unique eigenvalue at one by the
Perron Frobenius Theorem. .
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Lemma F.5 (Deterministic recursion). Let u(z) > 0 denote a scalar determin-
istic (i.e., non-random) sequence that satisfies the inequality recursion:

u(i+1) < [1—a()]u(z) + bli), i>0 (F.49)

(a) When the scalar sequences {a(7),b(i)} satisfy the four conditions:

.
4

it holds that lim u(7) = 0.

71— 00
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(b) When the scalar sequences {a(z),b(7)} are of the form
c

a(i) = i1 b(i) = (i 4+ 1)r+1

it holds that, for large enough i, the sequence w(i) converges to zero at one of
the following rates depending on the value of ¢:

¢ u(g) < (Cilp) z’lp + ()(1/'.?:35')j c>p
= O (logi/i’) . c=p (F.52)

L u(i) = O(1/i°), c<p

The fastest convergence rate occurs when ¢ > p and is in the order of 1/:%.

c>0, d>0, p>0 (F.51)

A
<

Y
-,

—
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a(i) = O(b(i)) means |a(i)| < ¢|b(i)| for some constant ¢ and large . Example:

a(i) = O(1/i) = a(i) decays asymptotically at a rate comparable to 1/i

o J
\
a(i) = o(b(i)) means that asymptotically the sequence a(i) decays faster than
b(i), or |a(i)|/|b(7)| — 0 as ¢ — co. Example:
9 a(i) = o(1/i) = a(i) decays asymptotically at a faster rate than 1/i y

{ a = O(p) = |al is in the order of u

a = o(u) = |al is some higher power in p



[ ] [ ]
Stochastic Recursion
69 ) Lecture #8: Useful MatrixResults ~________ EE210B: Inference over Networks (A. H. Sayed) _

Lemma F.6 (Stochastic recursion). Let u(i) > 0 denote a scalar sequence
of nonnegative random variables satisfying Ew(0) < oo and the stochastic
recursion:

E [u(i + 1) w(0),w(l),....uli)] < [1—a(@]ul) + b(i), i>0 (F.53)

in terms of the conditional expectation on the left-hand side, and where the
scalar and nonnegative deterministic sequences {a(7), b(7)} satisfy the five con-
ditions:

0<a(i) <1, bli)> Za = 00, ib(i)<o®5 1_1&’11%:0
= (F.54)

Then, it holds that lim (i) = 0 almost surely, and lim E (i) = 0.

1 — 00 1— 00
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