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Let g(z) € R denote a real-valued v—strongly convex function of a pos-
sibly vector argument z. We assume that g(z) is differentiable whenever
necessary. In this appendix, we use the mean-value theorems from Ap-
pendix D to derive some useful bounds on the increments of strongly
convex functions. These bounds will assist in analyzing the mean-
square-error stability and performance of distributed algorithms. We
treat both cases of real and complex arguments.
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Lemma D.1 (Mean-value theorem: Real arguments). Consider a real-valued
and twice-differentiable function ¢g(z) € R, where z € RM is real-valued.
Then, for any M —dimensional vectors z, and Az, the following increment

equalities hold:

9z + A2) — g(z,) ( fo 1 V. g(z, +tAz)dt) A-  (D.S)

V.g(zo+A2) — Vogl(z) = (A2) ( / v g<z0+mz>dr) (D.9)
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Consider first the case in which the argument z € R is real-valued.
Let z° denote the location of the unique global minimizer of g(z) so
that V. g(z°) = 0. Combining the mean-value theorem results (D.8)

and (D.9) we get

1,1
/ / tV2 g(2° +tr Az)drdt| Az (E.1)
0 Jo

9(z"+Az) —g(z°) = (Az)"



Real Domain

Now assume the Hessian matrix of ¢(z) is uniformly bounded from

above, i.e.,
V2g(z) <81y, forall z (E.2)

and for some § > 0. It follows from (E.1) that

9+ A2) — (=) < 3 [Az? (£.3

which leads to the following useful statement for strongly-convex func-
tions.
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Lemma E.1 (Perturbation bound: Real arguments). Consider a v—strongly con-
vex and twice-differentiable function g(z) € R and let z° € R denote its
elobal minimizer. Assume that its M x M Hessian matrix (defined according
to the first row in Table B.1 or equation (B.29)) is uniformly bounded from
above by V2 g(z) < 81y, for all z and for some § > 0. We already know from
item (c¢) in (C.18) that the same Hessian matrix is uniformly bounded from
below by v1y,. i.e.,

vy < V2 g(z) < 6y, forall 2 (E.4)

Under condition (E.4), it follows from (C.16) and (E.3) that, for any Az, the
function increments are bounded by the squared Euclidean norm of Az as

follows:
4 2 o0 1) 5 2
§HAZII < g(z°+Az) — g(z°) < §HAZH (E.5)




Real Domain
o ) Lecture #7: Lipschitz Conditions . EE210B: Inference over Networks (A. H. Sayed)

One useful conclusion that follows from (E.5) is that under condition
(E.4), every strongly convex function ¢g(z) can be sandwiched between
two quadratic functions, namely,

v )
o)+ Ll = < gle) € 9+ e- P (ES)



(]
Real Domain
10| Lecture #7: Lipschitz Conditions __________EE210B: Inference over Networks (A. H. Sayed) _
A second useful conclusion can be deduced from (E.1) when the size of
Az is small and when the Hessian matrix of ¢g(z) is smooth enough in
a small neighborhood around z = 2°. Specifically, assume the Hessian
matrix function is locally Lipschitz continuous in a small neighborhood

around z = z°, namely,

|V2 g2+ 22) = V2 g(2)| < nl|Az] (E.7)

for sufficiently small values ||[Az|| < € and for some x > 0. This condi-
tion implies that we can write

V2 g(z + Az) = VZg(z") + O(|Az]) (E.8)
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It then follows from equality (E.1) that, for sufficiently small Az:
1 ]
g(z° +Az) — g(z°) = (Az)' §V§9(Zo) Az + O(]|Az|])
1 .
~ (Az)! §V§9(ZO) Az
= [|Az] (E.9)

3 V2 9(2°)
where the symbol ~ in the second line is used to indicate that higher-
order powers in ||Az|| are being ignored. Moreover, for any Hermitian

positive-definite weighting matrix W > 0, the notation ||z, refers to
the weighted square Euclidean norm z*Wzx.
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We conclude from (E.9) that the increment in the value of the func-
tion in a small neighborhood around z = z° can be well approximated
by means of a weighted square Euclidean norm; the weighting matrix
in this case is equal to the Hessian matrix of ¢g(z) evaluated at z = z°

and scaled by 1/2. The error in this approximate evaluation is in the
order of ||Az|?.
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Lemma E.2 (Perturbation approximation: Real arguments). Consider the same
setting of Lemma E.1 and assume additionally that the Hessian matrix func-
tion is locally Lipschitz continuous in a small neighborhood around z = 2¢ as
defined by (E.7). It then follows that the increment in the value of the function
g(z) for sufficiently small variations around z = z° can be well approximated
by

1

g(z° + Az) — g(z°) =~ Az' [§Vg g(zo)] Az (E.10)

where the approximation error is in the order of O(||Az|[]?).
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Example E.1 (Quadratic cost functions with real arguments). Consider a
quadratic function of the form

g(2) = k—a'z—2la+2"Cx (E.11)

where x is a scalar, a is a column vector, and C'is a syminetric positive-definite
matrix. It is straightforward to verify, by expanding the right-hand side in the
expression below, that g(z) can also be written as

g(z) = k—a'Cla + z—C'a)TC(z —Ca) (E.12)
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0]
The Hessian matrix is V2 g(z) = 2C and it is clear that
22min(C) Ins < V7 g(2) < 2Aax(C) Ing (E.13)

in terms of the smallest and largest eigenvalues of C'; which are both positive.
Therefore, condition (E.4) is automatically satisfied with

Vo= Duin(C), 8 = 22,0 (C) (E.14)
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Likewise, condition (E.7) is obviously satisfied since the Hessian matrix in this
case is constant and independent of z. The function g(z) has a unique global
minimizer and it occurs at the point z = 2% where V. g(z°) = 0. We know
from the expression for g(z) that

V. g(z) = —2a' +2:"C (E.15)

so that z° = C~1a and
g(:°)=r—a"'Ca (E.16)
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Therefore, applying (E.6) we conclude that

9(z°) + Anin(C) Iz = C7all® < g(2) < 9(2°) + Anax(C) ||z = C 7 a]?
(E.17)

Note that we could have arrived at this result directly from (E.12) as well.
Moreover, from result (E.10) we would estimate that, for sufficiently small

[A=],
g(z° +Az) — g(=°) = [|Az|lE (E.18)

Actually, in this case, exact equality holds in (E.18) for any Az due to the
quadratic nature of the function g(z). Indeed, note from (E.12) that

9(2) = 9(=°) + |l —=°l¢ (E.19)
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so that if we set z = 22 + Az, for any Az, the above relation gives
g(2° + Az) — g(z°) = ||Az||%4. for any Az (E.20)

which is a stronger result than (E.18); note in particular that Az does not
need to be infinitesimally small any more, as was the case with (E.10); this
latter relation is useful for more general choices of g(z) that are not necessarily
quadratic in z.
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The statement of Lemma E.1 requires the Hessian matrix to be upper
bounded as in (E.2), i.e., V2 g(z) < 61y for all z. For differentiable
convex functions, this condition is equivalent to requiring the gradient
vector to be Lipschitz continuous, i.e., to satisfy

IV g(z2) = V2 g(z1)]| < 022 — 2] (E.21)

for all z; and z9.
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Since it is customary in the literature to rely more
frequently on Lipschitz conditions, the following statement establishes
the equivalence of conditions (E.2) and (E.21) for general convex func-
tions (that are not necessarily strongly-convex). One advantage of using
condition (E.21) instead of (E.2) is that the function g(z) would not
need to be twice-differentiable since condition (E.21) only involves the
gradient vector of the function.
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Lemma E.3 (Lipschitz and bounded Hessian matrix). Consider a real-valued
and twice-differentiable convex function ¢g(z) € R. Then, the following two

conditions are equivalent:

V2g(z) <0 1n, for all z <= || V.g(22)—V.g(z1)|| < & |z2 —z1]|. for all 21, 2
(E.22)
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Proof. Assume first that the Hessian matrix, V2 g(z), is uniformly upper
bounded by 0 I, for all z; we know that it is nonnegative definite since g(z)
is convex and, therefore, V2 g(z) is lower bounded by zero. We pick any z;
and zo and introduce the column vector function A(z) = V.r g(2). Applying

(D.8) to h(z) gives

h(z2) — h(z1) = ( /ﬂ 1 V. h(z1 + (2o — zl))dt> (25— 21) (E.23)
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so that using 0 < V2 g(z) < 0 Iy, we get

IVt g(2) = Vor g < ( / Mt) la—al (B2

and we arrive at the Lipschitz condition on the right-hand side of (E.22) since
V.rg(z) = [vz g(Z)]T'
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Conversely, assume the Lipschitz condition on the right-hand side of
(E.22) holds, and introduce the column vector function f(¢) = V.t g(z+tAz)
defined in terms of a scalar real parameter ¢. Then,

d‘fd_@ — [Vz g(z + fAZ)] Az (E.25)

Now, for any At and in view of the Lipschitz condition, it holds that

[ft+At) — fOI = [V glz+ (E+ AH)Az) — Vir g(z+ tAz)]
< O|At][|Az] (E.26)
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so that A .
At—0 |At|
=|df (t)/dt|

Using (E.25) we conclude that

H [VE g(z + tAz)] AzH < §||Az|[, for any ¢,z and Az (E.28)
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Setting t = 0, squaring both sides, and recalling that the Hessian matrix is
syminetric, we obtain

(A2)T [V2g(2)]" Az < 62| Az))?, for any 2, Az (E.29)

from which we conclude that V2 g(2) < & Iy for all z, as desired.
O
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We can additionally verify that the local Lipschitz condition (E.7)
used in Lemma E.2 is actually equivalent to a global Lipschitz property
on the Hessian matrix under condition (E.4).
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Lemma E.4 (Global Lipschitz condition). Consider a real-valued and twice-
differentiable v—strongly convex function g(z) € R and assume it satisfies
conditions (E.4) and (E.7). It then follows that the Hessian matrix of g(z) is
elobally Lipschitz relative to z°, namely, it satisfies

IV29(2) = VZg(z")|l < #[lz—2"||. forall = (E.30)

where the positive scalar ' is defined in terms of the parameters {x, 9, v, e}
as

K= max{rs; 0= V} (E.31)

€
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Proof. Following [278], for any vector x, it holds that
w1 [Vige) = Vig(M)]e = 2'Vig(z)e — 2'Vig(z%)a

(E.4)
< Ol]* = vl
= (0—v) || (E.32)

And since the Hessian matrix difference is symmetric, we conclude that
V2g(z) — V2g(2°) < (6§ — v)Iy; so that, in terms of the 2—induced norm:

IV2g(2) = Vig(z°)|| < 6 —v (E.33)
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Now, consider any vector z such that ||z — z°|| < e. Then,

9 9 o (E.7) o (E.31) ’ o
IVZg9(2) = Vo0l < rllz=27 < w27 (E.34)

On the other hand, for any vector z such that ||z — z°|| > €, we have

(E.33) (S — (E.31)
V2 g(2) — V2 g(=2)] "< ( ) Wl (Bb)

o €

[l
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The statement below extends the result of Lemma E.1 to the case of
complex arguments, z € CM. Comparing the bounds in (E.37) with
the earlier result (E.5), we observe that the relations are identical. The
only difference in the complex case relative to the real case is that the
upper and lower bounds on the complex Hessian matrix in (E.36) are
scaled by 1/2 relative to the bounds in (E.4).
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Lemma E.5 (Perturbation bound: Complex arguments). Consider a v—strongly
convex and twice-differentiable function g(z) € R and let z° € C* denote
its global minimizer. The function g(z) is real-valued but z is now complex-
valued. Assume that the 2M x 2M complex Hessian matrix of g(z) (defined
according to the last row of Table B.1 and (B.29)) is uniformly bounded from
above by V2 g(z) < %IQM, for all z and for some 6 > 0. We already know
from item (c¢) in (C.44) that the same Hessian matrix is uniformly bounded

from below by S1ax;. i.e.,

%IQM’ < Vig(z) < 5lay. forall 2 (F.36)
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Under condition (E.36) it holds that, for any Az, the function increments are
bounded by the squared Euclidean norm of Az as follows:

v )
§HAZ||2 < g2+ Az) — g(2°) < §HAZ||2 (E.37)
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Proof. The argument is based on expressing z in terms of its real and imag-
inary parts, z = = + jy, transforming ¢(z) into a function of the 2M x 1 ex-
tended real variable v = col{x, y}, and then applying the result of Lemma E.1
to g(v).

To begin with, recall that the 2M x 2M Hessian matrix of g(v) is denoted
by H(v) and is constructed according to the second row of Table B.1. This
real Hessian matrix is related by (B.26) to the complex Hessian matrix, H.(u),
of g(#) and which we are denoting by V2 ¢(z) in the statement of the lemma.
Therefore, the upper bound on V2 g(z) in (E.36) can be transformed into an
upper bound on H (v) by noting that



Proof

(B.26) * 2 5 *
H(v) =" D*|Vigz)|D < ED D = d1sy (E.38)

since D*D = 2[5y, and, hence, H(v) < dlsp,. Combining this result with
(C.45) we conclude that the Hessian matrix H(v) is bounded as follows:
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Consequently, if we apply the result of Lemma E.1 to the function g(v), whose
arguiment v is real, we find that

J
2 AP < 9"+ Av) — g(e?) < 5 |A]? (E.40)
which is equivalent to the desired relation (E.37) in terms of the original

variables {z°, Az} since, for any z, g(z) = g(v) and ||z]| = [|v||.

[
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One useful conclusion that follows from (E.37) is that under condition
(E.36), the strongly convex function ¢g(z) can be sandwiched between
two quadratic functions, namely,

% 0

o)+ 2l =2 < g(2) < 9GSl - (BAL)
A second useful conclusion is an extension of (E.10) to the case of
complex arguments z. Introduce the extended vector:

Az ] (E.42)

A
Az¢ =
: (AT




a0 [ Lecture #7: Lipschitz Conditions EE210B: Inference over Networks (A. H. Sayed)

Lemma E.6 (Perturbation approximation: Complex arguments). Consider the
same setting of Lemma E.5 and assume additionally that the Hessian matrix
function is locally Lipschitz continuous in a small neighborhood around z =
z?, namely,

V2 g(=° + A2) = V2 g(=°)|| < x]|Az] (E.43)

for sufficiently small values ||Az|| < e and for some x > 0. It then follows that
the increment in the value of the function g(z) for small variations around
z = z? can be well approximated by:

g(z° + Az) — g(z°) = (Az%)" [%VS g(zo)] Az (E.44)

where the approximation error is in the order of O(||Az||?).
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Proof. Result (E.44) can be derived from (E.10) as follows. We again trans-
form ¢(z) into the function g(v) of the real variable v = col{x, y} and then
apply (E.10) to g(v) for sufficiently small Av, which gives

g(v° + Av) — g(v°) ~ (Av)' EH(@O)] Av, as Av— 0 (E.45)

in terms of the 2M x 2M Hessian matrix of g(v) evaluated at v = v°. This
Hessian matrix is related to the complex Hessian matrix H.(u’) according to
(B.26). Thus, observe that
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1

(Av)' [—H(@O)] Av = (Av)" D*D liﬂ(vo)] D*D Av

(D.13)

O] = | =

(Av)" D* lDH(UO)D* DA
—_—— 4 S~

H.(u°)

(Au)*

2 % (Au)" H.(u®)Au

B.24 1 % 9 o AZ
(B.24) 5 [ (Az) AzT ] Vi g(z?) [ (AZ*)T ]
= (A9 [%VE g(zo)] Az© (E.46)

as claimed. L]
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Example E.2 (Quadratic cost functions with complex arguments). Let us illus-
trate the above result by considering a quadratic function of the form

g(z) = k—ad"z—z2"a+2"Cz (E.47)

where k is a scalar, a is a column vector, and C'is a Hermitian positive-definite
matrix. It is straightforward to verify, by expanding the right-hand side in the
expression below, that g(z) can be also written as

g(2) = k—a*Cla + (z—=Cta)*C(z —C1a) (E.48)
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The Hessian matrix in this case is 2M x 2M and given by

C 0
V2g(2) = [ 0 CT] (E.49)
It is clear that
Anin(C) Iy < V2 g(2) € Anax(C) Iong (E.50)

in terms of the smallest and largest eigenvalues of C', which are both positive.
Therefore, condition (E.36) is automatically satisfied with

Vo= Dumin(C), 6 = 2\ (C) (E.51)
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Likewise, condition (E.43) is satisfied since the Hessian matrix is constant
and independent of z. The function g(z) has a unique global minimizer and
it occurs at the point z = 2 where V. g(z”) = 0. We know from expression
(E.48) for g(z) that 2° = C~'a and ¢(z°) = k — a*C~'a. Therefore, applying
(E.41) we conclude that

9(=°) + Amin(C) [|:=C7all* < g(2) < 9(2°)+Amax(C)[2=C T a||* (E.52)

Note that we could have arrived at this result directly from (E.48) as well.
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Moreover, we would estimate from (E.44) that

esn - oy = s o] [§ & ][ 6]
= [Az]Z (E.53)

where the notation ||z]|% now denotes the squared Euclidean quantity =*C.
Actually, in this case, exact equality holds in (E.53) for any Az due to the
quadratic nature of the function ¢g(z). Indeed, note that (E.48) can be rewrit-
ten as

g(2) = g(z°) + |lz =22 (E.54)
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so that if we set z = 2?2 4+ Az, for any Az, the above relation gives
g(2° + Az) — g(2°) = ||Az||%, for any Az (E.55)

which is a stronger result than the approximation in (E.53); note in particular
that Az does not need to be infinitesimally small any more, as was the case

with (E.44); this latter result is applicable to more general choices of g(z) that
are not necessarily quadratic in z.
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The statement of Lemma E.5 requires the Hessian matrix to be up-
per bounded as in (E.36), i.e., V? g(z) < gIQM for all z. As was the
case with real arguments in Lemma E.3, we can argue that for gen-
eral convex functions (that are not necessarily strongly convex), this
condition is equivalent to requiring the gradient vector to be Lipschitz
continuous.
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Lemma E.7 (Lipschitz and bounded Hessian matrix). Consider a real-valued
and twice-differentiable convex function g(z) € R, where z € CM is now
complex valued. Then, the following two conditions are equivalent:
o 0
VZg(z) < g, for all z <= [[V.g(22)=V.g(21)l| < 5 2221, for all 21, 2
(E.56)
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Proof. The above result can be derived from (E.22) as follows. We transform
g(z) into the function g(v) of the real variable v = col{z, y}, where z = z+ jy,

and then apply (E.22) to g(v).
First, recall from the argument that led to (E.39) that the complex Hessian

matrix of g(z) is bounded by %IQ A if, and only if, the real Hessian matrix of
g(v) is bounded by § Isp;. Using this observation and applying (E.22) to g(v)
we get
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5 E.39
Vig(z) < z Ly <=2

> V2 g(v) < 61y, forallw

(E.22)

IV g(v2) = Vi g(o1)|| < 0wz — vi]
(E.57)

for any vy, vy. Now we know from (C.32) that

1

Vo g@] D" = | V. g(z) (Ve g(=)] (E.58)
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Recalling from (B.28) that the matrix D*/y/2 is unitary, we get

IV g(v2) = Vo glod)] = (E.59)
D*
V2

2 VR || Vagl) = Ve gla) (Ve glz) = Ve g:) |
= 2[[V: glz2) = Ve g(o0)]

H[vv g(v2) =V, g(v1)] -
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where we used (D.17). Noting that ||vy — v1]| = ||z9 — 21| and substituting

into (E.57) we conclude that
2 0 0
Vigz) < §IQM < [|[V. g(22) = V. g(z1)| < §||z2 —z1||, for all z1, 29
(E.60)

as claimed.

[]
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We can again verify that the local Lipschitz condition (E.43) used in
Lemma E.G is equivalent to a global Lipschitz property on the Hessian
matrix under the bounds (E.36). The proof of the following result is
similar to that of Lemma E.4.
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Lemma E.8 (Global Lipschitz condition). Consider a real-valued and twice-
differentiable v—strongly convex function g(z) € R and assume it satisfies
conditions (E.36) and (E.43). It then follows that the 2M x 2M Hessian
matrix of g(z) is globally Lipschitz relative to z° € C*, namely.

IV2g(2) = VZg(z")| < w'llz—=2"||, forall = (E.61)

where the positive scalar x’ is defined in terms of the parameters {x, 0, v, €}
as

5
k' = max {ﬁ:, y} (E.62)

2€




End of Lecture
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