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Let g(z) € R denote a real-valued function of a possibly vector argu-
ment z. We assume that g(z) is differentiable whenever necessary. In
this appendix. we review useful integral equalities that involve incre-
ments of the function g(z) and increments of its gradient vector; the
equalities correspond to extensions of the classical mean-value theorem
from single-variable real calculus to the case of functions of several and
possibly complex variables. We shall use the results of this appendix to
establish useful bounds on the increments of strongly convex functions
later in Appendix E. We again treat both cases of real and complex
arguments.
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Consider first the case in which the argument z € R is real-valued.
We pick any M —dimensional vectors z, and Az and introduce the
following real-valued and differentiable function of the scalar variable

te|0,1]:

ft) 2 g(zo +tA2) (D.1)
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Then, it holds that
F0)=9(z), (1) =g(z +Az) (D.2)
Using the fundamental theorem of calculus (e.g., [36, 151]) we have:
Ldf(t
-5 = [ Dl (D.3)
0 t
It further follows from definition (D.1) that
df (t d
/) = — |g(zo +tAz)] = [V g(zo +tA2)] Az (D.4)

dt dt
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in terms of the inner product computation on the far right, where
V. g(z) denotes the (row) gradient vector of g(z) with respect to z.
Substituting (D.4) into (D.3) we arrive at the first desired mean-value

theorem result (see, e.g., [191]):

g(zo + Az) — g(z,) = (/01 V. g(zo + tAz)dt) Az (D.5)
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This result is a useful equality and it holds for any differentiable (not
necessarily converx) real-valued function g(z). The expression on the
right-hand side is an inner product between the column vector Az and
the result of the integration, which is a row vector. Expression (D.5)
tells us how the increment of the function g(z) in moving from z = z,
to z = z, + Az is related to the integral of the gradient vector of ¢(z)
over the segment z, + { Az as ¢ varies over the interval ¢ € [0, 1].
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We can derive a similar relation for increments of the gradient vec-
tor itself. To do so, we introduce the column vector function h(z) =
V.7 g(z) and apply (D.5) to its individual entries to conclude that

Bz + Az) — h(z) = ( fo v, h(z0+rAz)dr) A: (D.6)

Replacing h(z) by its definition, and transposing both sides of the above
equality, we arrive at another useful mean-value theorem result:

V.g(zo+A2) — V.g(z,) = Az" (/01 \x g(zo—l—rAz)dr) (D.7)
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This expression tells us how increments in the gradient vector in moving
from z = 2z, to z = z, + Az are related to the integral of the Hessian

matrix of ¢g(z) over the segment z,+r Az and r varies over the interval
r € [0, 1]. In summary, we arrive at the following statement.
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Lemma D.1 (Mean-value theorem: Real arguments). Consider a real-valued

and twice-differentiable function ¢g(z) € R, where z € RM is real-valued.
Then, for any M —dimensional vectors z, and Az, the following increment

equalities hold:

9z + A2) — g(z,) ( fo 1 V. g(z, +tAz)dt) A-  (D.S)

V.g(zo+A2) — Vogl(z) = (A2) ( / v g<z0+mz>dr) (D.9)
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We now extend results (D.8) and (D.9) to the case when z € CM is

complex valued. The extension can be achieved by replacing z = x+ jy

by its real and imaginary parts {x,y}, applying results (D.8) and (D.9)

to the resulting function g(v) of the 2M x 1 extended real variable

v =col{x,y} (D.10)

and then transforming back to the complex domain. Indeed, as re-
marked earlier in (C.25), it is straightforward to verify that the vector
v is related to the vector

11>

u

col{z, (z*)1 (D.11)
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as follows:
( z _ | I JIu X
()7 Ing —dln | |y
N - v N - 7
éu éD é'v
3 (D.12)
T . 1 Ij\/[ Ij\/[ <
Y 2 | —jla jlu (z*)7
N , N g o~
\ v _%D* u
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or, more compactly,
1
u=Dv and v= gD*u (D.13)

where we used the fact from (B.28) that DD* = 2[55;. We can now
apply (D.8) to g(v) to get

g(vo + Av) — g(v,) = (/01 Vo glv, + tAv)dt) Av (D.14)
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where V, g(v) denotes the gradient vector of g(v). We can rewrite
(D.14) in terms of the original complex variables {z,, Az}. To do so,

we call upon relation (C.32) and the equality g(z) = g(v) to rewrite
(D.14) as

9(zo + Az) — g(z0) = (D.15)

(D.13)

1 1
= 3 (fo Vo g(v, —|—tAfU)dt) D* DAw

éAu

(C.‘.._S-z) AZ

- (/01 [ V. gz +tAz) (Var glzo +1A2))" ]dt) [ (AT ]
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We then arrive at the desired mean-value theorem result in the complex
case:

920+ A2) — glzo) = 2Re{(/01 Vzg(zo—l—tAz)dt) Az} (D.16)

where we used the fact that for real-valued functions g(z) it holds that

Ve g(z) = [Vag(2)] (D.17)

Expression (D.16) is the extension of (D.8) to the complex case.
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Similarly, applying (D.6) to h(v) = V7 g(v) we obtain that for any
v, and Awv:

1
V.1 g(ve+Av) — V1 g(v,) = (/ V2 g(v, + T‘A’U)d?“) Av (D.18)
0

Multiplying from the left by %D and using (C.30)—(C.31), as well as
the fact that DH,(v)D* = Hc(u) (recall (B.26)), we find that rela-
tion (D.18) defined in terms of {v,, Av} can be transformed into the
mean-value theorem relation (D.20) in terms of the variables {z,, Az}.
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Expression (D.20) is the extension of (D.9) to the complex case. Ob-
serve how both gradient vectors relative to z* and z' now appear in
the relation. We show below in Example D.1 how the relation can be
simplified in the special case when the Hessian matrix turns out to be
block diagonal. In summary, we arrive at the following result.
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Lemma D.2 (Mean-value theorem: Complex arguments). Consider a real-
valued and twice-differentiable function g(z) € R, where z € CM is complex-
valued. Then, for any M —dimensional vectors z, and Az, the following incre-

ment equalities hold:

g(z0 + Az) — g(z,) = 2Re { (/01 V. g(z0 + tAz)dt) Az} (D.19)

Vo3 [ o) = () ot e a0 | L ])
D.20
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Example D.1 (Block diagonal Hessian matrix). Consider the real-valued
quadratic function

g(z) = k+a*z+z2z"a+2"Cz (D.21)

where k is a real scalar, a is a column vector, and C' is a Hermitian matrix.
Then, the Hessian matrix of ¢(z) is block diagonal and given by
C 0 ]

Vo) =H) = | o (0.2
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In this case, expression (D.20) decouples into two separate and equivalent
relations. Keeping one of the relations we get

V. g(zo + Az) = V. g(z,) + (A2)"C (D.23)

Obviously, in this case, this relation could have been deduced directly from
expression (D.21) by using the fact that

V.qg(z)=a" 4+ 2*C (D.24)
B
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