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Appendix G (Logistic Regression, pp. 777-780):

A. H. Sayed, ““Adaptation, learning, and optimization over
networks," Foundations and Trends in Machine Learning, vol. 7,
issue 4-5, pp. 311-801, NOW Publishers, 2014.
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Let v, denote a binary random variable whose value represents one of
two possible classes, +1 or —1, depending on whether a feature vector
h, € RM belongs to one class or the other. For example, the entries
of hy could represent measures of a person’s weight and height, while
the classes =1 could correspond to whether the feature hj represents a
male or a female individual. Logistic regression is a useful methodology
for dealing with classification problems where one of the variables (the
dependent variable) is binary and the second variable (the independent
variable) is real-valued; this is in contrast to the more popular linear
regression analysis where both variables are real-valued.
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When ~, is a binary random variable, the relation between its real-
izations and the corresponding feature vectors {h;} cannot be well
represented by a linear regression model. A more suitable model is to
represent the conditional probability of v, = 1 given the feature vector
h; as a logistic function of the form [115, 234]:

1
Pl =411 h) = (G.1)
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for some parameter vector w® € RM. Observe that regardless of the
numerical values assumed by the entries of the feature vector hy, the
logistic function always returns values between 0 and 1 (as befitting of
a true probability measure) — see Figure G.1. Obviously, under the
assumed binary model for 7, and since the sum of the probabilities
need to add up to one, it holds that

Py =—-11hy) = (G.2)
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Figure G.1: Typical behavior of logistic functions for two classes. The figure
shows plots of the functions 1/(1+e~") (left) and 1/(1+€") (right) assumed
to correspond to classes +1 and —1, respectively.
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We can group (G.1) and (G.2) into a single expression for the condi-
tional probability density function (pdf) of v, and write:

1
cw’ | hy) = G.3
P’ [ he) = e (G:3)

with v, appearing in the exponent term on the right-hand side. This
pdfis parameterized by w°. In machine learning or pattern classification
applications, one is usually served with a collection of training data

Jhp, k> 1} and the objective is to use the data to estimate the
Yk
parameter w®°.
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Once w? is recovered, its value can then be used to
classify new feature vectors {h¢} into classes +1 or —1. This can be

achieved, for example, by computing the odds of the new feature vector
belonging to one class or the other. The odds function is defined as:

A Plyy=+1]hy)
odds =
I —P(y,=+1]hy)

(G.4)
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For example, in a scenario where the likelihood that type 41 occurs
is 0.8 while the likelihood for type —1 is 0.2, we find that the odds of
type +1 occurring are 4—to—1, while the odds of type —1 occurring
are 1—to—4. If we compute the log of the odds ratio, we end up with
the so-called logit function (or logistic transformation function):

A ln( P(v,=+1| hy) )

logit
& 1 —P(y,=+1] hy)

(C.5)
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There are at least two advantages for the logit representation of the
odds function. First, in this representation of the odds, types +1 and
—1 will always have opposite odds (i.e., one value is the negative of
the other). And, more importantly, if we use the assumed model (G.1),
then the logit function ends up depending linearly on w®. Specifically,

logit = h}w° (G.6)

In this way, we can assign feature vectors {h,} with nonnegative logit
values to one class and feature vectors with negative logit values to
another class — see Figure G.2.
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Figure G.2: Classification of feature vectors into two classes: data with non-
negative logit values are assigned to one class and data with negative logit
values are assigned to another class. The vector w? defines the direction that

is normal to the separating hyperplane.
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To enable the above classification procedure, we still need to determine
w?. One way to estimate w? is to fit into the training data {~,, by, k >
1}, a probability density function of the form:

1

; h.) = G.7
p(’)’k w | k‘) i 8_7kh1’w ( )

for some unknown vector w € RM to be determined. This vector can
be selected by minimizing the discrepancy between the above pdf and

the actual pdf corresponding to w? in (G.3).
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A useful measure of dis-
crepancy between two pdfs is the Kullback-Leibler (KL) divergence
measure defined as [81]:

D 2 E {ln (];%i;lf;”f?:)))} (G-8)

where the expectation is over the distribution of the true pdf. The ex-

pression on the right-hand side involves the ratio of two pdfs: one using
the true vector w” and the other using the parameter w. Minimizing
over w leads to the optimization problem
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min —E In p(y.;w | hy) (G.9)
w

or, equivalently,
min E {In |1+ ¢~ Vehiv) | (G.10)

which has the same form as the logistic regression cost function con-
sidered in the text — see, e.g., (2.9).
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