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Let g(z) € R denote a real-valued function of a possibly vector argu-
ment, z € CM. It is sufficient for our purposes to assume that g(z) is
differentiable whenever necessary (although we shall also comment on
the situation in which g(z) may not be differentiable at some points).
By differentiability here we mean that the (Wirtinger) complex gra-
dient vector, V. g(z), and the Hessian matrix, V2 g(z), both exist in
the manner defined in Appendices A and B.
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In particular, if we ex-
press z in terms of its real and imaginary arguments, z = x + jy, then
we are assuming that the following partial derivatives exist whenever

necessary:

dg(x.y)  dg(x,y)  Fgla,y)  Pgley)  Pgla,y) (C.1)
0L, Oyp dxz, oyn  0xmOyn .

for n,m = 1,2,..., M, and where {x,,,y,} denote the individual en-

tries of the vectors =,y € RM.
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In the sequel, we define convexity for both cases when z € RM is
real-valued and when z € CM is complex-valued. We start with the
former case of real z, which is the situation most commonly studied
in the literature [29, 45, 178, 191]. Subsequently, we explain how the
definitions and results extend to functions of complex arguments, z:
these extensions are necessary to deal with situations that arise in the

context of adaptation and learning in signal processing and communi-
cations problems.
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Convexity in Real Domain

We assume initially that the argument z € RM is real-valued where,
as already stated earlier, the function g(z) € R is also real-valued. We
discuss three forms of convexity: the standard definition of convexity
followed by strict convexity and then strong convexity.
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We first introduce the notion of convex sets. A set S € R is said to
be convex if for any pair of points 21, 29 € 8§, all points that lie on the
line segment connecting z; and 2o also belong to &. Specifically,

Vzi,20€ S and 0<a <1l = azn+ (1 —a)xneS. (C.2)

Figure C.1 illustrates this definition by showing two convex sets and
one non-convex set. In the latter case, a segment is drawn between
two points inside the set and it is seen that some of the points on the
segment lie outside the set.
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Figure C.1: The two sets on the left are examples of convex sets, while the
set on the right is a non-convex set.
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The function g(z) is said to be convex if its domain, written as dom(g),

is a convex set and if for any points z1, z0 € dom(g) and for any 0 <
o < 1, it holds that

glaz1 + (1 —a)z) < ag(z1) + (1 —a)g(z) (C.3)

In other words, all points belonging to the line segment connecting

g(z1) to g(z2) lie on or above the graph of g(z) — see the plot on the
left side of Figure C.2.
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Figure C.2: Two equivalent characterizations of convexity for differentiable
functions ¢g(z) as defined by (C.3) and (C.4).
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An equivalent characterization of convexity is
that for any z, and z:

9(z) = 9(z0) + [V29(20)] (z — 20) (C.4)

in terms of the inner product between the gradient vector at z, and the
vector difference (z — z,). This condition means that the tangent plane

at z, lies beneath the graph of the function — see the plot on the right
side of Figure C.2.
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A useful property of every convex function is that, when a mini-
mum exists, it can only be a global minimum: there can be multiple
global minima but no local minima. That is, any stationary point at
which the gradient vector of g(z) is annihilated can only correspond
to a global minimum of the function; the function cannot have local
maxima, minima, or saddle points. A second useful property of convex
functions, and which follows from (C.4), is that for any z; and zo:

g(z) convex = [V, g(2z2) = V. g(z1)] (20— z1) > 0 (C.5)
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in terms of the inner product between two differences: the difference in
the gradient vectors and the difference in the vectors themselves. The
above result means that these difference vectors are aligned (i.e., have

a nonnegative inner product). Result (C.5) follows by using (C.4) to
write

AVARRAV,
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so that upon substitution of the second inequality into the right-hand
side of the first inequality we obtain

g(z2) = g(z2) + [V:g(22)] (21 — 22) + [V:g(21)] (22 —21) (C.8)

from which we obtain (C.5).
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Example C.1 (Convexity and sub-gradients). Property (C.4) is stated in terms
of the gradient vector of g(z) evaluated at location z,. This gradient vector
exists because we assumed the function g(z) to be differentiable. There exist,
however, cases where the function g(z) need not be differentiable at all points.
For example, for scalar arguments z, the function g(z) = |z| is convex but is
not differentiable at z = 0. For such non-differentiable convex functions, the
characterization (C.4) can be replaced by the statement that the function g(2)
is convex if, and only if, for every z,, a row vector y € Jdg(z,) can be found
such that

9(z) > g(z0) + y(z — 2,) (C.9)
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in terms of the inner product between y and the vector difference (z — z,).
The vector y is called a sub-gradient and the notation dg(z,) denotes the set
of all possible sub-gradients, also called the sub-differential of g(z) at z = z,;
this situation is illustrated in Figure C.3. When ¢(z) is differentiable at z,,
then there is a unique sub-gradient vector and it coincides with V. g(z,). In
that case, statement (C.9) reduces to (C.4). We continue our presentation by
focusing on differentiable functions g(z).
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Figure C.3: A non-differentiable convex function with a multitude of sub-
gradient directions at the point of non-differentiability.
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Example C.2 (Some useful operations that preserve convexity). It is straight-
forward to verify from the definition (C.3) that the following operations

preserve convexity:

(1) if g(z) is convex then h(z) = g(Az + b) is also convex for any constant
matrix A and vector b. That is, affine transformations of z do not destroy

convexity.

(2) If g1(2) and g2(z) are convex functions, then h(z) = max{gi(z),g2(2)} is
convex. That is, pointwise maximization does not destroy convexity.

(3) If g1(z) and go(z) are convex functions, then h(z) = a191(2) + a2g2(2) is
also convex for any nonnegative coefficients a1 and as.
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The function g(z) is said to be strictly convex if the inequalities in (C.3)
or (C.4) are replaced by strict inequalities. More specifically, for any
21 # z9 and 0 < a < 1, a strictly convex function should satisfy:

glazr+ (1 —a)ze) < ag(z1) + (1 —a)g(z2) (C.10)

A useful property of every strictly convex function is that, when a
minimum exists, then it is both unique and also the global minimum of
the function. A second useful property replaces (C.5) by the following
statement with a strict inequality for any z1 # z9:

g(z) strictly convex = [V, g(22) — V. g(z1)] (22 — 2z1) >0 (C.11)
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The function g(z) is said to be strongly convex (or, more specifically,
v—strongly convex) if it satisfies the following stronger condition for
any 0 < a < 1:

v

glaz+(1-a)z) < aglz) + (1-a)g(z) — ol -a)lla - 2|
(C.12)
for some scalar v > 0, and where the notation || - || denotes the Eu-

clidean norm of its vector argument; although strong convexity can also
be defined relative to other vector norms, the Euclidean norm is suffi-
cient for our purposes.
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Comparing (C.12) with (C.10) we conclude that
strong convexity implies strict convexity. Therefore, every strongly con-
vex function has a unique global minimum as well. Nevertheless, strong
convexity is a stronger condition than strict convexity so that functions
exist that are strictly convex but not necessarily strongly convex. For

4 is strictly con-

2

example, for scalar arguments z, the function g(z) = z
vex but not strongly convex. On the other hand, the function ¢g(z) = z
is strongly convex — see Figure C.4. In summary, it holds that:

strong convexity — strict convexity — convexity (C.13)
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Figure C.4: The function g(z) = z* is strictly convex but not strongly convex,
while the function g(z) = 22 is strongly convex. Observe how g(z) = z* is more

flat around its global minimizer and moves away from it more slowly than in
the quadratic case.
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A useful property of strongly convex functions is that they grow
faster than a linear function in z since an equivalent characterization
of strong convexity is that for any z, and z:

9(2) = g(z) + Va9l (- 2) + Sle—zl  (C14)
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This means that the graph of g(z) is strictly above the tangent plane
at location z, and moreover, for any z, the distance between the graph
and the corresponding point on the tangent plane is at least as large as
the quadratic term %[z — z,[|?. In particular, if we specialize (C.14) to
the case in which z, is selected to correspond to the global minimizer
of g(z), i.e., as

zo = z°, where V.g(z%) =0 (C.15)
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then we conclude that every strongly convex function satisfies the fol-
lowing useful property for every z:

g(z) — g(z°) > gHz—zOHz, (2° is global minimizer)  (C.16)

This property is illustrated in Figure C.5. Another useful property that
follows from (C.14) is that for any z1, zo:

g(z) strongly convex = [V, g(z2) — V. g(z1)] (22 — 21) > v[|z0 — 21 ||?
(C.17)
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Figure C.5: For v—strongly convex functions, the increment g(z1) — g(2°)
grows at least as fast as the quadratic term F|z; — 2°||?, as indicated by
(C.16) and where z° is the global minimizer of g(z).
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Table C.1: Useful properties implied by the convexity, strict convexity, or strong
convexity of a real-valued function g(z) € R of a real argument z € RM.

g(z) convex = [V, g(z2) — V. g(z1)] (22 — 21) >0
g(z) strictly convex = [V, g(z2) — V. g(z1)] (22 — 21) >0
g(z) v—strongly convex = [V. g(22) — V. g(z1)] (22 — 2z1) > v||z2 — 71 |?
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We indicated earlier that it is sufficient for our treatment to assume
that the real-valued function g(z) is differentiable whenever necessary.
In particular, when it is twice continuously differentiable, then the prop-
erties of convexity, strict convexity, and strong convexity can be inferred
from the Hessian matrix of g(z) as follows (see, e.g., [178, 191]):

[ (a) VZg(z) >0 forall z <= g¢(z) is convex.
¢ (b) V2yg(2) >0 forall z — ¢g(z) is strictly convex.
| (¢) Vig(z)>viy >0forallz <= g(z)is v—strongly convex.

(C.18)
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Since ¢g(z) is real-valued and z is also real-valued in this section, then
the Hessian matrix in this case is M x M and given by the expression
shown in the first row of Table B.1 and by equation (B.29), namely,

V2g(z) 2 V.r[V.g(2)] (C.19)
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Observe from (C.18) that the positive definiteness of the Hessian
matrix is only a sufficient condition for strict convexity (for example,
the function g(z) = z* is strictly convex even though its second-order
derivative is not strictly positive for all z). One of the main advantages
of working with strongly convex functions is that their Hessian
matrices are sufficiently bounded away from zero.
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Example C.3 (Strongly-convex functions). The following is a list of useful
strongly-convex functions that appear in applications involving adaptation,
learning, and estimation:
(1) Consider the quadratic function

g(z2) = k+a'z+z2Ta+2"7Cx (C.20)
with a symmetric positive-definite matrix C. The Hessian matrix is V2 g(2) =
2C', which is sufficiently bounded away from zero for all z since

V29(2) > 22min(C) Iy > 0 (C.21)

in terms of the smallest eigenvalue of C'. Therefore, such quadratic functions

are strongly convex.
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(2) The regularized logistic (or log-)loss function
g(2) = In (1+e—7h”) + gHzHQ (C.22)

with a scalar v, column vector A, and p > 0 is also strongly convex. This is
because the Hessian matrix is given by

-
e—wh z

(1 + e—thz)Q

V2g(z) = ply + hhT( ) > ply > 0 (C.23)
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(3) The regularized hinge loss function
g() = max {0,1—~hTz} + guzn? (C.24)

with a scalar ~, column vector A, and p > 0 is also strongly convex, al-
though non-differentiable. This result can be verified by noting that the func-
tion max {0,1 —~yhTz} is convex in = while the regularization term £ z||? is

p—strongly convex in z.
I
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We now extend the previous definitions and results to the case in which
z € CM is complex-valued, while ¢g(z) € R continues to be real-valued.
One way to extend the concepts of convexity, strict convexity, and
strong convexity to the case of complex arguments is to view g(z) as
a function of the extended real variable v = col{z,y} € R?M i.e. to
work with ¢(v) instead of g(z), where v is defined in terms of the real
and imaginary parts of z, namely, z = x 4+ jy. Observe in particular
that the complex variables z and z* can be recovered from knowledge
of v as follows:



Convexity in Complex Domain

M —JiM Y (%)
A ~~ J\#
=D =

where the matrix D was introduced earlier in (B.27).
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The function g(z) is said to be convex in z if the corresponding function
g(v) is convex in v, i.e., if dom(g(v)) is a convex set and for any vy, vo €
dom(g(v)) and any 0 < « < 1, it holds that:

glavy + (1 —a)v2) < ag(vr) + (1 —a)g(ve) (C.26)

Since g(z) is real-valued, the above condition can be restated in terms
of the original complex variables z1, zo € CM as follows:

glazr + (1 —a)z) < ag(z) + (1 —a)g(z) (C.27)
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An equivalent characterization of the convexity condition (C.26) is that
for any v,.

g(v) = g(ve) + [V g(ve)] (v — vo) (C.28)
This condition can again be restated in terms of the original complex
variables {z, z,}. To do so, we first need to find the relation between the
gradient vector V, g(v) evaluated in the v—domain and the gradient
vector V. g(z) evaluated in the z—domain. Thus, recall that v is a
column vector obtained by stacking = and y on top of each other.
Therefore, by referring to definition (A.26), we have that

Veg(v) = | Vagle,y) Vyg(a,y) | (C.29)
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Multiplying from the right by the matrix D* from (B.27) we obtain

1 1 Ing Iy

Vo —D* =—| V,g(x, \Y : , , C.30

9(v) 5D = 5| Vaglay) Vyg(ey) | [ i | (©:30)

Now consider the following complex gradient vectors, which correspond

to the extension of the earlier definition (A.9) to the vector case for
real-valued functions g(z):

V: g(%)

Vex g(2)

% [vm g(ai',y) T va g(xay)] (031)

Vo g(@y) + iV, g(z,y)]

e e
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Substituting into the right-hand side of (C.30) we conclude that

SV g@I D = [Vogle)  (Veg@)T]  (C32)

which is the desired relation between the gradient vectors V, g(v) and
V. g(z). Using (C.25) and (C.32), and noting that g(z) = g(v), we can
now rewrite (C.28) in terms of the original complex variables {z, z,} as
follows:

9(z) = g(z0) + 2Re{ [V.9(20)] (2 — 20) } (C.33)
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in terms of the real part of the inner product that appears on the right-
hand side. A useful property that follows from (C.33) is that for any
z1 and 2o :

g(z) convex = Re{ [V, g(22) = V. g(z1)] (220 —2z1) } >0 (C.34)
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The function g(z) is said to be strictly convex if the inequalities in
(C.27) or (C.33) are replaced by strict inequalities. For example, for
any z1 # zo and 0 < a < 1, a strictly convex function g(z) should
satisty:
glaz + (1 - a)z) < ag(z1) + (1 —a)g(z) (C.35)

Again, a useful property of every strictly convex function is that, when
a minimum exists, then it is both unique and the global minimum of
the function. Another useful property is that for any z1 # zs:

g(z) strictly convex = Re {|V. ¢g(z2) — V. g(z1)] (22 — z1)} > 0
(C.36)
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The function ¢(z) is said to be strongly convex (or, more specifically,
v—strongly convex) in z if g(v) is v—strongly convex in v, i.e., if g(v)
satisfies the following condition for any 0 < o < 1:

glavi +(1 =)z < aglor) + (L=a)g(vz) — Fa(l—a)for —valf

(C.37)
for some v > 0. Using the fact that

o1 — val|* = [lz1 — 22| (C.38)
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the above condition can be restated in terms of the original complex

variables as follows:
v
glazi+(1-a)a) < aglza)+(1-a)g(zz) —Sa(l-a)| —z|* (C.39)
An equivalent characterization of strong convexity is that for any z,,

9(2) 2 alz0) + WRe{[V:a(z0)] (2 = 20)} + gllz—zl®  (C.40)
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In particular, if we select z, to correspond to the global minimizer of
g(z), i.e.,
0]

2o =2  where V.g(z°)=0 (C.41)

then strongly convex functions satisfy the following useful property:

9(z) — g(z°) > gHz—zOHQ, (2% is global minimizer)  (C.42)
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Another useful property that follows from (C.40) is that for any z;, 2o:

g(z) strongly convex =

Re{[V. g(z2) — V. g(z1)] (za — 21)} > =22 — 21|12
(C.43)
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Table C.2: Useful properties implied by the convexity, strict convexity, or strong
convexity of a real-valued function g(z) € R of a complexr argument z € CM

g(z) convex = Re{ [V.g(z2) — V. g(z1)] (22 —21) } >0
g(z) strictly convex = Re{[V. g(z2) — V. g(zl)] (20 —21)} >0
)

g(z) v—strongly convex => Re{[V. g(22) — V. g(z1)] (22 — z1)} > %]|22 — 217
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Since g(z) is real-valued and z is now complex-valued, then the Hessian
matrix of g(z) is 2M x2M and given by the expression shown in the last
row of Table B.1 — see (B.29). As before, the properties of convexity,
strict convexity, and strong convexity can be inferred from the Hessian
matrix of g(z) as follows:

((a) V2 g(z) >0 for all 2 <= ¢(z) is convex.
(b) V2 g(z) >0 for all z —  ¢(z) is strictly convex.
L (c) VZg(z) =%y >0forall z < g(z) is strongly convex.
(C.44)

N
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Observe again that the positive definiteness of the Hessian matrix is
only a sufficient condition for strict convexity. Moreover, the condition

in part (c), with a factor of % multiplying v, follows from the following
sequence of arguments:

g(z) is v—strongly convex <= g(v) is v—strongly convex

2 H(v) > vl >0, forall v

1 28
<= JDH@)D" > EDD* = %I > 0

L2 g (u) > %IQM > 0 (C.45)
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Example C.4 (Quadratic cost functions). Consider the quadratic function

g(z) =k+a*z+ z"a+ 2"Cz (C.46)
with a Hermitian positive-definite matrix C' > 0. The complex Hessian matrix
is given by

H.(u) = [ - ] (C.A7)
which is sufficiently bounded away from zero from below since
H.(u) > Anin(C) Iopr >0 (C.48)

Therefore, such quadratic functions are strongly convex.



End of Lecture
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