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Hessian matrices involve second-order partial derivatives, which we
shall assume to be continuous functions of their arguments whenever
necessary. Some effort is needed to define Hessian matrices for func-
tions of complex variables. For this reason, we consider first the case of
real arguments to help motivate the extension to complex arguments.
In this appendix we only consider real-valued functions g(z) € R, which
corresponds to the situation of most interest to us since utility or cost
functions in adaptation and learning are generally real-valued.
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We continue to denote the individual entries of the column vector z &
RM by z = col{z1,22,..., 2z }+. The Hessian matrix of g(z) € R is an
M x M symmetric matrix function of z, denoted by H(z), and whose
(m,n)—th entry is constructed as follows:

e 2 25 = G (0] = 5 [5]

in terms of the partial derivatives of ¢(z) with respect to the real scalar
arguments {z,,, zn }.




Real Arguments !
o ] Lecture #3: Complex Hessian Matrices . EE210B:Inference over Networks (A. H. Sayed)

For example, for a two-dimensional argument z

(i.e., M = 2), the four entries of the 2 x 2 Hessian matrix would be
given by:

[ 0%g(z)  PPg(r) T
82:% 021029
H(z) =

g(z)  97g(2)
| 0200271 82’%

(B.2)
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It is straightforward to recognize that the Hessian matrix H(z) defined
by (B.1) can be obtained as the result of two successive gradient vector
calculations with respect to z and 2! in the following manner (where
the order of the differentiation does not matter):

H(z) 2 ValVog(z)] = Vo [Varg(z) (M x M) (B.3)
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For instance, using the first expression, the gradient operation V., g(z)
generates a 1 X M (row) vector function and the subsequent differen-
tiation with respect to z' leads to the M x M Hessian matrix, H(z).
It is clear from (B.3) that the Hessian matrix is indeed symmetric so
that

H(z) = H"(2) (B.4)
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A useful property of Hessian matrices is that they help characterize the
nature of stationary points of functions ¢(z) that are twice continuously
differentiable. Specifically, if 29 is a stationary point of g(z) (i.e., a point
where V., g(z) = 0), then the following facts hold (see, e.g., [36, 93]):

(a) z?is a local minimum of ¢(z) if H(z?) > 0, i.e., if all eigenvalues
of H(z?) are positive.

(b) z?is a local maximum of g(z) if H(z°) < 0, i.e., if all eigenvalues
of H(z?) are negative.
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Example B.1 (Quadratic cost functions). Consider the quadratic function
g(z2)=k+a z4+ 20+ 270z (B.5)

where r is a scalar, {a, b} are column vectors of dimension M x 1 each, and
C'isan M x M symmetric matrix (all of them are real-valued in this case).
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]
We know from (A.22) and (A.30) that any stationary point, 22, of ¢g(z) should
satisfy the linear system of equations

C2° = %Qz+b) (B.6)

It follows that z¢ is unique if, and only if, C' is nonsingular. Moreover, in this
case, the Hessian matrix is given by

H=2C (B.7)

which is independent of z. It follows that the quadratic function g(z) will have
a unique global minimum if, and only if, C' > 0.
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We now extend the definition of Hessian matrices to functions g(z) € R
that are still real-valued but their argument, z € CM . is complex-valued.
This case is of great interest in adaptation, learning, and estimation
problems since cost functions are generally real-valued while their ar-
guments can be complex-valued. The Hessian matrix of g(z) can now
be defined in two equivalent forms by working either with the complex
variables {z,z*} directly or with the real and imaginary parts {x, y}
of z. In contrast to the case of real arguments studied above in (B.3),
where the Hessian matrix had dimensions M x M, the Hessian matrix
for complex arguments will be twice as large,
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We start by expressing each entry z,, of z in terms of its real and
lmaginary components as

Zm = Tm + JYm, m=1,2,..., M (B.8)

We subsequently collect the real and imaginary factors {x,, } and {yn, }
into two real vectors:

col{xy,x0,..., 201} (B.9)
col{yr,y2. ... ynr} (B.10)

8
e
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so that
2 = x+Jjy (B.11)

Then, we can equivalently express g(z) as a function of 2M real vari-
ables as g(z) = g(x,y). We now proceed to define the Hessian matrix
of g(2) in two equivalent ways by working with either the complex vari-
ables {z,z*} or the real variables {x,y}. We consider the latter case
first since we can then call upon the earlier definition (B.3) for real
arguments.
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Since g(x,y) € R is a function of the real arguments {x,y}, we can
invoke definition (B.3) to associate with g(x,y) a real Hessian matrix
H(x,y); its dimensions will be 2M x 2M . This Hessian matrix will in-
volve second-order partial derivatives relative to x and y. For example,
when z = o + jy is a scalar, then H(x,y) will be 2 x 2 and given by:

[ 9%g(x,y)  OPgla,y)
Ox? Dx 0y _
H(,’E,y) — 5 5 , A=Y (B12)
07g(x,y)  0°g(x,y)

Jyox Oy?




[ ] [ ]
Real Hessian Matrix

Likewise, when z is two-dimensional (i.e., M = 2) with entries z; =
xr1 + jy1 and zo = a9 + jyo, then the Hessian matrix of g(z) will be
4 x 4 and given by:
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T 9%g(z) 0g(2) PFglz)  glz) -
8:}3% 83318332 Bmlﬁyl 833183;2
d%g(z) 9%g(z) d%g(z) 9%g(z)
Jx20x1 O3 dx201 Jx2012
H(x,y) = (B.13)
9%g(z) 9%g(z) 9%g(z2) 9%g(z)
Oy10x1  Oy10as Oy} Dy1012
d%g(z) 9%g(z) d%g(z) 9%g(z)
L Oy20z1  Oyodxs | Dy20yn dy;




Real Hessian Matrix

19 [ Lecture #3: Complex Hessian Matrices EE210B: Inference over Networks (A. H. Sayed)

More generally, for arguments z = x4+ jy of arbitrary dimensions M x 1,

the real Hessian matrix of g(z) can be expressed in partitioned form in
terms of 4 sub-matrices of size M x M each:
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VZBT [vﬂ? Q(CU, y)] VZBT [vy Q(ZU, y)]

H(xz,y) =
i vyT[viﬁ g(w,y)] VyT[vy g(xay)] 1
_ -
H, r, H,r.
= () (B.14)
i Hmi HyTy i
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where we introduced the compact notation {H,r,, H v, H,} to de-

note the following second-order differentiation operations relative to
the variables x and y:

( Hme é V.GCT VSC 9(113, y)]
A _
Y Hyry z V1 Vy gz, y)] (B.15)
\ HyTQ: — vyT vﬂf: Q(CU, y)]
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We can express result (B.14) more compactly by working with the
2M x 1 extended vector v that is obtained by stacking 2 and y into a
single vector:

v 2 col{x, y} (B.16)

Then, the function g(z) can also be regarded as a function of v, namely,
g(v). It is straightforward to verify that the same Hessian matrix
H(x,y) given by (B.14) can be expressed in terms of differentiation
of g(v) with respect to v as follows (compare with (B.3)):
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A
H(U) — V’UT [vv g(’U)] = Vy [V’UT g(?))] — H(.CU, y) (2A{ X 2A4)

(B.17)
We shall use the alternative representation H(v) more frequently than

H (x,y) and refer to it as the real Hessian matrix. It is clear from expres-

sions (B.14) or (B.17) that the Hessian matrix so defined is symmetric
so that

H(v) = H'™(v) (B.18)
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Again, a useful property of the Hessian matrix is that it can be used
to characterize the nature of stationary points of functions g(z) that
are twice continuously differentiable. Specifically, if 2z = a° + jy° is
a stationary point of g(z) (i.e., a point where V, g(z) = 0), then the
following facts hold for v° = col{x?, y°}:

(a) 29 is a local minimum of ¢(z) if H(v°) > 0, i.e., all eigenvalues
of H(v?) are positive.

(b) z¢ is a local maximum of g(z) if H(v°) < 0, i.e., all eigenvalues
of H(v?) are negative.
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Besides H(v), we can associate a second Hessian matrix representation
with ¢(z) by working directly with the complex variables z and z*
rather than their real and imaginary parts, x and y (or v). We refer to
this second representation as the compler Hessian matrix and we denote
it by Hc(z), with the subscript “c” used to distinguish it from the real
Hessian matrix, H(v), defined by (B.17). The complex Hessian, H.(z).
is still 2M x 2M and its four block partitions are now defined in terms
of (Wirtinger) complex gradient operations relative to the variables z
and z* as follows (compare with (B.14)):
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IJ?*Z (}IéTz)*

H.(2) (2M x 2M) (B.19)

zlz (Hz*z)T

H ~

where the M x M block matrices {H,+., H,v,} correspond to the op-
erations:

vz* [vz g(Z)]

B.20
2Tz va[vz g(Z)] ( )

—_——
%
4 *

N
e e
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It is clear from definition (B.19) that the complex Hessian matrix is
now Hermitian so that
He(z) = [He(2)]" (B.21)

For example, for the same case (B.12) when z is a scalar, definition
(B.19) leads to:

* *2
0z*0z 0z (B.22)
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Likewise, for the two-dimensional case (B.13), the complex Hessian

matrix is given by:
[ Pylz)  Pylz) | Og(z)  OPglz) T
0270z Dz7 0z 0272 02707

?g(z)  Pglz) | Pg(z)  Pg(z)

0250z Dz5020 025027 82}‘2
H.(z) = (B.23)
9%g9(z)  9%g(2) 9%g(z) 9%g(z)
Bz% 0z10z9 0z10z7 021025

?g(z)  Pylz) | Pylz)  Py(z)
L 020021 D73 020027} Dz00z5 |
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Observe further that if we introduce the 2M x 1 extended vector:
u 2 col{ 2, ()7 } (B.24)

then we can express H.(z) in the following equivalent form in terms of
the variable u (compare with (B.17)):

Ho(u) 2 Vo [Vu g(w)] = Vo[V g(w)] = He(z)  (2M x 2M)

(B.25)
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The two Hessian forms, H (v) and H.(u), defined by (B.17) and (B.25)
Indeed, using (A.10), it can be verified

are closely related to each other.

that [219, 252]:
H.(u) = iDH(’U)D*
{H(v) — D*H.(u)D (B.26)
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where D is the following 2M x 2M block matrix:

A | Iy GIu
D = . B.27

[ Ine —jlum ] (B.27)
where [j; denotes the identity matrix of size M. It is straightforward
to verify that

DD* = 21y (B.28)
so that D is almost unitary (apart from scaling by 1/v/2).
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It follows from (B.26) and (B.28) that the matrices H.(u) and
%H (v) are similar to each other and, hence, the eigenvalues of H.(u)
coincide with the eigenvalues of $H (v) [104, 113]. We conclude that
the complex Hessian matrix, H.(u), can also be used to characterize
the nature of stationary points of g(z), just like it was the case with
the real Hessian matrix, H(v). Specifically, if 27 = 2° + jy° is a station-

ary point of g(z) (i.e., a point where V, g(z) = 0), then the following
facts hold:
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(a) z°is a local minimum of ¢(z) if H.(u?) > 0, i.e., all eigenvalues
of H.(u’) are positive.

(b) z?is a local maximum of g(z) if H.(u°) < 0, i.e., all eigenvalues
of H.(u”) are negative.

where u® = col {zo, (ZO*)T}.
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For ease of reference, Table B.1 summarizes the various definitions
of Hessian matrices for real-valued functions ¢g(z) € R for both cases
when z is real or complex-valued. In the latter case, there are two
equivalent representations for the Hessian matrix: one representation
is in terms of the real components {x, y} and the second representation
is in terms of the complex components {z, z*}. The Hessian matrix has
dimensions M x M when z is real and 2M x 2M when z is complex.
It is customary to use the compact notation V2 g(z) to refer to the
Hessian matrix whether z is real or complex and by that notation we
mean the following:
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Table B.1: Definition of Hessian matrices for real-valued functions g(z) € R for
both cases when z is real-valued or complex-valued.

Hessian matrix variables dimensions

> real H(z) =V_1[V. g(2)] M x M

H(v) =V,r[Vy g(v)] | v= { ! }
z complex 2M x 2M
z=a+jy | He(u) =V [Vy g(u)] | u= [ ; ]
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V2 g(2) A { V.1r[V. g(z)], when zisreal (M x M) (B.29)

V[V g(u)], when z is complex (2M x 2M)
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Example B.2 (Hessian matrix calculations). Let us illustrate the above
definitions by considering a couple of examples.

(1) Let g(2) = |z]? = 2* + 2, where z is a scalar. Then.,

H(v):[g g]EH Hc(u):[é ?]EH (B.30)

In this case, the Hessian matrices turn out to be constant and independent
of v and wu.
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(2) Consider now
2 " 2 | .2
g(z) = |21+ 2Re(2]22) = a7 +yi + 2z1709 + 2y1 92 (B.31)

where z = col{z1, 20} is 2 x 1. Then, the Hessian matrices are again indepen-
dent of v and wu:

H(v) = — [, (B.32)

O O N
o O O
(NORN N e )
oSN OO
—_— 0 O
o= OO

o O = =
o O O
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(3) Consider the real-valued quadratic function:
g(z)=Kk+a'z+z%a+ 2"Cz (B.33)
where k is a real scalar. a is a column vector, and C' is a Hermitian matrix.

Then,
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so that
- C 0

(B.37)

C+CT jC-CT)]_ g
j(CT-C) c+CT | T

It follows from the expression for H.(u) that it is sufficient to examine the
inertia of C' to determine the nature of the stationary point(s) of g(z).
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Example B.3 (Block diagonal Hessian matrix). Observe from definition (B.19)
that the complex Hessian matrix becomes block diagonal whenever H v
in which case

z

H(z) = [H 0

0 (Hz*z)T ] (2M x 2M) (B.38)
For example, as shown in the calculation leading to (B.36), block diagonal
Hessian matrices, H.(z) or H.(u), arise when ¢(z) is quadratic in z. Such
quadratic functions are common in design problems involving mean-square-
error criteria in adaptation and learning — see, e.g., expression (2.63) in the
body of the text.

|
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