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Appendix A (Complex Gradient Vectors, pp. 712-719):

A. H. Sayed, ““Adaptation, learning, and optimization over
networks," Foundations and Trends in Machine Learning, vol. 7,

issue 4-5, pp. 311-801, NOW Publishers, 2014.
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Let g(z) denote a scalar real or complex-valued function of a complex
variable, z. The function ¢(z) need not be holomorphic in the variable
z and, therefore, it need not be differentiable in the traditional com-
plex differentiation sense (cf. definition (A.3) further ahead). In many
instances though, we are only interested in determining the locations
of the stationary points of g(z). For these cases, it is sufficient to rely
on a different notion of differentiation, which we proceed to motivate.
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To motivate the alternative differentiation concept, we first review

briefly the traditional definition of complex differentiation. Thus, as-
sume z is a scalar and let us express it in terms of its real and imaginary

parts, denoted by x and y, respectively:
A . . A
:=x+jy, j = V-1 (A.1)

We can then interpret g(z) as a two-dimensional function of the real
variables {x,y} and represent its real and imaginary parts as functions
of these same variables, say, as u(x,y) and v(x,y):

g9(z) 2 ula.y) + jo(z.y) (A.2)
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We denote the traditional complex derivative of g(z) with respect to z
by ¢'(z) and define it as the limit:

oA glz+Az) — g(2)
e = T A A9
or, more explicitly,
J(z) = tim YEFATYAY) - 9(@y) (A.4)

Az—0 Ax + jAy
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where we are writing Az = Az + jAy. For g(z) to be differentiable at
location z, in which case it is also said to be holomorphic at z, then
the above limit needs to exist regardless of the direction from which
z + Az approaches z. In particular, if we set Ay = 0 and let Az — 0,
then the above definition gives that ¢'(z) should be equal to

g’(z) _ 8U(Z',y) 4 8’0(33',y)

A.
Ox J ox (A-5)
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On the other hand, if we set Az = 0 and let Ay — 0 so that Az = jAy,
then the definition gives that the same ¢’(z) should be equal to

g,(Z) _ 8’0(2’},3;) GU(QZ’,Q)

— A.6
o o, (A.6)
Expressions (A.5) and (A.6) must coincide, which means that the real
and imaginary parts of ¢g(z) should satisfy the conditions:
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( Ou(x,y)  Ov(w,y)
Jx - dy
X (A.7)
u(z.y) Ov(z,y)
\ 8y - ox

These are known as the Cauchy-Riemann conditions [5, 198]. It can be
shown that these conditions are not only necessary for a complex func-
tion g(z) to be differentiable at location z, but if the partial derivatives
of u(x,y) and v(x,y) are continuous, then they are also sufficient.
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Example A.1 (Real-valued functions). Consider the quadratic function g(z) =
|2|%. It is straightforward to verify that g(x,y) = 22 + y? so that

u(r,y) = +y%  w(r,y) =0 (A.8)

Therefore, the Cauchy-Riemann conditions (A.7) are not satisfied in this case
(except at the point x = y = 0). More generally, it is straightforward to verify
that any other (nonconstant) real-valued function, g(z), cannot satisfy (A.7)
except possibly at some locations. It turns out though that real-valued cost
functions of this form are commonplace in problems involving estimation,
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adaptation, and learning. Fortunately, in these applications, we are rarely
interested in evaluating the traditional complex derivative of g(z). Instead,
we are more interested in determining the location of the stationary points of
g(z). To do so, it is sufficient to rely on a different notion of differentiation
based on what is sometimes known as the Wirtinger calculus [47, 252, 265],
which we describe next.
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We continue with the case in which z € C is a scalar and allow ¢(z)
to be real or complex-valued so that g(z) € C. We again express z in
terms of its real and imaginary parts as in (A.1), and similarly express
g(z) as a function of both x and y, i.e., as g(x,y). The (Wirtinger)
partial derivatives of ¢(z) with respect to the complex arguments z
and z*, which we shall also refer to as the complex gradients of g(z),
are defined in terms of the partial derivatives of g(x,y) with respect to
the real arguments x and y as follows:
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EELUCIIN 1{39(93,y) B ﬁg(w,y)}
0z 2 Ox dy
: (A.9)
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The above expressions can be grouped together in vector form as:

- 09(2)/0z | r .| 99@w)/ox
| Jg(z)/0z" | dg(x,y)/0y
so that, by inversion, it also holds that
- Og(x,y)/0x L1 1] 99@/0e
= [ . . ] (A.11)
9l y) /9y P ag(e) /020




Scalar Arguments

16} lecture #2: Complex Gradient Vectos ____________EE210B: Inference over Networks (A. H. Sayed) _
The reason why the partial derivatives (A.9) are useful can be readily
seen when ¢(z) is real-valued, namely, ¢g(z) € R. In that case, and by
definition, a point z° = x° 4+ jy° is said to be a stationary point of
g(z) if, and only if, (2°,9°) is a stationary point of g(x,y). The latter
condition is equivalent to requiring

dg(x,y)

— () A.12
Ox | pmgo y=yo ( )
and
Gg(x,y) — 0 (Al?))
Oy Lomao ymye
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These two conditions combined are turn is equivalent to the following
single condition in terms of the complex gradient vector:

99(2) ~ 0 (A.14)

0z |.—.o0
In this way, either of the partial derivatives defined by (A.9) enable us
to locate stationary points of the real-valued function g(z). Note that

won

we are using the superscript notation “?”, as in z°, to refer to stationary

points.
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Example A.2 (Wirtinger complex differentiation). We illustrate the definition
of the partial derivatives (A.9) by considering a few examples. We will
observe from the results in these examples that (Wirtinger) complex differ-
entiation with respect to z treats z* as a constant and, similarly, complex
differentiation with respect to z* treats z as a constant:

(1) Let g(z) = 22. Then, g(x,y) = (% — y?) + j2zy so that from (A.9):

9 _ Lyt 2., 9B (A.15)
0z 2 dz*
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(2) Let g(2) = |z|*. Then, g(z.y) = 2* + y? and

8%22) = (v — jy) = =", agij) =(x+jy) = = (A.16)

(3) Let g(2) = k + az + B2* + ~|z|?, where (k,«, 3,7) are scalar constants.

Then,
dg(z)
0z

dg(z)
Oz*

= a+vyz", = B4~z (A.17)
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We consider next the case in which z is a column vector argument, say,
of size M x 1, and whose individual entries are denoted by {z,,}, i.e.,

z=col{z,z0,...,20; € CM (A.18)

We continue to allow g(z) to be real or complex-valued so that g(z) € C.
The (Wirtinger) partial derivative of g(z) with respect to z is again
denoted by 0 g(z)/0z and is defined as the row vector:

dg(z) A Jdg  Jg g ] | { z is a column (A1)

0z Dz1 Ozo  Ozum dJg/0z is a row
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in terms of the individual (Wirtinger) partial derivatives {0g/0z,}.
Expression (A.19) for 0 g(z)/0z is also known as the Jacobian of g(z).
We shall refer to (A.19) as the complex gradient of g(z) with respect
to z and denote it more frequently by the alternative notation V. ¢g(z),

i.e.,

A dg 0Og dg ] z is a column
= e A.20
Jz1  0Ozo Ozyr | { V.g(z)is a row ( )
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There is not a clear convention in the literature on whether the gradient
vector relative to z should be defined as a row vector (as in (A.20)) or
as a column vector; both choices are common and both choices are
useful. We prefer to use the row convention (A.20) because it leads
to differentiation results that are consistent with what we are familiar
with from the rules of traditional differentiation in the real domain —
see Example A.3 below. This is largely a matter of convenience.
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Likewise, along with (A.20), we define the complex gradient of g(z)
with respect to z* to be the column vector:

[ 0g/0z;
ol A 0g/0z5 _ 0g(2) z* is a row
> g\2) = : 9z V.« g(z) is a column
| 99/0%) |

(A.21)
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Observe again the useful conclusion that when g(z) is real-valued, then
a vector z° = 2 4+ jy° is a stationary point of ¢g(z) if, and only if,

V29(2)]ze = 0 (A.22)
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Example A.3 (Complex gradients). Let us again consider a few examples:

(1) Let g(z) = a*z, where {a, z} are column vectors. Then,

V.g(z) = a*, V..g(z) =0 (A.23)

(2) Let g(2) = ||2]|* = 2*2, where z is a column vector. Then.

V.g(z) = 2%, V.g(z) = = (A.24)
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(3) Let g(2) = kK + a*z + z*b + 2*Cz, where k is a scalar, {a, b} are column
vectors, and C'is a matrix. Then,

V.g(z) = a* +2"C, V..g(z) = b+ C=z (A.25)
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When z € RM is real-valued and the function g(z) € R is real-valued
as well, the gradient vector is still defined as the row vector:

V.g(z) £ [

dg 0Odg dg ] { z is a column (A.26)

Dzy 0z  0Ozu V.g(z)is a row

in terms of the traditional partial derivatives of g(z) with respect to the
real scalar arguments { z,,, } . Likewise, and in a manner that is consistent
with (A.21), we define the gradient vector of ¢g(z) with respect to z!

to be the following column vector:
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[ 0g/0z
0q/0z T ;
A z' is a row
Varg(z) = : ’ { V.1 g(z) is a column (4.27)
| Jg/0znr

In particular, note the useful relation

V.rg(z) = [Vaog(2)]' (A.28)

This relation holds for both cases when z itself is real-valued or

complex-valued.
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Example A.4 (Quadratic cost functions |). Consider the quadratic function
g(2) = k4+a'z+2"b+2"Cx (A.29)

where k is a scalar, {a, b} are column vectors of dimension M x 1 each, and
C'is an M x M symmetric matrix (all of them are real-valued in this case).
Then, it can be easily verified that

V.g(z) = a' +b" +2:7C A .30
9(%)
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The reason for the additional factor of two in the rightmost term can be jus-
tified by carrying out the calculation of the gradient vector explicitly. Indeed,

if we denote the individual entries of {a, b, z, C'} by {am. by, 2m, Coun }, then

M

g(z) = kK + Z(am—l—b )zm + Z sz i Zn (A.31)

m=1n=1
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so that

dg(z)
JzZm

M
n#m

M

n=1

where we used the fact that C' is symmetric and, hence, C,,,, = C),,,,. Collect-
ing all the partial derivatives into the gradient vector defined by (A.26) we
arrive at (A.30).
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Observe that while in the complex case, the arguments z and z* are treated
independently of each other during differentiation, this is not the case for the
arguments z and 2z in the real case. In particular, since we can express the
inner product zTb as b'z, then the derivative of zTb with respect to z is equal
to the derivative of bz with respect to z (which explains the appearance of

the term b7 in (A.30)).
|
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Example A.5 (Quadratic cost functions Il). Consider the same quadratic func-
tion (A.29) with the only difference being that C' is now arbitrary and not
necessarily symmetric. Then, the same argument from Example A.4 will show

that:
V.g(z) = a" +b" + 27 (C+CT) (A.33)

where 2C in (A.30) is replaced by C' + C'T.
|
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