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Abstract—This work examines the problem of graph learning
over a diffusion network when measurements can only be gath-
ered from a limited fraction of agents (latent regime). Under this
setting, most works in the literature rely on a degree of sparsity
to provide guarantees of consistent graph recovery. This work
moves away from this condition and shows that, even under dense
connectivity, the Granger estimator ensures an identifiability
gap that enables the discrimination between connected and
disconnected nodes within the observable subnetwork.

Index Terms—Graph learning, dense networks, Granger esti-
mator, diffusion network, identifiability gap.

I. INTRODUCTION

Learning the graph structure of a network from measure-
ments at the agents is a problem of paramount importance.
Applications include revealing relationships between func-
tional connectivity (the signals) and structural connectivity (the
topology) in the brain; understanding the role of topology for
the diffusion of information over social networks; and model-
ing the exchange of information over biological networks.

The network tomography problem is challenging for at least
three reasons: i) direct access to the data exchanged between
nodes is often impractical, and the inference about node
interconnections must be based on some indirect observations;
ii) observations from only a limited subset of the network are
usually available (local tomography); iii) and the gathered
signals are influenced not only by the observed nodes, but
also by the latent (i.e., unobserved) nodes because information
diffuses across the network. Figure 1 illustrates the proposed
local tomography paradigm. Data collected from a subnetwork
are used to estimate a partial combination matrix. The entries
of this matrix are then subjected to a clustering procedure to
decide on whether agents are connected or not.

There have been several works in the literature that deal
with the network tomography problem. We comment briefly
on their features and on the contribution of our work in
relation to these earlier efforts. Reference [1] provides a
more detailed commentary on the pertinent literature. We
note that the majority of existing works focus on linear and
autoregressive diffusion models [2]–[4]. When observations
are available from all nodes, causal graph processes are
used in [4], while optimization methods based on structural
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Fig. 1. Illustration of the local tomography problem.

constraints such sparsity are proposed in [3], [5]. Under the
partial-observation formulation, there are results holding for
particular graphs, e.g., for polytrees [6], as well as results
holding under particular conditions (on the network structure
and/or on the statistical model) that are usually impractical in
large-scale network settings [2], [7]. In comparison, there are
works specifically tailored to the large-scale network setting,
where identifiability relies on average macroscopic indicators
(e.g., node connection probability). In the latter category there
are works dealing with graphical models [8], as well as works
dealing with diffusion networks [1], [9]–[11].

However, the majority of these earlier contributions rely
on a sparsity condition in the network structure to ensure
consistent tomography. In this work, we move away from
this condition and show that consistent tomography is still
possible over densely connected networks with performance
guarantees. More specifically, we will establish identifiability
of the observable subnetwork for dense Erdös-Rényi random
graphs and for the class of regular diffusion matrices described
by Assumption 1 further ahead. The main observation is that
a fortunate coupling between the Erdös-Rényi model and the

regular diffusion matrices renders the problem of topology

inference a local problem. The analysis will reveal that spar-
sity is not necessarily the key-enabler for local tomography.
Instead, the main enabling feature will be seen to be the error
concentration induced by the aforementioned coupling.

Notation. Boldface letters denote random variables. Sets
are represented with calligraphy fonts, set cardinalities with
the corresponding normal fonts, and set complements with the
superscript ′. Given a matrix Z , the submatrix that lies in the
rows and columns indexed by S is denoted by ZS , and the
entries of ZS are indexed by indices (i, j) spanning S. The
(i, j)-th entry of the matrix power Zk is denoted by z

(k)
ij .



II. BACKGROUND

A. Useful Facts about Random Graphs

A random graph of N nodes, where edges are drawn inde-
pendently and with identical probability p, is an Erdös-Rényi
graph and is denoted by G ∼ G (N, p). In our treatment, to
rule out trivial/pathological cases, we assume that 0 < p < 1.
In the following, we use the same symbol G to denote also
the adjacency matrix of the graph, with gij = 1 if nodes i and
j are connected and gij = 0 otherwise. We assume also that
each node “stays connected to itself,” namely, each node has
(deterministically) a self-loop (i.e., gii = 1).

One classic way to characterize random graphs is to exam-
ine their behavior as N gets large (graph evolution), in order
to capture average behavior patterns that emerge with high
probability over large networks. In the most general case, the
connection probability is allowed to scale with N , and can be
also vanishing with N .1 In this work, we restrict attention to
the regime of evolution where the connection probability stays
constant when N gets large (dense regime).

One useful graph descriptor is the degree of a node, which is
defined as the number of neighbors of that node (including the
node itself). The degree of node i will be denoted by di. It is
readily verified that the random variable di−1 is distributed as
a binomial random variable over N−1 trials (the N−1 edges
possibly stemming from node i) with success probability p. We
have subtracted 1 from di because, according to our definition,
di counts node i itself. In our setting, it would be particularly
useful to focus on the minimum and maximum degrees, which
will be denoted by dmin and dmax, respectively. In particular,
the following scaling laws (arising from standard application
of the Chernoff bounding technique) will play a fundamental
role in the forthcoming analysis:

dmin

Np

p
−→ 1,

dmax

Np

p
−→ 1 (1)

where
p

−→ denotes convergence in probability as N → ∞.

B. Network and Data Model

We assume that the state of each agent evolves over time
as a result of the interaction with its neighbors. Formally, the
state yi(n) of each agent i ∈ {1, 2, . . . , N}, at time n, is
assumed to obey the following stochastic dynamical system:

yi(n) =

N∑

ℓ=1

aiℓ yℓ(n− 1) + xi(n) ⇔ yn = Ayn−1 + xn

(2)
where yn = [y1(n),y2(n), . . . ,yN (n)] is a column vector
collecting the states of all nodes at time n, A = [aiℓ] is
a combination matrix, and xn = [x1(n),x2(n), . . . ,xN (n)]
is a column vector modeling a random input at the agents
(e.g., streaming data or noise). We assume that {xi(n)} are

1A graph can be connected in the sparse regime. For example, it is well
known that, if pN = logN+cN

N
, with cN → ∞, then the graph is connected

with high probability even if cN is such that pN → 0 [12].

independent and identically distributed both spatially (i.e.,
w.r.t. to i) and temporally (i.e., w.r.t. to n), with zero-mean
and unit variance. We observe from (2) that, if aiℓ = 0,
then agent i does not use the information arriving from agent
ℓ to update its own state. Therefore, the support-graph of
A reflects the underlying topology. The stochastic dynamical
system (2) arises naturally in the context of adaptive diffusion

networks [1], [13]. It also arises in economics and is used as
a variational characterization of nonlinear dynamical systems.

We observe that the dynamical system in (2) implies the
following relationship among the correlation matrix R0(n) ,
E[yny

T
n ], the one-lag correlation matrix R1(n) , E[yny

T
n−1],

and the combination matrix A:

R1(n) = AR0(n− 1)
n→∞
−→ R1 = AR0, (3)

where R0 and R1 are the limiting correlation matrices (as-
suming A stable). Therefore, since there exist many ways to
estimate R0 and R1 consistently as n → ∞, the relationship
A = R1R

−1
0 reveals one possible strategy to estimate A from

the output of the diffusion process, yn. Such a strategy is
sometimes referred to as Granger estimator [2].

Under the considered large-scale network setting, only a
subset S of the network is accessible. For this case, the
combination matrix pertaining to the observed subset S of
nodes is AS =

[
R1R

−1
0

]
S

, which cannot be computed in
the framework of local tomography as only the submatrices
associated with the observable agents, [R0]S and [R1]S , are
available (or can be estimated). One could certainly consider
an approximation for AS as:

ÂS = [R1]S ([R0]S)
−1 (4)

The estimator ÂS corresponds to applying the Granger es-
timator at the observable nodes S (i.e., ignoring the latent
part). It is clear that ÂS 6= AS . However, it was established
in [1], [9] that ÂS contains sufficient information to retrieve
the support graph of AS , with high probability, under certain
sparsity constraints on the network structure and stability
conditions on the combination matrix A. This work brings
a new contribution: it establishes structural consistency of the
Granger estimator in (4) under the more demanding regime of
dense connectivity.

C. The Random Graph and the Combination Rule

Let G ∼ G (N, p) be the Erdös-Rényi random graph linking
the N agents. We can assign (nonnegative) weights to the
edges of G and denote the resulting matrix of weights as A

(where the randomness of A follows from the randomness
of G). Some popular choices are the Laplacian and the
Metropolis rules, defined as follows.
Laplacian rule. For the Laplacian rule, the combination-
matrix entries are:

aij =

{
ρ λ

gij

dmax
, for i 6= j

ρ−
∑

ℓ 6=i aiℓ, for i = j
(5)

with 0 < ρ < 1 and 0 < λ ≤ 1.
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Metropolis rule. For the Metropolis rule, we have instead:

aij =





ρ
gij

max {di,dj}
, for i 6= j

ρ−
∑

ℓ 6=i aiℓ, for i = j
(6)

These rules arise naturally in many applications, for in-
stance, they are one fundamental ingredient of adaptive net-
works [13]–[15].

III. MAIN RESULT

In the following treatment, the overall network of agents
is denoted by N = {1, 2, . . . , N}. We start by introducing a
useful class of combination matrices.

Assumption 1 (Regular diffusion matrices). We assume that

the combination matrix A is symmetric with entries satisfying:

N∑

ℓ=1

aiℓ = ρ, 0 < ρ < 1, (7)

and ∀i 6= j:

κ

dmax
gij ≤ aij ≤

κ

dmin
gij (8)

for some 0 < κ ≤ 1. �

The relevance of this class of matrices stems from the fact
that the most common combination matrices encountered in
the literature automatically satisfy Assumption 1. For instance,
it is readily seen that the Laplacian combination matrix in (5)
is a regular diffusion matrix with parameters ρ and κ = ρλ,
whereas the Metropolis combination matrix in (6) is a regular
diffusion matrix with parameters ρ and κ = ρ.

In order to ascertain whether or not it is possible to discrim-
inate interacting (i.e., connected) agents from non-interacting
agents via inspection of an estimator ÂS , we introduce the
concept of margin and identifiability gap.

Definition 1 (Margins). Let ÂS be a certain estimated

combination matrix, corresponding to the subnetwork S. The

lower and upper margins corresponding to the disconnected
pairs are defined as, respectively2:

δN , min
i,j∈S:aij=0

i6=j

âij , δN , max
i,j∈S:aij=0

i6=j

âij . (9)

Likewise, the lower and upper margins corresponding to the

connected pairs are defined as, respectively:

∆N , min
i,j∈S:aij>0

i6=j

âij , ∆N , max
i,j∈S:aij>0

i6=j

âij . (10)

�

The aforementioned margins are useful to examine the
achievability of structural consistency for an estimator ÂS —
see Fig. 2 for an illustration — and lead to the concept of
identifiability gap.

2The definitions in (9) and (10) are void if the nodes in S are all connected
or all disconnected, respectively. Since these events are irrelevant as N → ∞,
for these singular cases we can formally assign arbitrary values to the margins.
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Fig. 2. Emergence of the identifiability gap. The example refers to a Granger
estimator and to a scaling sequence sN = Np. The scaled entries of the
estimated matrix corresponding to connected pairs are sandwiched between
the (red) margins, Np∆N and Np∆N . Likewise, the scaled entries of
the estimated matrix corresponding to non-connected pairs are sandwiched
between the (blue) margins, NpδN and NpδN .

Definition 2 (Identifiability Gap). Let ÂS be an estimated

combination matrix. If there exists a sequence sN , a real value

η, and a strictly positive value Γ, such that:

sN δN
p

−→ η, sN ∆N

p
−→ η + Γ

sN δN
p

−→ η, sN ∆N
p

−→ η + Γ
(11)

we say that the estimated matrix ÂS possesses an identifia-

bility gap equal to Γ, and with scaling sequence sN . �

The relationships in (11) imply the following three funda-
mental properties: separability, clustering, and bias.
Separability. The condition sN δN

p
−→ η means that the

maximum entry of sNÂS taken over the disconnected pairs
converges to η. Likewise, condition sN ∆N

p
−→ η + Γ

means that the minimum entry of sNÂS taken over the
connected pairs converges to η + Γ > η. Joining these two
relationships, we discover that the connected node pairs stand
clearly separated from the disconnected node pairs, and the
amount of separation is quantified by the gap, Γ.
Clustering. The pair of (scaled) lower margins, sN δN and
sN δN , converge to one and the same value, η, which implies
that all the entries of sNÂS corresponding to disconnected

pairs are sandwiched between these margins — see Fig. 2.
A similar behavior is observed for the scaled entries over the
connected pairs, which converge altogether to η+Γ since they
are sandwiched between sN ∆N and sN ∆N . In summary,
we conclude that the connected and disconnected agent pairs
cluster into well-separated classes that can be identified, e.g.,
by means of a blind (i.e., nonparametric) clustering algorithm.
Bias. For the true combination matrix, the entries correspond-
ing to disconnected pairs are zero. In contrast, Eq. (11) reveals
that the scaled entries for disconnected pairs tend to cluster
around η, which results therefore in a bias. However, and
remarkably, this bias does not constitute a problem for consis-

tent classification of connected/non-connected nodes, because
the bias does not affect in any manner the aforementioned
separability and clustering properties.
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In order to evaluate the accuracy of an estimator ÂS (not
necessarily the Granger estimator), we introduce the error
matrix E , ÂS − A. In the next lemma, we provide a
sufficient condition for identifiability by showing that a strictly
positive gap exists when the (scaled) maximum and minimum

errors are asymptotically concentrated around a fixed value.

Lemma 1 (Sufficient condition for an identifiability gap).

Let G ∼ G (N, p), and let A be a regular diffusion matrix with

parameters ρ and κ. Let S be the set of observable nodes, of

cardinality S, and let S/N → ξ > 0 as N → ∞. Consider

then an estimator ÂS = AS + E, and assume that, for all

i, j ∈ S, with i 6= j:

ZN ≤ eij ≤ ZN , (12)

where the quantities ZN and ZN do not depend on (i, j),
and fulfill the following convergences:

NpZN

p
−→ η, NpZN

p
−→ η. (13)

Then, the estimator ÂS possesses an identifiability gap equal

to κ, with scaling sequence sN = Np.

Proof: From (12) we know that:

aij +ZN ≤ aij + eij ≤ aij +ZN . (14)

Substituting into (10) gives (when at least one pair in S is
connected):

Np (mN +ZN ) ≤ Np∆N ≤ Np∆N ≤ Np (MN +ZN ),
(15)

where we introduced

mN , min
i,j∈S:aij>0

i6=j

aij , MN , max
i,j∈S:aij>0

i6=j

aij . (16)

Using now (8) along with (1), we easily see that both NpmN

and NpMN converge in probability to κ. Using this result in
conjunction with (13), and further observing that the event
that all pairs in S are disconnected has asymptotically zero
probability, we conclude that both Np∆N and Np∆N con-
verge in probability to κ+ η. Reasoning along the same lines,
it is possible to show that the remaining convergences listed
in (11) hold true, with Γ = κ.

The next theorem ascertains that there exists a (positive)
identifiability gap for the Granger estimator in (4), under the
regime of dense connectivity. In [1] it is shown that such error
matrix admits a convenient representation. Specifically, one
has first to introduce the matrices C , [A2]S′ (where S ′ is
the complement of set S) and H = (IN−K − C)−1. Then,
the entries of the error matrix are [1]:

eij =
∑

ℓ,m∈S′

aiℓhℓma
(2)
mj , i, j ∈ S. (17)

Theorem 1 (Identifiability Gap for the Granger Estimator).

Let G ∼ G (N, p), and let A be a regular diffusion matrix with

parameters ρ and κ. Let S be the set of observable nodes, of

cardinality S, and let S/N → ξ > 0 as N → ∞. Then, for

Random variable Limit (in probability)

Ma , max
i,j∈N
i6=j

aij 0

Ma,self , max
i∈N

aii ρ− κ

Mc,self , max
ℓ∈S′

cℓℓ (ρ − κ)2

M
(S′)
a,sum , max

ℓ,m∈S′

ℓ 6=m

∑

h∈S′

h6=ℓ,m

ahm κ(1− ξ)

M̃
(S′)
a,sum , max

i

∑

ℓ∈S′

aiℓ κ(1− ξ)

˜̃
M

(S′)
a,sum , max

i

∑

ℓ,m∈S′

ℓ 6=m

aiℓ κ(1− ξ)2

M̃(S′) , max
i∈S

∑

ℓ,m∈S′

ℓ 6=m

aiℓaℓm κ2(1− ξ)2

˜̃
M(S′) , max

i,j∈S
i6=j

∑

ℓ,m∈S′

ℓ 6=m

aiℓamj κ2(1− ξ)2

Mc,sum , max
ℓ,m∈S′

ℓ 6=m

∑

h∈S′

h6=m

cℓh ρ2 − 2ρκξ + κ2ξ

M , max
i,j∈N
i6=j

∑

ℓ∈N
ℓ 6=i,j

aiℓaℓj NpM
p

−→ κ2p

M(S′) , max
i,j∈N
i6=j

∑

ℓ∈S′

ℓ 6=i,j

aiℓaℓj NpM(S′) p
−→ κ2p(1− ξ)

M
(S′)
a3,sum , max

i,j∈S
i6=j

∑

ℓ,m∈S′

ℓ 6=m

aiℓaℓmamj NpM
(S′)
a3,sum

p
−→ κ3p(1− ξ)2

TABLE I
RANDOM VARIABLES RELEVANT FOR THEOREM 1.

the Granger estimator, we have that (11) holds true with the

choices sN = Np, Γ = κ, and:

η = κ2p
(2ρ− κ) (1− ξ)

1− (ρ2 − 2ρκξ + κ2ξ)
(18)

Proof: Due to space constraints, we limit ourselves to a
sketch of the proof. The main idea is obtaining some uniform
(i.e., independent of the particular (i, j)-pair) bounds on the
error matrix entries. Uniformity is critical because we need
to examine the asymptotic regime where the number of agent
pairs gets infinitely large.

We start by noting that, for all i, j ∈ N , with i 6= j:

a
(2)
ij =

∑

ℓ∈N

aiℓaℓj = (aii + ajj)aij +
∑

ℓ∈N
ℓ 6=i,j

aiℓaℓj

≤ 2Ma,self aij +M ≤ 2Ma,self Ma +M. (19)

Recalling now that C = A2, and using the relationship
Ck+1 = CCk on an entrywise basis, it is possible (even
if not straightforward) to work out the following bounds:

c
(k)
ℓℓ ≤ αk, c

(k)
ℓm ≤ βk aℓm + γk for ℓ 6= m, (20)
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where, for k ≥ 1, the (random) sequences αk, βk, and γk,
are determined by the following recursions:

αk+1 = Mc,self αk + (2Ma,self Ma +M) ρ2k, (21)

βk+1 = 2Ma,self αk +Mc,self βk, (22)

γk+1 = Mαk + (2Ma,self M
(S′) +MM

(S′)
a,sum)βk

+ Mc,sum γk, (23)

with the initialization choices α1 = Mc,self, β1 = 2Ma,self,
and γ1 = M. The explicit definitions of the pertinent random
variables (e.g., Ma,self) appearing in (21)–(23) are listed in
Table I. These variables serve to construct upper bounds that
do not depend on (i, j), for example, Ma,self is the maximum
diagonal entry of matrix A. Exploiting the fact that H can
be expressed through a series involving powers of C , and
using (21)–(23), it is further possible to bound its entries as:

hℓℓ ≤ 1 +Σα, hℓm ≤ Σβ aℓm +Σγ for ℓ 6= m, (24)

where we have introduced the series:

Σα ,

∞∑

k=1

αk, Σβ ,

∞∑

k=1

βk, Σγ ,

∞∑

k=1

γk. (25)

Next, we use the definition of the error in (17) to get:

eij ≤ (1 +Σα)
[
2Ma,self M

(S′) +MM̃
(S′)
a,sum

]

+ Σβ

[
2Ma,self M

(S′)
a3,sum +MM̃

(S′)
]

+ Σγ

[
2Ma,self

˜̃
M

(S′) +M
˜̃
M

(S′)
a,sum

]
, ZN ,

(26)

where we have exploited (24), and we have bounded the terms
involving entries of A in terms of some random variables listed
in Table I. It is now possible to prove that NpZN

p
−→ η, with

η being defined in (18). To this end, one can apply to (26) all
the convergences listed in Table I. In particular, applying these
convergences to the recursion in (21)–(23) gives the limits of
the series in (25). The above arguments can be repeated by
replacing upper bounds with lower bounds, and maxima with
minima, so as to obtain a uniform lower bound, ZN , fulfilling
NpZN

p
−→ η. Thus, we see that the error for the Granger

estimator meets the hypotheses of Lemma 1, which completes
the proof of the theorem.

IV. ILLUSTRATIVE EXAMPLE

We now illustrate empirically the asymptotic result of
Theorem 1. We generate a realization of an Erdös-Rényi
random graph with N = 100 nodes and connection probability
p = 0.8, and we assume that only S = 20 nodes are observed.
The combination matrix is given by the Metropolis rule in (6),
with ρ = 0.9. In Fig. 3, the blue and red markers depict the
vectorized and rearranged entries of the true combination ma-
trix AS . The cyan and magenta markers depict the vectorized
entries (rearranged with the same ordering used for AS) of the
Granger estimator, ÂS , computed from the empirical sample
correlations evaluated over 5×105 time samples. We see how
the emergence and magnitude of the identifiability gap, Γ, and
of the bias, η, match well the predictions of Theorem 1.
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Fig. 3. Emergence of the identifiability gap for the Granger estimator, for the
example described in Sec. IV.

REFERENCES

[1] V. Matta and A. H. Sayed, “Consistent tomography under partial
observations over adaptive networks,” IEEE Trans. Inf. Theory (early
access), 2018, doi: 10.1109/TIT.2018.2839192.

[2] P. Geiger, K. Zhang, B. Schölkopf, M. Gong, and D. Janzing, “Causal
inference by identification of vector autoregressive processes with hidden
components,” in Proc. International Conference on Machine Learning,
vol. 37, Lille, France, July 2015, pp. 1917–1925.

[3] B. Pasdeloup, V. Gripon, G. Mercier, D. Pastor, and M. G. Rabbat,
“Characterization and inference of graph diffusion processes from ob-
servations of stationary signals,” IEEE Trans. Signal Inf. Process. Netw.,
vol. 4, no. 3, pp. 481–496, September 2018.

[4] J. Mei and J. Moura, “Signal processing on graphs: Causal modeling
of unstructured data,” IEEE Trans. Signal Process., vol. 65, no. 8, pp.
2077–2092, April 2017.

[5] S. Segarra, A. G. Marques, G. Mateos, and A. Ribeiro, “Network
topology identification from imperfect spectral templates,” in Proc.
IEEE Asilomar Conference on Signals, Systems, and Computers, Pacific
Grove, CA, USA, November 2016, pp. 1465–1469.

[6] J. Etesami, N. Kiyavash, and T. Coleman, “Learning minimal latent
directed information polytrees,” Neural Computation, vol. 28, no. 9, pp.
1723–1768, August 2016.

[7] D. Materassi and M. V. Salapaka, “Identification of network components
in presence of unobserved nodes,” in Proc. IEEE Conference on Decision
and Control, Osaka, Japan, December 2015, pp. 1563–1568.

[8] A. Anandkumar and R. Valluvan, “Learning loopy graphical models
with latent variables: Efficient methods and guarantees,” The Annals of

Statistics, vol. 41, no. 2, pp. 401–435, 2013.
[9] A. Santos, V. Matta, and A. H. Sayed, “Local tomography of large

networks under the low-observability regime,” May 2018, available as
arXiv:1805.09081v1 [cs.MA].

[10] ——, “Divide-and-conquer tomography for large-scale networks,” in
Proc. IEEE Data Science Workshop, Lausanne, Switzerland, June 2018,
pp. 1–5.

[11] ——, “Consistent tomography over diffusion networks under the low-
observability regime,” in Proc. IEEE International Symposium on Infor-

mation Theory, Vail, CO, USA, June 2018, pp. 1–5.
[12] P. Erdös and A. Rényi, “On random graphs I,” Publicationes Mathemat-

icae (Debrecen), vol. 6, pp. 290–297, 1959.
[13] A. H. Sayed, “Adaptive networks,” Proc. IEEE, vol. 102, no. 4, pp.

460–497, April 2014.
[14] V. Matta and A. H. Sayed, “Estimation and detection over adaptive

networks,” in Cooperative and Graph Signal Processing, P. Djuric and
C. Richard, Eds. Elsevier, 2018, pp. 69–106.

[15] A. H. Sayed and X. Zhao, “Asynchronous adaptive networks,” in
Cooperative and Graph Signal Processing, P. Djuric and C. Richard,
Eds. Elsevier, 2018, pp. 3–68.

5


