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Abstract—This paper formulates a multitask optimization
problem where agents in the network have individual objectives
to meet, or individual parameter vectors to estimate, subject
to a smoothness condition over the graph. The smoothness
requirement softens the transition in the tasks among adjacent
nodes and allows incorporating information about the graph
structure into the solution of the inference problem. A diffusion
strategy is devised that responds to streaming data and employs
stochastic approximations in place of actual gradient vectors,
which are generally unavailable. We show, under conditions
on the step-size parameter, that the adaptive strategy induces
a contraction mapping and leads to small estimation errors
on the order of the small step-size. A graph spectral filtering
interpretation is provided for the optimization framework.

Index Terms—Multitask inference, diffusion strategy, graph
Laplacian regularization, gradient noise, spectral filtering.

I. INTRODUCTION

Distributed inference allows a collection of interconnected

agents to perform parameter estimation tasks from streaming

data by relying solely on local computations and interactions

with immediate neighbors. Most prior literature focuses on

single-task problems, where agents with separable objective

functions need to agree on a common parameter vector

corresponding to the minimizer of an aggregate sum of

individual costs [1]–[5]. Many network applications require

more complex models and flexible algorithms than single-task

implementations since their agents may need to estimate and

track multiple objectives simultaneously [6]–[11]. Networks

of this kind are referred to as multitask networks. Although

agents may generally have distinct though related tasks to

perform, they may still be able to capitalize on inductive

transfer between them to improve their performance [8]–[10].

In this work, we consider multitask estimation problems

where each agent in the network seeks to minimize an indi-

vidual cost expressed as the expectation of some loss function.

The minimizers of the individual costs are assumed to vary

smoothly on the topology captured by the graph Laplacian.

The smoothness property softens the transition in the tasks

among adjacent nodes and allows incorporating information

about the graph structure into the solution of the inference

problem. We formulate the estimation problem as the mini-

mization of the aggregate sum of individual costs regularized

by a term that enforces smoothness. A diffusion strategy is

devised that responds to streaming data and employs stochastic
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approximations in place of actual gradient vectors, which are

generally unavailable. By imposing a Gaussian probabilistic

prior on the minimizers, we show that for mean-square-error

networks, solving the regularized optimization problem leads

to finding a maximum a posteriori (MAP) estimate of the

unknown parameter vectors. We show, under conditions on

the step-size learning parameter μ that the adaptive strategy

induces a contraction mapping and that, despite gradient

noise, it is able to converge in the mean-square-error sense

within O(μ) from the solution of the regularized problem, for

sufficiently small μ. In a second step, we give the graph-based

regularized optimization problem an interpretation in terms of

graph spectral filtering [12]–[14] and illustrate the influence

of the regularization strength on the spectral content of the

network output.

II. DISTRIBUTED INFERENCE UNDER SMOOTHNESS

A. Problem formulation and adaptive strategy

Consider a connected network (or graph) G = {N , E , A},

where N is a set of N nodes, E is a set of edges connecting

nodes with particular relations, and A is a symmetric weighted

adjacency matrix. If there is an edge connecting nodes k and

�, then [A]k� = ak� > 0 reflects the strength of the relation

between k and �; otherwise, [A]k� = 0. We introduce the

graph Laplacian, which is a differential operator defined as

L = D −A, where the degree matrix D is a diagonal matrix

with k-th entry [D]kk =
∑N

�=1 ak�. Since L is symmetric

positive semi-definite, it possesses a complete set of or-

thonormal eigenvectors. We denote them by {v1, . . . , vN}. For

convenience, we order the set of real, non-negative eigenvalues

of L as 0 = λ1 < λ2 ≤ . . . ≤ λN = λmax(L), where,

since the graph is connected, there is only one zero eigenvalue

with corresponding eigenvector v1 = 1√
N
1N [15]. Thus,

the Laplacian can be decomposed as L = V ΛV � where

Λ = diag{λ1, . . . , λN} and V = [v1, . . . , vN ].
Let wk ∈ RM denote some parameter vector at node k and

let W = col{w1, . . . , wN} denote the collection of parameter

vectors from across the network. We associate with each agent

k a risk function Jk(wk) : R
M → R assumed to be strongly

convex. In most learning and adaptation problems, the risk

function is expressed as the expectation of a loss function

Qk(·) and is written as Jk(wk) = EQk(wk;x), where x
denotes the random data. The expectation is computed over

the distribution of this data (note that, in our notation, we use

boldface letters for random quantities and normal letters for
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deterministic quantities). We denote the unique minimizer of

Jk(wk) by wo
k. In many situations, there is prior information

available about Wo = col{wo
1, . . . , w

o
N}. In the current work,

the prior belief we want to enforce is that the target signal

Wo is smooth with respect to the underlying weighted graph.

References [8]–[10] provide variations for such problems for

the special case of mean-square-error costs. Let L = L⊗ IM
where the symbol ⊗ refers to the Kronecker product operation.

The smoothness of W can be measured in terms of a quadratic

form of the graph Laplacian [16]:

S(W) = W�LW =
1

2

N∑
k=1

∑
�∈Nk

ak�‖wk − w�‖2, (1)

where Nk is the set of neighbors of k, i.e., the set of nodes

connected to agent k by an edge. The smaller S(W) is, the

smoother the signal W on the graph is. Intuitively, given that

the weights are non-negative, S(W) shows that W is considered

to be smooth if nodes with a large ak� on the edge connecting

them have similar weight values {wk, w�}. Our objective is to

devise a strategy that solves the following regularized problem:

Wo
η = argmin

W
Jglob(W) =

N∑
k=1

Jk(wk) +
η

2
W�LW, (2)

in a distributed manner where each agent is interested in

estimating the k-th sub-vector of Wo
η = col{wo

1,η, . . . , w
o
N,η}.

The tuning parameter η ≥ 0 controls the trade off between the

two components of the objective function. We are particularly

interested in solving the problem in the stochastic setting when

the distribution of the data x is generally unknown. This

means that the risks Jk(wk) and their gradients ∇wk
Jk(wk)

are unknown. As such, approximate gradient vectors need to

be employed. A common construction in the stochastic ap-

proximation theory is to employ the following approximation

at iteration i:

∇̂wk
Jk(wk) = ∇wk

Qk(wk;xi), (3)

where xi represents the data observed at iteration i. The

difference between the true gradient and its approximation is

called the gradient noise sk,i(·):

sk,i(wk) � ∇wk
Jk(wk)− ∇̂wk

Jk(wk). (4)

Each agent can employ a stochastic gradient descent update

to estimate wo
k,η:

wk,i =wk,i−1 − μ∇̂wk
Jk(wk,i−1)

− μη
∑
�∈Nk

ak�(wk,i−1 −w�,i−1),
(5)

where μ > 0 is a small step-size parameter. In this implemen-

tation, each agent k collects from its neighbors the estimates

w�,i−1, and performs a stochastic-gradient descent update on:

J̄k,i−1(wk) � Jk(wk) +
η

2

∑
�∈Nk

ak�‖wk −w�,i−1‖2. (6)

By introducing an auxiliary variable ψk,i, strategy (5) can be

implemented in an incremental manner:⎧⎨⎩ ψk,i = wk,i−1 − μ∇̂wk
Jk(wk,i−1)

wk,i = ψk,i − μη
∑
�∈Nk

ak�(ψk,i −ψ�,i),
(7)

where we replaced (wk,i−1 −w�,i−1) in the second step by

the difference (ψk,i − ψ�,i) since we expect ψk,i to be an

improved estimate compared to wk,i−1.

B. Theoretical motivation for the optimization framework

In the following, we explain that solving (2) is equivalent

to finding a maximum a posteriori (MAP) estimate for W in

the case of mean-square-error (MSE) networks [4], [8] where

each agent is subjected to streaming data {dk(i),uk,i} that

are assumed to satisfy a linear regression model:

dk(i) = uk,iw
o
k + vk(i), k = 1, . . . , N, (8)

for some unknown M×1 vector wo
k with vk(i) a measurement

noise. A mean-square-error cost is associated with agent k:

Jk(wk) =
1

2
E|dk(i)− uk,iwk|2, k = 1, . . . , N. (9)

The processes {dk(i),uk,i,vk(i)} are assumed to represent

zero-mean jointly wide-sense stationary random processes

satisfying: i) Eu�k,iu�,j = Ru,kδk,�δi,j where Ru,k > 0 and

the Kronecker delta δm,n = 1 if m = n and zero otherwise;

ii) Evk(i)v�(j) = σ2
v,kδk,�δi,j ; iii) the regression and noise

processes {u�,j ,vk(i)} are independent of each other.

Lemma 1. If the network parameter vector is an intrinsic
Gaussian Markov Random field W ∼ N (0,L), i.e., its density
is [17]:

f(W) = (2π)−M(N−1)/2 (|L|∗)1/2 e− 1
2W�LW , (10)

with | · |∗ denoting the pseudo-determinant of a matrix (i.e, the
product of all its nonzero eigenvalues), and if the noise process
is Gaussian vk(i) ∼ N (0, σ2

v,k) independent over space and
time and identically distributed, then problem (2) is a MAP
estimator for W conditioned on {dk(i),uk,i}.

Proof. This is an extension of a well-known result for MAP

estimation under single agents. Appendix A provides a proof

that establishes the above extension to the multi-agent case in

terms of the pseudo-determinant of the Laplacian matrix.

III. STOCHASTIC PERFORMANCE ANALYSIS

Before examining the behavior of algorithm (7), we intro-

duce the following assumptions on the risks {Jk(wk)} and

on the gradient noise processes {sk,i(·)} defined in (4). As

explained in [4], [5], these conditions are satisfied by many

objective functions of interest in learning and adaptation such

as quadratic and logistic risks. Besides, regularization is a

common technique to ensure strong convexity.

Assumption 1. (Strong convexity) It is assumed that the indi-
vidual costs Jk(wk) are each twice differentiable and strongly
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convex such that the Hessian matrix function Hk(wk) �
∇2

wk
Jk(wk) is uniformly bounded from below and above:

0 < λk,minIM ≤ Hk(wk) ≤ λk,maxIM , (11)

where λk,min > 0 for k = 1, . . . , N .

Assumption 2. (Gradient noise process) For each agent k, the
gradient noise process defined in (4) satisfies:

E[sk,i(wk)|F i−1] = 0, (12)

E[‖sk,i(wk)‖2|F i−1] ≤ β2
k‖wk‖2 + σ2

s,k, (13)

for some β2
k ≥ 0, σ2

s,k ≥ 0, and where F i−1 denotes the
filtration generated by the random processes {w�,j} for all
� = 1, . . . , N and j ≤ i− 1.

To examine the convergence properties of (7), we extend

the energy analysis framework of [3] to handle multitask

distributed optimization. We first show that algorithm (7), in

the absence of gradient noise, converges and has a unique

fixed-point. Then, we analyze the distance between this point

and the vectors wo
k,η and wk,i in the mean-square-sense.

A. Existence and uniqueness of fixed-point

Let us introduce the network block vector Wi =
col{w1,i, . . . ,wN,i}. At each iteration, we can view (7) as

a mapping from Wi−1 to Wi:

Wi = (IMN − μηL)
(

Wi−1 − μ col
{
∇̂wk

Jk(wk,i−1)
}N
k=1

)
(14)

Without gradient noise, this relation reduces to:

Wi = (IMN − μηL)
(
Wi−1 − μ col {∇wk

Jk(wk,i−1)}Nk=1

)
.

(15)

Lemma 2. (Contractive mapping) The deterministic map-
ping defined in (15) is Lipchitz continuous with constant
γ = max1≤k≤N{γk} where γk � max{|1 − μλk,min|, |1 −
μλk,max|}. This mapping is contractive when μ and η satisfy:

0 ≤ μη ≤ 2

λmax(L)
, and 0 < μ < min

1≤k≤N

{
2

λk,max

}
.

(16)

Proof. Proof omitted due to space limitations.

It then follows from Banach’s fixed point theorem [18, pp.

299–303] that this mapping converges to a unique fixed point

W∞ at an exponential rate given by γ.

B. Fixed point analysis

Now we analyze how far this fixed point W∞ is from

the desired solution Wo
η . Since W∞ is the fixed point for

the strategy (7) in the absence of gradient noise, we have at

convergence:

W∞ = (IMN − μηL)
(
W∞ − μ col {∇wk

Jk(wk,∞)}Nk=1

)
.

(17)

Let w̃k,∞ � wo
k,η − wk,∞ and W̃∞ � Wo

η − W∞. Using the

mean-value theorem [19, pp. 24], we can write:

∇wk
Jk(wk,∞) = ∇wk

Jk(w
o
k,η)−Hk,∞w̃k,∞, (18)

where

Hk,∞ =

∫ 1

0

∇2
wk

Jk(w
o
k,η − tw̃k,∞)dt.

Subtracting the vector (IMN − μηL)Wo
η from both sides of

recursion (17) and using relation (18), we obtain:

W̃∞ =(IMN − μηL)(IMN − μH∞)W̃∞ + μηLWo
η

+ μ(IMN − μηL)col{∇wk
Jk(w

o
k,η)}Nk=1,

(19)

where H∞ � diag{H1,∞, . . . , HN,∞}. From the optimality

condition of (2), we have:

col{∇wk
Jk(w

o
k,η)}Nk=1 = −ηLWo

η, (20)

and recursion (19) can be written alternatively as:

W̃∞ = (IMN −μηL)(IMN −μH∞)W̃∞+μ2η2L2Wo
η. (21)

From (21), W̃∞ is zero when η = 0 and when wo
k = wo

� ∀ k, �
since in the latter case Wo

η = Wo and L2Wo
η = 0.

Theorem 1. Under condition (16) and for small μ, the steady-
state bias W̃∞ = Wo

η −W∞ of the mapping (15) satisfies:

‖Wo
η −W∞‖ ≤ O(μη2)

(O(1) +O(η))2
. (22)

Proof. Proof omitted due to space limitations.

C. Evolution of the stochastic recursion

We now examine how close the stochastic algorithm (7) ap-

proaches Wo
η . First, we introduce the mean-square perturbation

vector at time i relative to w∞:

MSPi � col
{
E‖wk,∞ −wk,i‖2

}N
k=1

. (23)

Theorem 2. By choosing μη such that I − μηL has positive
diagonal entries, i.e., μη ≤ min1≤k≤N

{
(
∑N

�=1[A]k�)
−1
}

, the
MSP at time i can be recursively bounded as:

MSPi � (IN − μηL)GMSPi−1 + μ2d, (24)

where G is a diagonal matrix with elements γ2
k + 3μ2β2

k and
d = O(1) +O(μ2η4)(O(1) +O(η))−4. A sufficient condition
for stability of the above recursion is:

0 < μ < min
1≤k≤N

{
2λk,min

λ2
k,min + 3β2

k

,
2λk,max

λ2
k,max + 3β2

k

}
. (25)

It follows that

‖ lim sup
i→∞

MSPi‖∞ = O(μ), (26)

and the steady-state MSD � lim sup
i→∞

1

N
E‖Wo

η − Wi‖2 is:

MSD = O(μ) +
O(μ2η4)

(O(1) +O(η))4
= O(μ). (27)

Proof. Proof omitted due to space limitations.
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IV. GRAPH FILTER INTERPRETATION

In the following, we show that for MSE networks with

uniform Hessian matrices, i.e., ∇2
wk

Jk(wk) = Ru,k = Ru

∀k, the solution Wo
η of problem (2) can be interpreted as the

output of a smooth graph filter applied to the graph signal Wo.

Before proceeding, we briefly review the notion of graph

frequencies, Graph Fourier transform, and graph filtering [12]–

[14]. Consider the connected graph G = {N , E , A} equipped

with a Laplacian matrix L, which can be decomposed as L =
V ΛV �. A graph signal supported on the set N is defined as

a vector x ∈ RN whose k-th component xk ∈ R represents

the value of the signal at the k-th node. By analogy to the

classical Fourier analysis, the eigenvectors of the Laplacian

are used to define a graph Fourier basis V and the eigenvalues

are considered as the graph frequencies [12, pp. 86–88]. The

Graph Fourier Transform (GFT) transforms a graph signal x
into the graph frequency domain according to x = V �x where

{x1, . . . , xN} are called the spectrum of x. The inverse GFT

is given by x = V x which reconstructs the signal from its

spectrum. A graph filter Φ is an operator that acts upon a

graph signal x by amplifying or attenuating its spectrum as:

Φx =
∑N

m=1 Φ(λm)xmvm. The frequency response of the

filter Φ(λ) controls how much Φ amplifies the signal spectrum.

Low frequencies correspond to small eigenvalues, and low-

pass or smooth filters correspond to decaying functions Φ(λ).
Let us consider the MSE network presented in section II-B

where we assume Ru,k = Ru ∀k. Since we are dealing with

vectors wk ∈ RM instead of scalars xk ∈ R, the graph

transformation x = V �x becomes W = (V � ⊗ IM )W.

Lemma 3. For MSE networks with uniform covariance ma-
trices, it holds that the m-th subvector corresponding to the
m-th eigenvalue (or graph frequency) of Wo

η � (V �⊗IM )Wo
η

is given by:[
Wo

η

]
m

= (Ru + ηλmIM )−1Ru [Wo]m , m = 1, . . . , N.
(28)

where Wo � (V � ⊗ IM )Wo. Moreover,∥∥∥[Wo
η

]
m

∥∥∥
2
≤ 1

1 + η λm

λmax(Ru)

‖[Wo]m‖
2
, m = 1, . . . , N.

(29)

where the equality holds for m = 1.

Proof. Proof omitted due to space limitations.

If η = 0, we are in the case of an all-pass graph filter since

the frequency content of the output signal Wo
η is the same as

the frequency content of the input signal Wo.

For η > 0, we are in the case of a low-pass graph filter since

the norm of the m-th frequency content of the output signal

Wo
η , namely, ‖ [Wo

η

]
m
‖2, is less than or equal to the norm of

the m-th frequency content of the input signal Wo, namely,

‖ [Wo]m ‖2. For fixed η, as m increases, the ratio in (29)

decreases. This validates the low-pass filter interpretation. The

regularization parameter η controls the sharpness of the low-

pass filter. For sufficiently large η, [Wo
η]m will be equal to

[Wo]1 if m = 1 and approaching zero otherwise. In this case,
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Fig. 1. MSE networks (Ru,k = Ru ∀k). (Left) Graph frequency content of
Wo

η . (Right) The ratio ‖[Wo
η ]m‖2/‖[Wo]m‖2 for λm ∈ [0, 1.4] from (28).

Wo
η = (V ⊗IM )Wo

η = (v1⊗IM )[Wo]1 = 1N⊗
(

1
N

∑N
k=1 w

o
k

)
and all nodes converge to 1

N

∑N
k=1 w

o
k, the minimizer of∑N

k=1 Jk(wk) subject to wk = w� ∀k, �.
V. SIMULATION RESULTS

A. MSE networks

To illustrate the low-pass filter interpretation, we consider

a circular d-regular network of N = 20 nodes and M = 3,

generated by taking a circle graph and connecting each node

to its d = 3 neighbors to each side on the circle. We set

ak� = 1/7 if � ∈ Nk and 0 otherwise. In this case, the

Laplacian matrix has 10 distinct eigenvalues. We generate

Wo = col{wo
1, . . . , w

o
N} directly in the spectral domain

according to Wo
m = col{e−τjλm}3j=1 where τj = j. The

matrix Ru is diagonal with entries generated from the uniform

distribution U(0.5, 1.5). We illustrate in Fig. 1 (left) the

squared �2-norm of
[
Wo

η

]
m

for different values of η. In order

to visualize the frequency response of the graph filter, we plot

in Fig. 1 (right) the ratio
‖[Wo

η ]m‖2
‖[Wo

]m‖2 from (28) for λm ∈ [0, 1.4].

B. Pattern classification application

Let γk = ±1 denote a class binary random variable and

hk ∈ RM denote the corresponding feature vector. During the

training phase, at each instant i, agent k receives {γk(i),hk,i}.

The feature vector hk,i ∈ R2 is generated according to

hk,i = γk(i) · r · col{cos(θk), sin(θk)}+ vk,i,

where vk,i is drawn from N (0, σ2
v,kI2) and where γk(i) is

Bernoulli distributed with p(γk(i) = +1) = 0.5. We set r =√
2 and θk = π

6 +
k−1
N−1 · 7π6 . Using logistic regression [4], [20],

[21], we are interested in finding a decision rule, parameterized

by wo
k, such that γ̂k(i) = sign(h�k,iw

o
k) and

wo
k � argmin

wk

E ln
(
1 + e−γk(i)h

�
k,iwk

)
+ ρ‖wk‖2. (30)

We consider a network of 50 nodes where node k is connected

to nodes k− 1 and k+ 1 if k = {1, 50}, node 1 is connected

to node 2, and node 50 is connected to node 49. The weight

over a link is set to 1/3. We set μ = 10−3 and ρ = 0.025.

The noise variances σ2
v,k are generated from U(0, 2). We run

strategy (7) for different values of η as shown in Fig. 2 (left)

(η = 0 corresponds to the non-cooperative scenario). At each

iteration, classification accuracy is evaluated on a separate
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Fig. 2. Pattern classification. (Left) Classification accuracy. (Right) One
realization (after convergence) of the classifier. Blue and red circles correspond
to feature vectors of 100 test samples at each agent k. Rows: first (η = 0),
second (η = 10), and third (η = 103). Columns: first (k = 1, σ2

v,1 = 0.93),

second (k = 29, σ2
v,29 = 0.25), and third (k = 50, σ2

v,50 = 1.3).

testing set. As η increases, the convergence rate improves.

However, a large value of η yields a deterioration in the

accuracy since in this case all agents converge approximately

to the same classifier as illustrated in Fig. 2 (right).

APPENDIX A

PROOF OF LEMMA 1

Let

d(i) � col{d1(i), . . . ,dN (i)}, and U i � diag{u1,i, . . . ,uN,i}.
From (8), we have:

d̄ = E[d(i)|U i,W] = U iW, (31)

E[(d(i)− d̄)(d(i)− d̄)�|U i,W] = Rv, (32)

where Rv � diag{σ2
v,1, . . . , σ

2
v,N}. Thus, we can write:

f(d(i)|U i,W) =
e−

1
2
(d(i)−UiW)�R−1

v (d(i)−UiW)

√
(2π)N |Rv|

. (33)

Applying Bayes rule

f(W|d(i),U i) =
f(d(i)|U i,W)f(W|U i)

f(d(i)|U i)
,

the MAP estimator is given by:

WMAP = argmax
W

f(W|d(i),U i)

= argmax
W

log(f(W|d(i),U i))

= argmin
W

− log(f(d(i)|U i,W))− log(f(W|U i))

= argmin
W

1

2

N∑

k=1

1

σ2
v,k

|dk(i)− u�
k,iwk|2 + 1

2
W�LW.

(34)

When σ2
v,k = σ2

v ∀k, the optimal choice of η in (2) would be σ2
v .
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