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ABSTRACT

Graphs provide a powerful framework to represent high-dimensional
but structured data, and to make inferences about relationships be-
tween subsets of the data. In this work we consider graph signals
that evolve dynamically according to a heat diffusion process and are
subject to persistent perturbations. We develop an online algorithm
that is able to learn the underlying graph structure from observations
of the signal evolution. The algorithm is adaptive in nature and in
particular able to respond to changes in the graph structure and the
perturbation statistics.

Index Terms— Graph learning, Online learning, Laplacian ma-
trix, Adaptive algorithm.

1. INTRODUCTION

In data science applications, effective interpretation and processing
of high-dimensional data is generally contingent on an understand-
ing of the relationships that may exist between subsets of the data.
This is particularly relevant for large-scale data sets. One useful
way to capture interrelations among different parts of a data set is
by means of a graph representation or model [1]. While data arising
from some applications naturally lead to or suggest suitable graph
representations for information flow, such as graphs representing
networks or power grids, there are many instances where the un-
derlying graph structure is not readily available and needs to be in-
ferred from observations. Furthermore, even when the topology of
the graph is known, the same may not hold for the weights on the
edges of the graph, which describe the strength of the relationship.
In the example of a social network for example, it may be less impor-
tant to know whether two people are connected, than to know how
much influence one person has on the other.

In this work, we consider signals that evolve according to a heat
diffusion process [2]. This process is related to a spatially sampled
approximation of the second-order heat differential equation. The
model is not limited to heat diffusion but can be applied to mod-
eling other processes such as the evolution of interest over social
networks [3] and the movement of people in cities [4]. We shall
show that the problem of recovering the graph Laplacian, which
parametrizes the heat diffusion process, from the time evolution of
the observed signal, can be formulated as a strongly-convex and
quadratic optimization problem. This in turn means that its mini-
mizer can be sought efficiently by a variety of algorithms. We pro-
pose a (projected) stochastic gradient algorithm, which amounts to a
Least-Mean-Squares (LMS)-type recursion and is adaptive in nature.

2. RELATED WORKS

The earliest works related to graph learning are based on sparse es-
timation of precision matrices, i.e., inverse covariance matrices [5,
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6]. The work in [7] introduced structural constraints to ensure that
the learned (regularized Laplacian) matrix describes a valid graph.
A string of subsequent works [8, 9, 10] leverage the concept of a
“smooth signal over a graph”. The drawback of these approaches
is that the smoothness assumption may not be satisfied in some im-
portant applications, particularly if the graph signal is dynamic or
perturbed by events on the graph.

The interpretation of graph-shifts as a generalization of the tra-
ditional shift operation in digital signal processing has motivated a
number of generalizations of DSP concepts to the graph domain.
Autoregressive graph filters in terms of polynomials of the adjacency
matrix are used in [11] to model the signal evolution over the graph
and infer the adjacency matrix. The heat diffusion model is consid-
ered in [4], where an algorithm is proposed to leverage a collection
of independent samples which are modeled as the superposition of a
small number of perturbations that diffuse over the graph.

Both of these recent works allow for dynamic signals that evolve
according to some graph topology that is subsequently learned. This
is achieved by collecting all available samples and solving an opti-
mization problem based on a batch of data. As such, even though the
model allows for dynamic signals, the algorithms themselves are not
dynamic; the underlying assumption is that the model parameters
are fixed. In contrast, in this work, we develop a truly adaptive so-
lution that responds to streaming data and has the potential to track
drifts in both the graph and data statistics under the heat diffusion
model. Dynamic algorithms for the estimation of edge propabilities
in social interations are developed in [12, 13] and for autoregressive
graph processes in [14].

3. FRAMEWORK

3.1. Graph Model

We consider weighted, undirected graphs without self-loops. Every
pair of vertices ¢ and j is assigned a weight a;; = a;;, which quan-
tifies their relative influence, in a manner made precise in the signal
model further below. We collect these weights into an adjacency
matrix A = [a,;] that satisfies the following properties:

Symmetry: A = AT (D
Non-negativity: a;; > 0, V4, j (2)
No self-loops: a;; =0, Vi 3

A common and useful matrix to describe and study graphs is the
Laplacian matrix, defined as:

L £ diag (AT) — A 4)

DSW 2018


user
Highlight


Under conditions (1)—(3) on the adjacency matrix, the graph Lapla-
cian L satisfies the following properties [15]:

Symmetry: L = L’ (@)
Non-positive off-diagonal elements: £;; <0, Vi#j  (6)
Positive definite: L >~ 0 (@)
1
Nullspace: L——1 =0 8)
RV

3.2. Signal Model

We shall assume that we observe discrete samples of a continuous
time graph process s(t) € R”Y, which evolves according to the dif-
ferential equation [2]:

s'(t) = —L"s(t) + p(t) ©)
where L* € RV*¥ denotes the Laplacian matrix of the underlying
graph linking the entries of s(t), and p(t) € RY describes a pro-
cess that drives the signal dynamics. The variable p(t) can either be
viewed as an outside force, which influences the evolution of the sig-
nal, or some internal events that subsequently diffuse over the graph.
The solution to the differential equation (9) has the form:

t
s(t) = e_tL*s(O) +/ e_(t_")L*p(u)du (10)
0

We have access to the evolution of the graph signal beginning at
some time to and subsequently at times ¢; = to + 77,7 > 0, where
4 € IN denotes the i-th sample and 7" € R~ denotes the sampling

period. We observe a recursive relationship between adjacent sam-
ples, that is critical for this work, namely the fact that:

t; )
s(t) = e T s(tiq) +/ eI (0 du (11)
;=T

i

Note that the relationship between s(¢;) and s(¢;—1) only depends
on L* and on the perturbations p(t) between ¢; and ¢;—1. We move
into the discrete domain by letting s; s(to + iT) and p;
fti_i_T e~ (=L p(u)du so that (11) becomes:

—TL*

S;i =e€ Si—1 + Pi (12)
Since we are generally not provided with the perturbations that drive
the system, we shall model the driving term p; as a stochastic random
variable, so that:

—TL
S; =€

13)

where we are using boldface notation to refer to random variables.

The objective of this work is to develop a solution that allows
for the estimation of L* from streaming realizations s;. These types
of algorithms generally operate by evaluating the prediction error of
the current estimate on the incoming observation and adjusting the
estimate based on this error. Under the non-linear model (13), every
such iteration requires the evaluation of a matrix exponential and is
computationally expensive. This is particularly critical in scenarios
where the graph size is large.

Si—1 +P1

3.3. An Equivalent Linear Model
On the face of it, it is straightforward to define

WA T (14)
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so that the relation becomes

8; = Ww* Si—1+Dp; (15)
However, it is important to remember that L* is a Laplacian matrix
and hence required to satisfy properties (5)—(8). It turns out that an
equivalent set of properties can be imposed on W™ to ensure that
L* = =1 In(W™) describes a valid Laplacian matrix and hence a
valid graph. To begin with, we introduce the eigendecomposition of
the Laplacian matrix:

L"=VALV" (16)

Expanding the matrix exponential as an infinite sum and recalling
that VVT = I, we obtain:

* —-TL* _ = (_T)k *\k - (_T)k * AT k
W =D B =y (VLA)
k=0 k=0
oo k
=V (Z (’kT') Ak> Vi=ve TVT (17
k=0 ’

where e "TA = diag {e*T“(L*)} since A is diagonal. This means

that the matrix exponential preserves the set of eigenvectors of L*
and there is a simple relationship between the eigenvalues of W*
and L*. This relation also provides a method for calculating the ma-
trix logarithm. Given the eigendecomposition W* = VAw V7, the
logarithm is given by In (W*) = V' In (Aw) VT, where In (Aw) =
diag {In (Ax (W™*))}. This allows us to establish the following con-
ditions on W™* to ensure that L* describes a valid graph.

Lemma 1 (Conditions on W*). Let W € RN*N and L
%1 In (W). Then, for sufficiently small sampling periods T, L
is a valid Graph Laplacian if, and only if, W satisfies the following

properties:

Symmetry: W = W' (18)
Non-negative elements: w;; > 0, V4,3 (19)
Spectral bound: I = W > 0 (20)
Stochastic: W1 =1 (21)

Proof. Properties (18), (20) and (21) follow from (17), while (19)
follows from the fact the — L is a Metzler matrix [16]. Details omit-
ted due to space limitations. O

3.4. Graph Signal Evolution

Observe that since p(W*) = 1, the recursion described by (15) is
not mean-square stable. This means that, while the recursion will
converge in the mean as long as Ep, = 0, the same does not hold
for covariance matrix of s;. It turn out, however, that the centered
signal across the graph is mean-square stable as long as the graph is
connected. We make this statement precise in the following.

Assumption 1 (Connected graph). The graph described by A and
L is connected. In other words, there is a path of non-zero weights
from any vertex to any other vertex in the graph.

It then follows that the eigenvalue at zero has multiplicity one with
unique (normalized) eigenvector \/%IL [15]. A direct consequence
of this property is that the graph Laplacian has a particular eigen-
structure L* = VALV where:

V= [ 1 (22)



and critically Ay, is strictly positive definite:
AL =0 (23)

The driving matrix W* inherits a similar structure from L* via (17).
In particular, we have W* = VAw VT, where:

1 = 1 0
V:[Tﬁﬂ V],AW:{OKW] 24)
and Aw = eiTKL, which due to (23) implies that
0<Aw <1 (25)

so that p (Kw) < 1. The mean across the graph of the signal at

time ¢ is given by s¢; = %]IT s;. Subtracting this mean yields the
centered graph signal s;:
I——11

— 8. = T s
c,i N

It is important to recognize that the mean contains no information
about the graph. This is because for any doubly stochastic W':

Wsi=WE+1®86:) =Ws +1® sc; 27

In other words, the mean is passed through independently of W. For
the evolution of the centered signal, we can now write:

A 1
S8; = 8;

(26)

=W'si_1 + P, (28)
where we defined:
el L T L 1.7
= — =11 ;= (11— =11 ; 2
WWN,pZ(N>pZ(9)
The eigendecomposition of W = VA7V is related to the de-

composition of W* via
0 0
0 Aw

so that the only change is the replacement of the eigenvalue at 1 by

v=[ &1 7], AW:{ (30)

0 and critically now p (W*) < 1. We can examine in detail the

evolution of the first and second-order statistics of s;.
Assumption 2 (Statistics of the Perturbation Terms). The statistics

of the centered perturbations p; = ( — %]IILT) p, satisfy the fol-
lowing two conditions for all i:

Ep; =0 31)

Ep,p;, = Rp < (32)

Furthermore, the perturbation P, at time 1% is independent of D,_,,
fork > 0.
Lemma 2 (Signal evolution). Suppose the network is initially at
rest, i.e., so = 0 and denote Eﬁi@T = Rp. Then, the first and
second-order statistics of the graph process described by (13) evolve
according to:

Es; =0 (33)

> () m(ir)

Furthermore, the second-order moment converges and we have:

E3;5, £ Rs, = (34

lim Rs, = 2 Reo (35)
i—oo
where R is the solution to the discrete Lyapunov equation:
Ry = Roo — W R W~ (36)
Proof. Omitted due to space limitations. O
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4. GRAPH LEARNING
We now formulate the following optimization problem for learning
W

—Wsio1|” £ argminE J; (W
Wec

=% 1
W™ =argmin 5 E||5; ) 37

wec
where C is a constraint-set. The cost J;(-) depends on 4 because
the statistics of s;—1 evolve as described in the previous lemma. A
natural construction is to choose C to be the set of matrices that result
in a valid Laplacian matrix. It turns out, however, that this is not
necessary since .J; (W) is strongly-convex.

Lemma 3 (Properties of the cost). The cost specified in (37) is Lip-
schitz continuous and strongly-convex. Specifically, for all W €

RY*N  we have:
J(W) > %HW* W + ZTr (Rp) (38)
= (51 —* 2 1
(W) < SIW =TI + T (Bp) (39)
where
0; = Amax (REi,l) , Vi = Amin (Rgi—l) (40)

Moreover, W~ defined in (29) is the unique minimizer of J; (W) for
all 4.

Proof. Omitted due to space limitations. O

It follows from this property that the enforcement of properties of
W™ is in fact not necessary when designing algorithms for the so-
lution of (37), since any algorithm that converges to a minimizer
of (37) will converge to its unique minimizer, W, which by defini-
tion already satisfies all properties that lead to a Vahd graph Lapla-
cian. Of course, it is reasonable to believe that the addition of con-
straints and regularization may lead to an increased rate of conver-
gence and/or improved performance in steady-state at the cost of
increased computational cost per iteration.

To begin with, we shall pursue the minimizer of (37) in the ab-
sence of constraints by means of a stochastic gradient descent algo-
rithm.

Algorithm 1: Laplacian LMS Strategy

W;

=Wii+pu(E3—Wi15i.1)8 ., 4D

It is essentially a matrix valued variation of the least-mean squares
(LMS) algorithm. To derive approximate expressions for its perfor-
mance, we shall adopt an assumption on the step-size y, which is
common in the literature [17].

Assumption 3 (Small step-size and independence) . Assume the

reaches a steady-state dzstrlbullon and W* =W, is independent of

S,‘,.

Theorem 1 (Performance for small step-sizes). Under Assump-

tion 3, the mean-square deviation of the estimate from the true

minimizer W is given by:

2 NTr (Rp)

g

Proof. The proof is a straight-forward extension of the arguments

given in [17] for classical LMS under the independence assumption.
O

42)

i—00




Performance of the algorithm can be improved by including projec-
tions in the update relation. Recall that T is obtained from W via
W =W + %]l]lT. This means that a necessary condition for the
properties from Lemma 1 to be satisfied is:

Wi E cele U Csym U Cnull U Cspec
1

N } Csym

Copec 2 {W‘o <W < I}

(43)
Cae & {Wymj > & fwiw =w')
Coull 2 {W’Wﬂ = O}

Projections onto each of these sets can be evaluated in closed form:

) . ) wiy, if wi; > %

[Proje,,. (W)]z] - {—%, otherwise @
Projc.,.. (W) = % (W+w") @5)
PrOJCnull (W) =W- NWIHIT o
Proje,,.. (W) = VA VT @)

where the last projection is given in terms of the eigendecomposition
of the argument W = VAV by thresholding the eigenvalues:

0, if [Alis <0
[Aelis = § [A]is, if0<[A]s <1 (48)
1, otherwise

We can now interlace these projections with the stochastic gradi-
ent update to obtain two algorithms, which explicitly incorporate the
structural constraints. Note that the first three projections (44)-(46)
are simple in the sense that they require O(N?) operations where
N is the size of the graph, whereas((47) requires a full eigenvalue
decomposition. Hence, we can formulate two projected variants of
the algorithm. The Type I implementation only enforces simple pro-
jections, while Type II enforces all properties.

Algorithm 2: Projected Laplacian LMS Strategy I and 11

W; = Wifl +u (§-; - Wifl §i71) §2—_1 (49)

W, = Proje,,.. (Projcmm (Projcele (W))) (50)

W W;/7 for Type I s1
T ProjcspcC (W;/) , for Type II. Gh

Whenever an estimate of the graph Laplacian is required, it is ob-
tained via:

L="tww) (52)
T

5. SIMULATION RESULTS

We illustrate the performance of the algorithm in recovering W* as
well as the graph structure on a network with N = 30 nodes. The
perturbation terms are modeled as following a normal distribution
with p;, ~ N(0, I) and the sampling period is 7' = 1. The obser-
vations s; are generated according to (13) and processed according
to the algorithms developed in this work. The true graphs is gen-
erated using the Barabasi-Albert model [18], upon which random
weights between 0.1 and 1.0 are attached to each non-zero edge.
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After 500, 000 iterations, there is a sudden change in the network
topology, to illustrate the ability of the algorithm to adapt. The sec-
ond graph and its adjacency matrix are depicted in Fig. 1. In the
graph representation, small weights are depicted as thin and light
lines, while strong weights are dark and thick. Bright colors in the
adjacency matrix correspond to large weights.

—
.

Fig. 1: True graph and adjacency matrix.

The recovered graph and adjacency matrix at the final iteration us-
ing Algorithm 2 Type I are depicted in Fig. 2. Color and weight
maps are the same as in the representation of the true graph. Key
connections along with their weights and the general structure of the
graph are accurately recovered. Note that no weights are truly set to
zero, resulting in a number of low-weight connections. This is due
to the fact that no sparsity prior was imposed on the weight matrix.
If desired, they can be removed during post-processing via simple
thresholding.

Fig. 2: Recovery using the Projected Laplacian LMS Strategy 1.

The mean-square deviation of W; from W" is depicted in Fig. 3.
All methods converge in the mean-square sense to a region around
the true minimizer. The theoretical expression (42) accurately pre-
dicts the performance of the projection-free algorithm, while adding
projections improves performance. Observe that notably, in this sce-
nario, the addition of the spectral constraint to the simple constraints
yields a negligible improvement, as both learning curves overlap.

—&— Laplacian LMS

—=— Projected Laplacian LMS I
—#— Projected Laplacian LMS II
=== MSD prediction (Theorem 1)

MSD in dB

08

0.6
Iteration

Fig. 3: Mean-Square Deviation.
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