
Dual Coupled Diffusion for Distributed Optimization with Affine
Constraints

S. A. Alghunaim∗, K. Yuan∗, and A. H. Sayed†, Fellow, IEEE

Abstract— In this work, a distributed multi-agent optimiza-
tion problem is studied where different subsets of agents are
coupled with each other through affine constraints. Moreover,
each agent is only aware of its own contribution to the
constraints and only knows which neighboring agents share
constraints with it. An effective distributed first-order algorithm
is developed, which requires sharing dual variables only and
takes advantage of the constraint sparsity. The algorithm is
shown to converge to the exact minimizer under sufficiently
small constant step sizes. A simulation is given to illustrate
the effect of the constraint structure and advantages of the
proposed algorithm.

I. INTRODUCTION

This work considers a distributed optimization problem
in which agents are coupled through multiple affine equality
constraints. Many previous works such as [1]–[6] considered
optimization problems where a network of agents are coupled
through separable constraints of the form:

minimize
w1,w2,··· ,wK

K∑
k=1

Jk(wk) (1)

subject to
K∑
k=1

Bkwk = b,

where Jk(.): RQk → R, wk ∈ RQk , Bk ∈ RS×Qk , and
b ∈ RS . In this formulation, it is assumed that all agents
are involved in the constraint, while each agent is assumed
to have knowledge of Bk and b only. Problems of the form
(1) find applications in many areas including network utility
maximization (NUM) [7] and smart grids [8], [9]. They
have also been considered widely in the literature and many
useful distributed algorithms have been developed for their
solution — see [1]–[6] and the references therein. Different
from problem (1), in which all agents are involved in a
single affine constraint, this paper considers a more general
scenario, which allows the possibility that different subsets of
agents may be involved in different affine constraints. Before,
formalizing the problem we introduce the notation used in
this work.
Notation. We write col{xj}Nj=1 to denote a column vector
formed by stacking x1, ..., xN on top of each other and
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blkdiag{Xj}Nj=1 to denote a block diagonal matrix consist-
ing of diagonal blocks {Xj}. We let blkrow{Xj}Nj=1 =
[X1 · · · XN ]. For a set X = {m1,m2, · · · ,mx}, we let
U = [gmn]m,n∈X denote a matrix with (i, j)−th entry equal
to gmi,mj

.

A. Problem Formulation

Consider a network with K agents and assume it is divided
into smaller E overlapping sub-networks. For each sub-
network e, we let Ce denote all agents in this sub-network.
Each sub-network e is associated with an affine constraint
that involves all agents belonging to Ce. Specifically, we
formulate the following optimization problem:

minimize
w1,w2,··· ,wK

J (W)
∆
=

K∑
k=1

Jk(wk) (2)

subject to
∑
k∈Ce

Be,kwk = be, ∀ e = 1, · · · , E,

where W = col{wk}Kk=1, Be,k ∈ RSe×Qk and be ∈ RSe .
An illustration of problem (2) is shown in Fig. 1. Note
that problem (1) assumes that all agents are involved in
the constraint, while problem (2) allows different subsets of
agents to be involved in different constraints. For the case
E = 1 and C1 = {1, · · · ,K}, we recover problem (1).

Fig. 1: A connected network of agents where different colors
highlight different sub-networks.

Assumption 1. (Cost Function): It is assumed that the cost
function, J (W) =

∑K
k=1 Jk(wk), is a convex differentiable

function with Lipschitz continuous gradient:

‖∇J (W)−∇J (z)‖ ≤ δ‖W − z‖ (3)

Moreover, J (W) is strongly convex:

(W − z)T∇J (W) ≥ J (W)− J (z) +
ν

2
‖W − z‖2 (4)



where {δ, ν} are strictly positive scalars and δ > ν. �

Assumption 2. (Connected Sub-networks): The network
graph is undirected and each sub-network Ce is connected.

�
Assumption 2 can be satisfied for any connected network

– see [10] for details. Moreover, in many situations, the set
Ce involves the neighborhood (or a subset of the neighbor-
hood) of each agent only. In that case, each neighborhood
is connected and Assumption 2 is automatically satisfied.
Examples of applications where these formulations and
conditions are satisfied include network flow optimization
[11], optimal power flow [12], [13], multitask problems [14],
and distributed model predictive control [15]. We list one
example next.

Example 1. (Distributed Model Predictive Control) We
examine a distributed finite-horizon control problem, which
is a special case of problem (2) [15]. Thus, consider E =
K subsystems. Given initial states {xe,0}, each subsystem
evolves over t ≥ 0 according to the dynamics:

xe,t+1 = Fexe,t +Geeue,t +
∑
k∈N ′e

(
Fekxk,t +Gekuk,t

)
(5)

where the matrices in (5) are of appropriate dimensions, ue,t
is the input of subsystem e at time t, and N ′e denotes the
neighborhood of agent e, excluding agent e. If we introduce
the T block finite horizon vectors:

xe
∆
= col{xe,t}Tt=1, ue

∆
= col{ue,t}T−1

t=0 (6)

then, by iterating (5), it can be verified that [16]:

xe = G′eeue +
∑
k∈N ′e

(F ′ekxk +G′ekuk) + be (7)

for matrices {G′ek, F ′ek} constructed from {Fe, Fek, Gek}
and some vector be constructed from Fe, Fek and the initial
condition xe,0. If we let we

∆
= col{xe, ue}, and introduce:

Be,e
∆
= blkrow{I,−G′ee}, Be,k

∆
= −blkrow{F ′ek, G′ek},

then we can formulate the following problem [17]:

minimize
w1,w2,··· ,wK

K∑
k=1

(
wT
kRkwk + rTkwk

)
(8)

subject to
∑
k∈Ne

Be,kwk = be, ∀ e = 1, · · · ,K

where Ne denotes the neighborhood of agent e, including
agent e. In this example, the number of constraints is equal
to the number of agents (E = K) and each neighborhood is
involved in an affine constraint, i.e, Ce = Ne. �

B. Related Work and Main Contributions

In this paragraph, we mention some related works that
considered a problem similar to (2) and highlight the dif-
ferences. As mentioned earlier, most previous works [1]–[6]
focus on constraints of the type (1), but some instances of
(2) have been considered. For example, in distributed control
formulations [16], [17], the constraints are usually limited to
the neighborhoods of each agent (i.e, E = K and Ce = Ne)

as in problem (8). In [16] and [17], distributed algorithms are
developed to solve (8) including other constraints. Similarly,
in optimal power flow [12], [13], E = K and the set Ce also
involves the neighborhood only, and, moreover, the matrices
{Be,k} are identity matrices. In both control and power flow
formulations, it assumed that the number of constraints is
equal to the number of agents (E = K), and each constraint
k involves only the direct neighbors of agent k; thus, it can
be solely handled by agent k by receiving primal estimates
from its neighbors. In contrast, in this work, the number
of constraints and agents are not necessarily equal and the
set Ce can include any arbitrary connected subset of agents.
Moreover, agent k is only aware of the quantities Be,k and
be if k ∈ Ce. The algorithm developed in this work shares
only dual variables and no primal information is shared.

In network utility maximization problems, a similar formu-
lation appears but the matrices {Be,k} are identity matrices,
albeit with a different distributed framework; it is assumed
that the agents (called sources) in Ce are connected through
one link that handles the constraint coupling these sources –
see [7] and references therein. In [14], a multitask problem
is considered for a quadratic stochastic optimization problem
and the set Ce is limited to only a subset of the neighborhood
of some agent with the assumption that all agents in that
subset are directly connected, i.e., Ce ⊆ Nk for all k ∈
Ce. This assumption was then relaxed in [18] to handle
constraints of the form (2), however, it is assumed that agent
k ∈ Ce knows the global matrices {Be,s} for all s ∈ Ce
and it can receive delayed estimates of ws for all s ∈ Ce
using a multi-hop relay protocol across the agents in Ce. In
this work, each agent k is only aware of the local matrices
{Be,k} multiplying its variable wk, and thus, is only aware
of its own part for each constraint. Finally, in [19] a different
consensus framework is considered, where each agent has a
cost Jk(wk) and local constraints; the variables {wk} are
coupled through sharing different subsets of entries across
different subsets of agents.

Traditionally, problems with a coupling affine constraint
of the form shown in (1) are tackled by using dual decom-
position methods [1]–[6]. For each constraint that agent k
is involved in, it has to maintain a dual variable associated
with that constraint. For problem (1), this means that each
agent will be involved in all constraints. By doing so,
each agent will maintain a long dual vector to reflect all
constraints, and all agents in the network will have to reach
consensus on a longer dual vector than necessary. In contrast,
if the sub-global coupled structure is considered, and the
optimization problem is instead formulated in the form (2),
then each agent will only need to maintain dual variables
for the related, and not all constraints. Thus, only the agents
involved in one particular constraint will need to agree
on the associated dual variable. This sub-global coupled
structure helps reduce communications and computations
within the network. Therefore, for large networks with sparse
constraints, in the sense that each agent is only involved in
a few constraints, it is more effective to design an algorithm
that directly solves (2) – see Section IV.



Given the above, the two main contributions of this work
are: (a) designing a novel first-order algorithm that can
be tailored to exploit the structure of the constraints with
guaranteed convergence under sufficiently small constant
step-sizes; and (b) highlighting the importance and effect
of the sparsity in the constraints on the performance of the
designed algorithm.

II. ALGORITHM DEVELOPMENT

We start by introducing the Lagrangian function:

L(W, y) =

K∑
k=1

Jk(wk) +

E∑
e=1

(ye)T
( ∑
k∈Ce

Be,kwk − be
)
(9)

where y = col{ye}Ee=1 and ye ∈ RSe denotes the dual
variable associated with the e-th constraint. We will rewrite
the Lagrangian (9) as a sum of local functions. To do that,
we let Ek denote the set of equalities that agent k is involved
in. For example, in Fig. 1 agent 2 is involved in equalities
one and three, thus, E2 = {1, 3}. From the definition of Ek,
we have Ce = {k | e ∈ Ek}. Using this notation, the second
term on the right hand side of (9) can be rewritten as follows:

E∑
e=1

(ye)T

(∑
k∈Ce

Be,kwk − be

)
(a)
=

E∑
e=1

∑
k∈Ce

(ye)T
(
Be,kwk −

1

Ne
be

)
(b)
=

K∑
k=1

∑
e∈Ek

(ye)T
(
Be,kwk −

1

Ne
be

)
(10)

where Ne denotes the cardinality of the set Ce and in step
(a) we included be inside the sum

∑
k∈Ce . Step (b) holds

since k ∈ Ce ⇐⇒ e ∈ Ek. Therefore, if we introduce the
vector yk that collects the dual variables {ye} if agent k is
involved in equality e, namely,

yk
∆
= col{ye}e∈Ek , (11)

then using (10) we can rewrite (9) as:

L(W, y) =

K∑
k=1

Lk(wk, yk) (12)

where

Lk(wk, yk)
∆
= Jk(wk) +

∑
e∈Ek

(ye)T
(
Be,kwk −

1

Ne
be

)
(13)

From (12) we see that the Lagrangian is written as a sum of
separable local terms Lk(wk, yk) defined in (13). Moreover,
different agents may share different subsets of {ye}. We now
are interested in the saddle point problem:

max
y

min
W
L(W, y) = max

y

(
min
W

K∑
k=1

Lk(wk, yk)

)
(14)

Assumption 3. A solution (i.e., saddle point) exists for (14)
and strong duality holds. �

The optimal primal and dual solutions of (14) are denoted
by W? = col{w?k}Kk=1 and y? = col{ye,?}Ee=1.

A. Coupled Exact Diffusion

In our previous work [10], we proposed a first-order
distributed algorithm for solving an optimization problem
where different agents share different subsets of variables.
We briefly review it here since that algorithm will be critical
for the solution of the problem under consideration.

Let {z1, z2, · · · , zE} denote E variables where ze ∈ RSe .
Consider an optimization problem of the form:

minimize
z1,z2,··· ,zE

K∑
k=1

fk(zk), zk
∆
= col{ze}e∈Ek (15)

where the variables {zk} are of similar structure to (11), i.e.,
different agents may share different subsets of {ze}. Recall
that Ce denotes the sub-network of nodes such that e ∈ Ek.
If we introduce the combination coefficients:∑

s∈Ce

ae,sk = 1,
∑
k∈Ce

ae,ks = 1 (16)

ae,sk > 0, ae,sk = 0 for s /∈ Nk ∩ Ce (17)

then problem (15) can be solved by using the following
coupled diffusion algorithm derived in [10]. Set zek,−1 =
ψek,−1 to arbitrary values. For each k repeat for i ≥ 0:

ψek,i = zek,i−1 − µy∇zef(zk,i−1), ∀ e ∈ Ek (18)

φek,i = ψek,i + zek,i−1 − ψek,i−1, ∀ e ∈ Ek (19)

zek,i =
∑

s∈Nk∩Ce

āe,skφ
e
s,i, ∀ e ∈ Ek (20)

where zek,i is the estimate of ze at agent k, {ψek,i, φek,i}
are intermediate vectors used to estimate zek,i, and µy is
a positive step-size parameter. The coefficients {āe,sk} are
defined as follows:

āe,sk
∆
=

{
0.5 (1 + ae,kk), if s = k
0.5 ae,sk, otherwise (21)

B. Dual Coupled Diffusion

The previous algorithm can also be utilized to solve the
saddle point problem (14). In this saddle point problem,
the variable wk is a “local variable” at agent k only since
it is present only in Lk(wk, yk). However, from (11), the
functions {Lk(wk, yk)} are coupled across the agents be-
cause different agents may share different subsets of {ye};
therefore, yk is a “global variable”. Now, given W?, problem
(14) becomes of similar form to (15). To estimate W?,
we employ a primal-descent (with step-size µw > 0) and
to estimate y? we employ dual-ascent using the coupled
diffusion algorithm (with step-size µy > 0) to arrive at
algorithm (22) listed below. In this listing, yek,i denotes the
estimate of ye at time i for agent k ∈ Ce. Steps (22a)–
(22b) are local steps that do not require any communication
between neighbors. Step (22d) is a combination step that
requires agent k involved in the constraint e to combine its
dual estimate with only the neighbors involved in the same
constraint.



Algorithm (Dual Coupled Diffusion)
Setting: Let wk,−1 and yek,−1 = ψek,−1 arbitrary.
For every agent k, at iteration i ≥ 0 do:

wk,i = wk,i−1 − µw∇Jk(wk,i−1)− µw
∑
e∈Ek

BT
e,ky

e
k,i−1

(22a)
For all e ∈ Ek:

ψek,i = yek,i−1 + µy

(
Be,kwk,i −

1

Ne
be

)
(22b)

φek,i = ψek,i + yek,i−1 − ψek,i−1 (22c)

yek,i =
∑

s∈Nk∩Ce

āe,skφ
e
s,i (22d)

III. MAIN RESULTS

We start by introducing the Ne×Ne matrix Ae that collects
the coefficients {ae,sk}:

Ae
∆
= [ae,sk]s,k∈Ce (23)

Assumption 4. (Combination matrices): The combina-
tions matrices {Ae} are assumed to be primitive, symmetric,
and doubly stochastic. �

Under Assumption 2, the previous assumption can be easily
satisfied and many rules exist to construct such weights –
see [20], [21]. In-order to analyze (22), we will rewrite it
in a compact network form. To do that, we introduce the
following sub-network quantities:

Yei
∆
= col{yek,i}k∈Ce ∈ RNeSe , Āe

∆
= Āe ⊗ ISe

(24)

where Āe = 1
2 (INe + Ae). We also introduce the network

quantities:

Wi
∆
= col{wk,i}Kk=1 (25)

∇J (Wi)
∆
= col{∇Jk(wk,i)}Kk=1 (26)

Yi
∆
= col{Yei}Ee=1 (27)

Ā ∆
= blkdiag{Āe}Ee=1 (28)

b
∆
= col

{
1

Ne
(1Ne

⊗ be)
}E
e=1

(29)

To write (22) in network form, we need to rewrite the term∑
e∈Ek B

T
e,ky

e
k,i−1 in terms of the network quantity Yi−1

defined in (27). This can be done as follows:∑
e∈Ek

BT
e,ky

e
k,i−1 =

∑
e∈Ek

BTekYei−1 =

E∑
e=1

BTekYei−1 (30)

where we introduced the 1 × Ne block row matrix BTek of
similar block structure as Yei−1 that picks yek,i−1 if e ∈ Ek
such that BTekYei−1 = BT

e,ky
e
k,i−1 and BTekYei−1 = 0Qk

if
e /∈ Ek. This can be represented mathematically by:

BTek = blkrow{BT
e,kk′}k′∈Ce (31)

BT
e,kk′

∆
=

{
BT
e,k, if k ∈ Ce , k = k′

0Qk,Se
, otherwise

(32)

Therefore, if we let:

BT ∆
=

B
T
11 · · · BTE1
...

...
BT1K · · · BTEK

 (33)

then algorithm (22) can be written compactly as follows:

Wi = Wi−1 − µw∇J (Wi−1)− µwBTYi−1 (34)

Yi = Ā
(

2Yi−1 − Yi−2 + µyB(Wi −Wi−1)

)
(35)

for i ≥ 1 with initialization:

Y0 = Y−1 + µy(BW0 − b) (36)

It can be shown that the second step (35) can be rewritten
in an equivalent form. Let:

A = blkdiag{Ae ⊗ ISe}Ee=1 (37)

and introduce the eigenvalue decomposition [22]:

0.5(IN −A) =
[
U1 U2

] [Σ 0
0 0

] [
UT

1

UT
2

]
= U1ΣUT

1 (38)

where N =
∑E
e=1NeSe, U1 ∈ RN×r, U2 ∈ RN×(N−r),

and Σ = diag{λj}rj=1 with λ1 ≥ · · · ≥ λr > 0 denoting
the non-negative eigenvalues of the matrix 0.5(I −A) [20].
From Assumption 4 it is easy to check that those eigenvalues
are strictly less the one. Using the decomposition (38), we
can rewrite (35) equivalently as follows [23]:

Wi = Wi−1 − µw∇J (Wi−1)− µwBTYi−1 (39)

X i = X i−1 −
1

µy
UT

1

(
Yi−1 + µy(BWi − b) + µyU1ΣX i−1

)
(40)

Yi = Yi−1 + µy
(
BWi − b

)
+ µyU1ΣX i (41)

for i ≥ 1, where we introduced a new sequence X i with
X0 = 0. Intuitively, step (41) can be regarded as a corrected
gradient ascent step.

We now state the Lemmas that will be used in the analysis.
The following auxiliary result is proven in [24].

Lemma 1. For any S × S primitive, symmetric and doubly
stochastic matrix A, it holds that IS − A is symmetric and
positive semi-definite. If we let A = A ⊗ IM , then, for any
block vector Z = col{z1, ..., zS} in the nullspace of I − A
with entries zs ∈ RM it holds that:

(I −A)Z = 0 ⇐⇒ z1 = z2 = ... = zS (42)

�

Condition (42) in Lemma 1 will be used to ensure con-
sensus among the dual variables across agents in the proof
of the following Lemma regarding the optimality condition.

Lemma 2. (Optimality condition) If there exists a point
(W?, Y?, X?) such that:

∇J (W?) + BTY? = 0 (43)

UT
1 Y

? = 0 (44)
(BW? − b) + U1ΣX? = 0 (45)



Then, it holds that:

ye,?k = ye,?, k ∈ Ce (46)

where (W?, y1,?, · · · , yE,?) is a saddle point for the La-
grangian (9).

Proof: Since UT
1 U1 = I and Σ > 0, condition (44) is

equivalent to:

UT
1 Y

? = 0 ⇐⇒ U1ΣUT
1 Y

? = 0 ⇐⇒ 1

2
(I −A)Y? = 0

(47)
Therefore, from (42), and the block structure of A in (37),
condition (44) gives:

ye,?k = ye,?s , ∀ k, s ∈ Ce (48)

Using the block structure of ∇J (.) and B in (26) and (33),
we can expand (43) into its components to get:

∇Jk(w?k) +

E∑
e=1

BTekYe,? = ∇Jw(w?k) +
∑
e∈Ek

BT
e,ky

e,?
k = 0

(49)

for all k. Now, let Z = blkdiag{1Ne⊗ISe}Ee=1. Multiplying
equation (45) on the left by ZT gives:

0 = ZT(BW? − b) + ZTU1︸ ︷︷ ︸
=0

ΣX?
(a)
= ZT(BW? − b) (50)

where step (a) holds because

ZTU1 = ZT(U1ΣUT
1 )U1Σ−1 = 0.5ZT(I −A)U1Σ−1 = 0

(51)

where we used the fact UT
1 U1 = I and the last step holds

because Z is in the nullspace of I − A (see (42)). Using
the block structure of B and b, we can expand (50) into its
components to get:

K∑
k=1

(
(1T
Ne
⊗ ISe

)Bekw?k
)
− (1T

Ne
⊗ ISe

)
1

Ne
(1Ne

⊗ be)

=

K∑
k=1

(
(1T
Ne
⊗ ISe

)Bekw?k
)
− be = 0 (52)

for all e. Note that:

BTek(1Ne
⊗ ISe

) = blkrow{BT
e,kk′}k′∈Ce(1Ne

⊗ ISe
)

=
∑
k′∈Ce

BT
e,kk′ =

{
BT
e,k, if k ∈ Ce

0, otherwise

(53)
Substituting the above conclusion into (52) gives:∑

k∈Ce

Be,kw
?
k − be = 0 (54)

Equations (49) and (54) along with (48) satisfy the optimality
conditions of the Lagrangian (9). �

We will show that recursions (39)–(41) converge to points
that satisfy the optimality conditions given in Lemma 2. For
this purpose, we introduce the error vectors:

W̃i
∆
= W? −Wi, X̃ i

∆
= X? − X i Ỹi

∆
= Y? − Yi (55)

and the positive definite matrix:

D ∆
= µy(Σ− Σ2) > 0 (56)

where Σ was introduced in (38). The next Lemma bounds
the difference of the consecutive primal and dual errors. The
proof can be found in [23].

Lemma 3. (Primal-dual bound): Suppose Assumptions 1–4
hold, then:

‖W̃i‖2 − ‖W̃i−1‖2 ≤ (−1− 2µwν + 2µwδ)‖Wi −Wi−1‖2

− 2µw(Yi−1 − Y?)TB(Wi −W?)
− 2µwν

(
‖W̃i−1‖2 + ‖W̃i‖2

)
(57)

and

‖Ỹi‖2µ−1
y

+ ‖X̃ i‖2D − ‖Ỹi−1‖2µ−1
y
− ‖X̃ i−1‖2D

= −‖X i − X i−1‖2D − ‖Σ(X? − X i)‖2µy

+ 2(Yi−1 − Y?)TB(Wi −W?) + ‖B(Wi −W?)‖2µy
(58)

where (W?, Y?, X?) satisfy the optimality conditions given in
Lemma 2. �

The bounds in the previous Lemma are basically used for
convergence. The following theorem is proven in [23].

Theorem 1. (Convergence): Suppose Assumptions 1–4
hold, then for positive step-sizes satisfying:

µw <
1

(2δ − ν)
, µy <

ν

λmax(BTB)
(59)

recursion (39)–(41) converges and it holds that Wi converges
to the optimal solution of (2). �

IV. NUMERICAL SIMULATION

In this section, we illustrate the performance of our algo-
rithm for problem (8) given in Example 1. In our simulation,
we consider a randomly generated network with K = 20
agents shown in Figure 2a, where neighbors are decided
by closeness in distance. Using the problem settings in
(8), we randomly generate Rk ∈ RQk×Qk and bk ∈ RQk

(Qk = 10) while making sure the matrix Rk is positive-
definite and well conditioned (i.e., the difference between
maximum and minimum singular values is not very large).
Each vector rk ∈ RQk is randomly generated with each
element uniformly chosen from (−2,−1, 0, 1, 2). Similarly,
each matrix Be,k ∈ RSe×Qk (with Se = 1) is a randomly
generated row vector with elements uniformly chosen from
(−2,−1, 0, 2 − 2). Each be is a scalar uniformly chosen
from (−1, 0, 1). The matrices {Ae} are generated using
the Metropolis rule [21]. We consider two approaches to
solve problem (8). The first approach is to use the dual
coupled diffusion (22) while considering the structure of the
problem (8), i.e., run (22) with E = K, Ce = Ne. The
second approach is to ignore the special structure of the
problem and reformulate it into the form of problem (1);
in this case we can also apply the dual coupled diffusion
(22) with E = 1, C1 = {1, · · · ,K}, which we call dual
diffusion. To compare with other works, we simulate the
inexact distributed consensus ADMM (IDC-ADMM) from



(a) (b)
Fig. 2: (a) The network topology used in the simulations. (b) Squared error evolution over time between the different algorithms explained
in the simulation section.

[1] designed for problem (1). The step-sizes are manually
set to get the best possible result for each algorithm: with
(µw = 0.1, µy = 0.2) for the dual coupled diffusion,
(µw = 0.1, µy = 0.09) for the dual diffusion, and (c =
1, β = 7) for IDC-ADMM [1]. Figure 2b shows the squared
error ‖Wi −W?‖2 for each of the previous algorithms. It is
observed that dual diffusion and the IDC-ADMM perform
similarly. Moreover, the dual coupled diffusion outperforms
both algorithms in this simulation example. One intuitive
explanation is that the dual coupled diffusion takes advantage
of the sparsity in the constraints and fewer consensus steps
are required to reach agreement about the dual variable [23].

V. CONCLUSION

In this work, a distributed optimization problem is studied
where coupling between different agents exists through dif-
ferent affine constraints. A distributed first-order algorithm
is developed that converges to the minimizer for sufficiently
small constant step-sizes. The sparsity of the constraints is
exploited to arrive at a more effective distributed solution.
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